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Abstract

To investigate the growth effect of pollution, we apply an optimal growth framework
in which human and physical capital accumulation are two growth engines. Pollution is
emitted from the stock of physical capital and has a negative impact on the formation
of human capital. In this simple growth model, sustainable endogenous growth never
occurs and a unique steady state emerges because of the negative impact of pollution.
The model shows that (i) if the extent of the external effect of pollution is relatively
small, the steady state is stable and the economy starting in the neighborhood of the
steady state converges to it, (ii) if the extent of the external effect is relatively large,
the steady state is unstable and the economy diverges away from it, and (iii) a Hopf
bifurcation occurs at a certain intermediate extent of the external effect. The numerical
analysis illustrates the global dynamic behavior in which the economy exhibits a closed
orbit as sufficient time passes if the steady state is unstable.
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1 Introduction

Many researchers have empirically demonstrated that pollution negatively impacts human

health (e.g., Bell et al. 2004; Chay and Greenstone 2003; Currie and Neidell 2005; Dockery

et al. 1993; Pope et al. 2002; Graff Zivin and Neidell 2012, 2013). If pollution harms hu-

man health, it probably impedes the formation of human capital, thereby reducing economic

growth, because illness has direct and indirect negative impacts on mental and physical func-

tioning that interfere with learning and working performance. In this paper, we investigate

how pollution that impedes the formation of human capital affects the dynamic behavior of

an economy by applying an optimal growth framework.

In our model, there are two growth engines: physical capital accumulation and human

capital accumulation, as in the model of Lucas (1988). Although without pollution, the

economy would experience sustainable endogenous growth, the economy never exhibits en-

dogenous growth because of the negative external effect of pollution. In our model, the

stock of physical capital emits pollution if sufficient physical capital accumulates, and this

negatively affects the formation of human capital. More concretely, whereas one unit of

investment in physical capital production produces one unit of physical capital, one unit of

investment in human capital production produces less than one unit of human capital, being

impeded by pollution. As physical capital accumulates further, the negative external effect

of pollution on the formation of human capital is strengthened. Therefore, the economy is

prevented from experiencing endogenous growth.

The outcome that the economy cannot experience endogenous growth is intuitive. The

representative agent does not intend to invest much in human capital production because

pollution disturbs the formation of human capital. Instead, she invests more in physical

capital production, thereby increasing the supply of physical capital. As a result, the shadow

price of physical capital (and general goods) declines in each period relative to the case

without pollution. Our model proves that the value of consumption (i.e., the shadow price

of general goods times consumption) is constant in each period. Then, if the shadow price

becomes low, the current consumption becomes large. As such, the allocative inefficiency
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coming from the investment decision causes overconsumption in each period relative to the

case without pollution, and thus, the amount of general goods produced decreases. Therefore,

both human capital and physical capital accumulate to a lesser extent, and endogenous

growth never occurs.

The investigation of the local dynamics shows that (i) if the extent of the external effect

of pollution is relatively small, the steady state is stable and the economy starting in the

neighborhood of the steady state converges to it, (ii) if the extent of the external effect is

relatively large, the steady state is unstable and the economy diverges away from it, and (iii)

a Hopf bifurcation occurs at a certain intermediate extent of the external effect and a limit

cycle emerges around the steady state. The Hopf bifurcation in the optimal growth model

was first obtained by Benhabib and Nishimura (1979); we apply it to the current growth

model. Additionally, the numerical analysis illustrates the global behavior of the dynamical

system in which the economy exhibits a closed orbit as sufficient time passes if the steady

state is unstable.

