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Preface

As is well known, if a function is analytic on an interval, then the function on a subin-
terval is expressed as the Taylor expansion about each point in the interval. Furthermore,
possibility of Taylor expansions of functions about two or three point has been studied
as useful expressions in many areas of mathematical analysis. In this thesis, for given
positive integers n,m, we show possibility of two point Taylor expansions of functions
about two points −1, 1 with multiplicity weight (n,m).

This thesis is composed of four chapters and has three main results about two point
Taylor expansion.

In Chapter 1, we review important results about best approximation and interpolation
by polynomials. Also, we introduce previous studies about two point Taylor expansion.

In Chapter 2, we discuss the first main theorem about two point Taylor expansion of
piecewise analytic function. We show the following theorem. Let δ1, δ2 be real numbers
with δ1 > n−m

n+m
−(−1) and δ2 > 1− n−m

n+m
, where n−m

n+m
is the point which divides the interval

[−1, 1] in the ratio n : m. Let f be a piecewise analytic function such that f is equal
to an analytic function p on [n−m

n+m
,∞) which has the Taylor expansion of p about 1 on

(1 − δ2, 1 + δ2), and f is equal to an analytic function q on (−∞, n−m
n+m

) which has the
Taylor expansion of q about −1 on (−1− δ1,−1 + δ1). Then, it holds that f is expressed
as the two point Taylor expansion about −1, 1 with the multiplicity weight (n,m) on the
interval [α, β] \ {n−m

n+m
}, where α, β are the solutions of |(x + 1)n(x − 1)m| = 2n+m·nn·mm

(n+m)n+m

with α < −1 and β > 1. Also, if p(n−m
n+m

) = q(n−m
n+m

), then f is expressed as the two point
Taylor expansion about −1, 1 with the multiplicity weight (n,m) on the interval [α, β].

In Chapter 3, we discuss the second main theorem about two point Taylor expansion
of a Heaviside function. We show the following theorem. Let f be the Heaviside function
such that f is equal to 1 on [n−m

n+m
,∞), and f is equal to 0. Let pf,{−1,1}(n`,m`), ` ∈ N be the

Hermite interpolating polynomials to f at −1, 1 with multiplicities n`,m`. Then, there
exists a positive number C such that

∣∣pf,{−1,1}(n`,m`)

(
n−m
n+m

)
− 1

2

∣∣ ≤ C√
`

, ` ∈ N.
In Chapter 4, we discuss the third main theorem about termwise differentiation of two

point Taylor expansion. We show the following theorem. Let f be a piecewise polynomial
function such that f is equal to a polynomial function p of degree at most N on [n−m

n+m
,∞),

and f is equal to a polynomial function q of degree at most N on (−∞, n−m
n+m

). Then, it

holds that the k-th order derivatives of f on (α, n−m
n+m

) ∪ (n−m
n+m

, β) are expressed as the
termwise k times differentiation of the two point Taylor expansion about −1, 1 with
multiplicity weight (n, m).
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Chapter 1

Introduction

1.1 Polynomial approximation

As is well known, polynomial approximation has a a long history and has established
the foundation of approximation theory. Specially, best approximation and interpolation
by polunomials play important roles of polynomial approximation and have been fur-
nishing us with challenging topics and problems. Before making a brief review of best
approximation and interpolation by polynomials, we give some notations and definitions.

Notation 1.1.1. (1) Let [a, b] (−∞ < a < b < ∞) be a real compact interval and C[a, b]
the space of all real-valued continuous functions on [a, b].
(2) ‖ · ‖∞ denotes the supremum norm on C[a, b], i.e.,

‖f‖∞ = sup
x∈[a,b]

|f(x)|, f ∈ C[a, b].

(3) For each nonnegative integer n, Pn express the space of polynomials of degree at most
n.

Definition 1.1.2. For any f ∈ C[a, b], there exists a unique polynomial p∗ ∈ Pn such
that

‖f − p∗‖∞ ≤ ‖f − p‖∞ for all p ∈ Pn.

The polynomial p∗ is called the best uniform approximation to f from Pn (or simply the
best uniform approximation to f).

It is well known that any continuous functions can be approximated by polynomial
functions (Weierstrass(1885)).

Theorem 1.1.3. For any given f ∈ C[a, b] and any ε > 0, there exists a polynomial p
such that

‖f − p‖∞ < ε.

The Russian mathematician P. L. Chebyshev studied best uniform approximation from
Pn to a function in C[a, b].