Our study belongs to the literature on growth and the environment. Many researchers

have investigated growth and the environment over the past forty years by applying an opti-

mal growth framework with infinitely lived agents.1 Among others, Forster (1973), Tahvonen

and Kuuluvainen (1993), and van der Ploeg and Withagen (1991) study the growth effect of

pollution with Ramsey-type growth models when pollution affects an instantaneous utility

function or a neoclassical production function. Bovenberg and Smulders (1995) and Xepa-

padeas (1997) also investigate the growth effect of pollution by employing endogenous growth

models, á la Romer (1986) and á la Lucas (1988), respectively. Unlike our study, these stud-

ies do not obtain endogenous business cycles in equilibrium. In contrast, Wirl (2004) and

Bosi and Desmarchelier (2018a) show that a limit cycle emerges in equilibrium by extending

the model of Ayong Le Kama (2001), in which pollution negatively affects an environmen-

tal resource that has a positive effect on an instantaneous utility function. Furthermore,

Bosi and Desmarchelier (2018b), (2018c), and (2019) develop Ramsey-type growth models

1See Xepapadeas (2005) for a comprehensive survey of the literature.
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in which pollution affects the disease transmission mechanism (which indirectly impacts the

aggregate labor supply) and/or consumption demand, and derive a limit cycle. In our model,

a limit cycle is also derived, but unlike these models, pollution has a negative effect on the

formation of human capital.

The remainder of the paper is organized as follows. The next section presents the model,

the growth engine of which is human and physical capital. In section 3, we derive an

equilibrium in which we obtain differential equations with respect to human and physical

capital and investigate the dynamical system locally. In section 4, we conduct a numerical

exercise to observe the global behavior of the dynamical system and section 5 concludes our

study.

2 Model

An economy goes from time t = 0 to t = +∞ in continuous time and is inhabited by identical

infinitely lived agents. Their population is constant and normalized to one. A representative

agent produces general goods with a Cobb-Douglas production technology y = Ahαk1−α

(0 < α < 1), the inputs of which are human capital h and physical capital k, where A is the

technology level. Since the general goods are used for investment or consumption in each

period, the flow budget constraint is given by

Ahαk1−α = c+ ih + ik, (1)

where c is consumption and ih and ik are investments in the formation of human and physical

capital, respectively. The accumulation of human and physical capital follows the equations

below:

ḣ = k̄−σih − δh (2)

k̇ = ik − δk, (3)
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where the depreciation rates of human and physical capital are the same, which is given by

δ. In Eq. (2), k̄−σ (σ > 0) is an external effect that the accumulation of physical capital

has on the formation of human capital. If k is less than one, investment in human capital

production is enhanced by the external effect, and if k is greater than one, it is disturbed

by the effect. One may imagine that if sufficient physical capital accumulates, it begins to

emit pollution that negatively affects the production of human capital. In what follows, we

simply call σ the extent of the external effect. Because our interest is in the situation in

which physical capital accumulates sufficiently that it emits pollution, we focus our following

analysis on such a case unless otherwise stated. As σ increases, the extent of the negative

external effect becomes large.

2.1 Utility maximization

The representative agent maximizes her lifetime utility
∫∞
0

e−ρt ln(c)dt subject to Eqs. (1)-

(3); namely, she solves the following maximization problem:

max

∫ ∞

0

e−ρt ln(c)dt

subject to

y = Ahαk1−α = c+ ih + ik

ḣ = k̄−σih − δh

k̇ = ik − δk,

where ρ > 0 is the subjective discount rate. The current-value Hamiltonian is set as follows:

H := ln(c) + λ(Ahαk1−α − c− ih − ik) + λh(k̄−σih − δh) + λk(ik − δk),
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where λ, λh, and λk are the shadow prices of general goods, human capital, and physical

capital, respectively. The first-order conditions are given by

∂H

∂c
=

1

c
− λ = 0 (4)

∂H

∂ih
= −λ+ λhk̄−σ = 0 (5)

∂H

∂ik
= −λ+ λk = 0 (6)

∂H

∂h
= −λ̇h + ρλh ⇐⇒ λα

y

h
− δλh = −λ̇h + ρλh (7)

∂H

∂k
= −λ̇k + ρλk ⇐⇒ λ(1− α)

y

k
− δλk = −λ̇k + ρλk, (8)

where one should note that in equilibrium, it holds that k̄ = k. The transversality conditions

are given by

lim
t→∞

e−ρtλhh = lim
t→∞

e−ρtλkk = 0. (9)

3 Equilibrium

In this section, we define a dynamic competitive equilibrium and characterize the dynamical

system.

Proposition 1. The shadow prices of human and physical capital satisfy the following dif-

ferential equations in equilibrium:

λ̇h =

(
ρ+ δ − α

k−σy

h

)
λh (10)

and

λ̇k =
(
ρ+ δ − (1− α)

y

k

)
λk. (11)

Proof. From Eq. (5), we have λ = λhk−σ. Substituting this into Eq. (7) yields Eq. (10).

Similarly, from Eq. (6), we have λ = λk. Substituting this into Eq. (8) yields Eq. (11).

Proposition 2. The laws of motion of human and physical capital satisfy the following
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differential equations in equilibrium:

ḣ =
(
(σ + α− 1)h+ αk1−σ

)(Ahα−1k1−α−σ

σ

)
− δ(h+ k1−σ)− 1

λkkσ
(12)

and

k̇ =
(
(1− α)h− αk1−σ

)(Ahα−1k1−α

σ

)
. (13)

Proof. See the Appendix.

A dynamic competitive equilibrium is defined as a sequence of the shadow prices {λh, λk}

and human and physical capital stocks {h, k} for t ≥ 0 that satisfy Eqs. (10)-(13) and the

transversality conditions (9), given h0 and k0. In the equilibrium dynamics, λh and λk are

non-predetermined variables that can jump and h and k are state variables that cannot

jump.

3.1 Dynamical system

By using the transversality conditions (9), we can reduce the four-dimensional dynamical

system consisting of Eqs. (10)-(13) to a two-dimensional dynamical system with respect to

h and k. To do so, we prepare a useful lemma below.

Lemma 1. It holds that

λhh+ λkk =
1

ρ
(14)

for all t ≥ 0 in equilibrium.

Proof. See the Appendix.

Eq. (14) implies that the sum of the current values of human and physical capital is equal

to the sum of the present values of consumption flows.2 This equation holds regardless of the

presence of the negative external effect of pollution. Before arranging the dynamical system

by using Eq. (14), we observe the relationship among human capital, physical capital, and

consumption in Remark 1 below.

2Since λc = 1, the sum of the present values of consumption flows is computed as
∫∞
0

e−ρt · 1dt = 1/ρ,
which is the right-hand side of Eq. (14).
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Remark 1. It holds that

c = ρ(kσh+ k) (15)

for all t ≥ 0 in equilibrium.

Proof. From Eqs. (4), (5), and (6), it follows that λc = 1 and λ = λk = λhk−σ in equilibrium.

Substituting these equations into Eq. (14) yields Eq. (15).

Note from Remark 1 that overconsumption occurs in each period when the accumulation

of physical capital emits pollution. To consider this, suppose that k > 1. If there were no

negative external effects of pollution, consumption would be determined by c = ρ(h + k)

given human and physical capital, which implies that a certain proportion of the sum of

human and physical capital is optimally consumed in each period. However, now that there

is a negative external effect of pollution, the representative agent consumes more than the

optimal level because kσ > 1.

From Eqs. (5), (6), and (14), we have 1/λk = ρ(kσh+k). Substituting this equation into

Eq. (12) yields the following equation:

ḣ =
(
(σ + α− 1)h+ αk1−σ

)(Ahα−1k1−α−σ

σ

)
− (ρ+ δ)(h+ k1−σ). (16)

Given k(0) and h(0), the equilibrium path with respect to k and h is given by Eqs. (13) and

(16). Because of the transversality conditions, the shadow prices, λh and λk, jump such that

the economy reaches the manifold that includes the set of the general solutions of Eqs. (13)

and (16). In what follows, our analysis focuses on the dynamical system with respect to h

and k that is given by Eqs. (13) and (16), or equivalently,

 ḣ = ((σ + α− 1)h+ αk1−σ)
(

Ahα−1k1−α−σ

σ

)
− (ρ+ δ)(h+ k1−σ)

k̇ = ((1− α)h− αk1−σ)
(

Ahα−1k1−α

σ

)
.