1
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Theorem 1.1.4 (Kincaid and Cheney [9, Corollary 6 in p. 416]). Let f ∈ C[a, b]. In
order that pn ∈ Pn is the best uniform approximation to f , it is necessary and sufficient
that there exist (n + 2) points x0, . . . , xn+1(x0 < · · · < xn+1) in [a, b] and σ = 1 or −1
such that

f(xi) − p(xi) = σ(−1)i‖f − p‖∞, 0 ≤ i ≤ n + 1.

From Theorem 1.1.3 and Theorem 1.1.4, we easily have the following.

Theorem 1.1.5. For any given f ∈ C[a, b], let pn, n ∈ N be the best uniform approxima-
tion to f from Pn. Then, it holds that ‖f − pn‖∞ → 0 (n → ∞).

1.2 Lagrange interpolating polynomials

In the rest of this chapter, we review important results about interpolation by polyno-
mials. In 1.2, some results about Lagrange interpolating polynomials are stated and we
show several results about Hermite interpolating polynomials, in particular, results about
two point Taylor expansions.

First, we begin with the definition of interpolation by polynomials.

Definition 1.2.1. Let I be an infinite subset of R and f a real-valued function on I.
For any given finite subset X = {x0, . . . , xn} of I and for any given positive integers
k0, . . . , kn, if the values of the derivatives f (j)(xi), 0 ≤ i ≤ n, 0 ≤ j ≤ ki − 1 exist, then
there exists a unique approximating polynomial pf,X(k0,...,kn)(x) to f which is of degree at
most m(= k0 + · · · + kn − 1) and satisfies that

p
(j)
f,X(k0,...,kn)(xi) = f (j)(xi), 0 ≤ i ≤ n, 0 ≤ j ≤ ki − 1.

The points x0, . . . , xn and the polynomial p
(j)
f,X(k0,...,kn)(x) are called nodes and the Hermite

interpolating polynomial to f at x0, . . . , xn with multiplicities k0, . . . , kn, respectively. In
particular, if k0 = · · · = kn = 1, we simply write pf,X(x) for pf,X(1,...,1)(x) and call it the
Lagrange interpolating polynomial to f at x0, . . . , xn.

For any f ∈ C[a, b], let pn ∈ Pn, n ∈ N be the best uniform approximation to f .
From Theorem 1.1.4, since f − pn has at least (n + 1) zeros in [a, b], we put a set Xn =

{x(n)
0 , . . . , x

(n)
n }, n ∈ N consisting (n+1) points of {x | f(x)−pn(x) = 0, x ∈ [a, b]}. Then

we immediately have the following.

Theorem 1.2.2. For any f ∈ C[a, b], let Xn, n ∈ N be the finite subsets of [a, b] stated
above. Then, it holds that ‖f − pf,Xn‖∞ → 0 (n → ∞).

On the other hand, Runge[18] and Bernstein[1] showed the results which tell us the
importance of selecting appropriate nodes.

Theorem 1.2.3. Let f(x) =
1

1 + 25x2
and g(x) = |x|, x ∈ [−1, 1] and let

Xn =

{
x

(n)
i = −1 +

2i

n

∣∣∣∣ 0 ≤ i ≤ n

}
, n ≥ 1
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the sequence of systems of equidistant nodes in [−1, 1]. Then, it holds that

lim
n→∞

‖f − pf,Xn‖∞ = +∞

and
lim sup

n→∞
|g(x) − pf,Xn(x)| = +∞ for every x ∈ (−1, 1) \ {0}.

To explain possibility of approximation by Lagrange interpolating polynomials, we
make a definition of Lagrange interpolation operator from C[−1, 1] to C[−1, 1].

Definition 1.2.4. Let X be a subset of [−1, 1] consisting of (n+1) nodes x0, . . . , xn (x0 <
· · · < xn). We put

`i(x) =
(x − x0) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, i = 0, . . . , n.

For any given f ∈ C[−1, 1], the Lagrange interpolating polynomial pf,X(x) is expressed
as

∑n
i=0 f(xi)`i(x). Then, we set a linear operator L from C[−1, 1] to C[−1, 1] such that

L(f) =
n∑

i=0

f(xi)`i(x), f ∈ C[−1, 1]

and the linear operator L is called the Lagrange interpolation operator at x0, . . . , xn.

When we consider a bounded linear operator L from (C[−1, 1], ‖ · ‖∞) to (C[−1, 1], ‖ ·
‖∞), the norm of L is denoted by ‖L‖∞. Lagrange interpolation operators from (C[−1, 1],
‖·‖∞) to (C[−1, 1], ‖·‖∞) are bounded and the following results about norms of Lagrange
interpolation operators are well known.