(17)
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3.2 Steady state

From Eq. (17), we obtain the steady-state values of human and physical capital as follows:

h∗ :=

[(
(1− α)A

ρ+ δ

) 1−σ
α

(
α

1− α

)] 1
σ

(18)

and

k∗ :=

[(
(1− α)A

ρ+ δ

) 1
α
(

α

1− α

)] 1
σ

. (19)

It is straightforward to show that both h∗ and k∗ increase as σ decreases if Aαα(1 −

α)1−α > ρ+ δ. In particular, Remark 2 below clarifies the case in which σ is close to zero.

Remark 2. Suppose that Aαα(1− α)1−α > ρ+ δ. Then, it follows that limσ→0 h
∗ = ∞ and

limσ→0 k
∗ = ∞.

Proof. The claim immediately follows from Eqs. (18) and (19).

Remark 2 implies that absent the negative external effect of pollution, the economy would

exhibit endogenous growth, the engines of which are the accumulation of human and physical

capital. If there were no external effects of pollution, i.e., if σ = 0, the growth rate on the

balanced growth path in equilibrium would be equal to Aαα(1−α)1−α−(ρ+δ). However, the

negative external effect that pollution has on human capital formation produces finite steady-

state values of human and physical capital. Note that although the extent of the negative

external effect is infinitesimal but not zero, the steady state appears. The intuition behind the

outcome that the economy does not exhibit endogenous growth is as follows. Suppose that

sufficient physical capital accumulates such that k is greater than one; thus, physical capital

emits pollution at a certain time. Since the production of human capital is disturbed by

pollution, the representative agent refrains from investing in human capital production, but

instead, she invests more in physical capital production. Then, the supply of physical capital

increases, and the shadow price of physical capital (and general goods) decreases in each

period relative to the case without pollution. Because the value of current consumption is one

(i.e., λc = 1), if the shadow price of general goods becomes low, current consumption becomes
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large. The allocative inefficiency regarding the investment decision causes overconsumption,

as seen in Remark 1, and the lower amount of general goods production in each period

relative to the case without pollution. Eventually, both human capital and physical capital

accumulate less, and thus, endogenous growth never occurs.

3.3 Dynamics of h and k

Linearizing the dynamical system (17) around the steady state, we obtain the local system

as follows:  ḣ

k̇

 = J

 h− h∗

k − k∗

 , (20)

where J is the Jacobian of the system, which is given by

J =

 − (1−α)(ρ+δ)
ασ

(
(1−α)(1−σ)−ασ2

ασ

)
(ρ+ δ)

1+α
α (A(1− α))−

1
α

1
σ
(ρ+ δ)

α−1
α (A(1− α))

1
α −

(
1−σ
σ

)
(ρ+ δ)

 . (21)

Let Tr(J) and Det(J) denote the trace and determinant of J , respectively, which are com-

puted as

Tr(J) = (ρ+ δ)

(
1− 1

ασ

)
(22)

and

Det(J) = (ρ+ δ)2. (23)

Since Det(J) > 0, the real parts of the eigenvalues have the same sign and whether the sign

is positive or negative is determined by the trace. From Eq. (22), if ασ < 1 (> 1), the sign

of the real parts is negative (positive). The following proposition characterizes the steady

state and the local dynamic behavior of the economy in terms of the range of parameter

values of σ.

Proposition 3. The following hold.

• If 0 < σ < 1/α, the steady state is stable, and (h, k) starting with any initial values of
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(h(0), k(0)) in the neighborhood of the steady state converges to the steady state.

• If 1/α < σ, the steady state is unstable, and (h, k) starting with any initial values of

(h(0), k(0)) in the neighborhood of the steady state diverges away from the steady state.

Proof. See the Appendix.

Furthermore, if σ increases from 0, a Hopf bifurcation occurs as summarized in the following

remark.

Remark 3. A Hopf bifurcation occurs at σ = 1/α, and a limit cycle appears at a certain

value of σ ∈ (1/α− ϵ, 1/α + ϵ) where ϵ > 0.

Proof. At σ = 1/α, Tr(J) becomes zero with Det(J) remaining positive. Additionally, the

derivative of the real parts of the eigenvalues with respect to σ is positive. Then, a Hopf

bifurcation occurs at σ = 1/α.

For the criterion to determine whether the Hopf bifurcation is subcritical or supercritical,

see Nishimura and Shigoka (2019).

4 Numerical analysis

In the previous section, we investigated the local dynamics of the economy. To observe the

global dynamic behavior, we perform a numerical analysis in this section.3 In particular, we

shall see that the economy can exhibit cyclical behavior when the steady state is unstable

as in the second case of Proposition 3. Throughout the numerical analysis in this section,

we set the parameter values as α = 0.33, ρ = 0.05, δ = 0.10, and A = 1. Regarding σ, we

examine three cases: σ = 1, σ = 1/0.3, and σ = 1/0.33. We iterate 200, 000 times for the

simulation. From Proposition 3, σ = 1 yields a stable steady state and σ = 1/0.3 yields an

unstable steady state. σ = 1/0.33 is the value of σ that produces a Hopf bifurcation.

3To perform the numerical analysis, we use MATLAB R2020a with ode45.
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Case 1: σ = 1

Fig. 1 shows the case of σ = 1. In this case, the steady-state values of human and physical

capital are given by h∗ = 0.491 and k∗ = 45.92, respectively. The initial values of human

and physical capital are h0 = 0.01 and k0 = 2.4, respectively. Starting from the initial

values, human capital increases first and overshoots, while physical capital remains relatively

unchanged. However, because of the negative external effect of pollution, human capital

starts to decline, and physical capital significantly increases. Then, the economy converges

to the stable steady state. We examined various initial values, but the convergence outcomes

were all the same, which implies that the economy is globally stable if the condition of the

first part of Proposition 3 holds.

Case 2: σ = 1/0.3

The outcome of this case is presented in Fig. 2. In this case, the steady-state values are

h∗ = 0.0338 and k∗ = 3.152, both of which are smaller than those in Case 1. Of course, this

is because the extent of the negative external effect of pollution is more severe than in Case

1. Panel a in the figure examines the case in which the economy starts away from the steady

state. More concretely, the initial values are h0 = 0.01 and k0 = 2.4, which are the same

as those in Case 1. Although the dynamic courses of both human and physical capital on

the initial dates are similar to those of Case 1, the economy does not converge to the steady

state but exhibits a closed orbit that surrounds the steady state, implying that endogenous

business cycles occur. In panel b, the economy starts from initial values that are closer to

the steady state, which are h0 = 0.033 and k0 = 3.15. Since the steady state is unstable and

the eigenvalues of J are imaginary numbers with positive real parts, the economy exhibits

oscillation with the amplitude widening over time. Eventually, we obtain the same closed

orbit as that in the case of panel a.
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Case 3: σ = 1/0.33

Since α = 0.33, σ = 1/0.33 is the value of σ that causes the Hopf bifurcation. Although

in this case, there exists a limit cycle in the neighborhood of the steady state for a certain

value of σ ∈ (1/α − ϵ, 1/α + ϵ), we are curious about the global dynamic behavior. The

steady-state values of human and physical capital are given by h∗ = 0.03379 and k∗ = 3.535.

In panel a in Fig. 3, the initial values are again h0 = 0.01 and k0 = 2.4. As in Case 2, the

economy converges to a closed obit when sufficient time passes, implying that endogenous

business cycles occur. Panel b illustrates the case in which the initial values are h0 = 0.0377

and k0 = 3.53, which are even closer to the steady state. Although the eigenvalues of J are

pure imaginary numbers, the amplitude of oscillation becomes wider. Although the economy

converges to a closed orbit as in Case 2, the convergence takes much more time than in Case

2.

5 Conclusion

We have investigated the growth effect of pollution that is emitted from the stock of physical

capital and has a negative impact on the formation of human capital by applying a simple

optimal growth framework in which there are two growth engines: human and physical

capital accumulation. Because of the negative impact, sustainable endogenous growth never

occurs, and a unique steady state emerges despite that the extent of the external effect

of pollution is infinitesimal. The analysis shows that if the extent of the external effect is

relatively small, the steady state is stable, and the economy starting in the neighborhood of

the steady state converges to it. If the extent of the external effect is relatively large, the

steady state is unstable, and the economy starting in the neighborhood of the steady state

diverges away from it. Furthermore, a Hopf bifurcation occurs at a certain intermediate

extent of the external effect. We have also performed a numerical analysis to observe the

global dynamic behavior, in which the economy exhibits a closed orbit once sufficient time

passes if the steady state is unstable.
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One can extend our model such that pollution abatement technologies are introduced and

pollution impacts not only the formation of human capital but also consumption demand.

Investigating what would happen to the dynamic behavior under these extensions is left for

future research.

Appendix

Proof of Proposition 2

From Eqs. (5) and (6), it follows that

λ̇k

λk
=

λ̇h

λh
− σ

k̇

k
(A.1)

From Eqs. (10), (11), and (A.1), we obtain Eq. (13). Eqs. (1)-(4), (6) eliminate c, ih, and

ik and we obtain

1

λk
+ k̇ + δk + kσ(ḣ+ δh) = y. (A.2)

Substituting Eq. (13) into Eq. (A.2) yields Eq. (12).

Proof of Lemma 1

Define x = λhh+ λkk. Then, it follows from Eqs. (2), (3), (5), (10), and (11) that

ẋ = λ̇hh+ λhḣ+ λ̇kk + λkk̇

= λh(k−σih − δh) + λk(ik − δk) + (ρ+ δ)(λhh+ λkk)− λhk−σαy − λk(1− α)y

= λk(ih + ik) + ρx− λky. (B.2)

Eqs. (1) and (B.2) eliminate ih and ik and we obtain

ẋ = ρx− λkc. (B.3)
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Applying Eqs. (4) and (6) to Eq. (B.3) yields

ẋ = ρx− 1. (B.4)

Solving Eq. (B.4), we have

e−ρtx = x(0) +
1

ρ
(e−ρt − 1). (B.5)

From the transversality conditions, it follows that limt→∞ e−ρtx = e−ρt(λhh + λkk) = 0.

Therefore, from Eq. (B.5) we obtain x(0) = 1/ρ and thus x = 1/ρ for all t ≥ 0.

Proof of Proposition 3

Since Det(J) > 0, the real parts of the eigenvalues have the same sign. If 0 < σ < 1/α, it

follows that Tr(J) < 0, and thus, the real parts of the eigenvalues are negative. Therefore,

the steady state is stable. If 1/α < σ, it follows that Tr(J) > 0, and thus, the real parts of

the eigenvalues are positive. Therefore, the steady state is unstable.
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Fig. 1 global dynamics
𝜎𝜎 = 1

ℎ0 = 0.01,𝑘𝑘0 = 2.4
ℎ∗ = 0.491,𝑘𝑘∗ = 45.92



a

b

Fig. 2 global dynamics  𝜎𝜎 = 1/0.3

a ℎ0 = 0.01 𝑘𝑘0 = 2.4 ℎ∗ = 0.0338 𝑘𝑘∗ = 3.152
b ℎ0 = 0.033 𝑘𝑘0 = 3.15 ℎ∗ = 0.0338 𝑘𝑘∗ = 3.152



a ℎ0 = 0.01 𝑘𝑘0 = 2.4 ℎ∗ = 0.03779 𝑘𝑘∗ = 3.535
b ℎ0 = 0.0377 𝑘𝑘0 = 3.53 ℎ∗ = 0.03779 𝑘𝑘∗ = 3.535

a

b

Fig. 3 global dynamics  𝜎𝜎 = 1/0.33
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