Theorem 1.2.5 (Nürnberger [16, p. 27]). For a Lagrange interpolation operator L at
nodes x0, . . . , xn in [−1, 1], it holds that

‖L‖∞ =

∥∥∥∥∥
n∑

i=0

|`i(x)|

∥∥∥∥∥
∞

.

Theorem 1.2.6 (Rivlin [17, p. 23]). For a Lagrange interpolation operator L at nodes
x0, . . . , xn (n ≥ 2) in [−1, 1], it holds that

‖L‖∞ >
2

π
log(n + 1) +

1

2
.

Let us consider any sequence of system {x(n)
0 , . . . , x

(n)
n }, n ≥ 1 of nodes in [−1, 1] and

Ln, n ≥ 1 the Lagrange interpolation operators at nodes x
(n)
0 , . . . , x

(n)
n . By Theorem 1.2.6,

there exist an f ∈ C[−1, 1] such that

lim sup
n→∞

‖f − Lnf‖∞ = +∞.

Hence, there exists no good sequnece of system {x(n)
0 , . . . , x

(n)
n }, n ≥ 1 of nodes in [−1, 1]

satisfying that
lim

n→∞
‖f − Lnf‖∞ = 0 for all f ∈ C[−1, 1].
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But the minimum of norms of Lagrange interpolation operators has been profoundly
studied. For given (n + 1) nodes x0, . . . , xn (x0 < · · · < xn) in [−1, 1], we call the
function λ(x; x0, . . . , xn) :=

∑n
i=0 |`i(x)| in Theorem 1.2.5 the Lebesgue function and write

Mi(x0, . . . , xn) for the maximum of λ(x; x0, . . . , xn) on [xi−1, xi], i = 1, . . . , n. Bernstein
[2] and Erdös [6] conjectured the following neccesary and sufficient condition under which
norms of Lagrange interpolation operator is minimized.

Conjectures by Bernstein and Erdös. Let x0, . . . , xn (−1 = x0 < · · · < xn = 1)
be nodes in [−1, 1]. The norm of the Langrange interpolation operator is minimum at
x0, . . . , xn if and only if

M := M1(x0, . . . , xn) = · · · = Mn(x0, . . . , xn). (∗)

Nodes which satisfy (∗) are uniquely detemined and for any nodes z0, . . . , zn (−1 = z0 <
· · · < zn = 1), it holds that

min
i=1,...,n

Mi(z0, . . . , zn) ≤ M.

The conjectures stated above had not been proven for nearly 50 years, but Kilgore [8]
and de Boor and Pinkus [3] independently obtained proofs of the conjectures.

Let ‖ · ‖I be the norm on C[a, b] such that

‖f‖I := sup
[α,β]⊂[a,b]

∣∣∣∣∫ β

α

f(x) dx

∣∣∣∣ , f ∈ C[a, b]

and ‖L‖I the norm of a Lagrange interpolation operator from (C[−1, 1], ‖·‖∞) to (C[−1, 1],
‖ · ‖I). Then, a conjecture of the minimum of norms ‖L‖I of Lagrange interpolation
operators is stated in Kitahara[11].

Conjecture about ‖L‖I. For a given Lagrange interpolation operator L at x0, . . . , xn

(−1 ≤ x0 < · · · < xn ≤ 1), ‖L‖I is minimum if and only if

‖L‖I =
n∑

i=0

∣∣∣∣∫ 1

−1

`i(x) dx

∣∣∣∣ = 2.

1.3 Hermite interpolating polynomials

Hermite interpolating polynomials much concern expansions of functions. Let f be
a sufficiently differentiable function and consider a one point x0 as one node and set
X = {x0}. Then the Hermite interpolating polynomial pf,X(n) to f at x0 with multiplicity
n is the Taylor polynomial of f about x0, that is

pf,X(n) = f(x0) +
f ′(x0)

1!
(x − x0) + · · · + f (n−1)(x0)

(n − 1)!
(x − x0)

n−1.

Furthermore, if f is infinitely differentiable at x0 and if

f(x) = lim
n→∞

pf,X(n)(x) for all x ∈ (x0 − ρ, x0 + ρ) (ρ > 0),

then f has the Taylor expansion of f at x0 on (x0 − ρ, x0 + ρ). From this, if X is a finite
set, then we can make the following definition.
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Definition 1.3.1. Let f be a real-valued function on a subset A of the real line R whose
interior is not empty. Let X = {x0, . . . , xm−1} be a set of m distinct nodes in the interior
of A such that f is infinitely differentiable at x0, . . . , xm−1. For given positive integers
w0, . . . , wm−1, if

lim
n→∞

pf,X(w0n,...,wm−1n)(x) = f(x) for all x ∈ A,

then we say that f has the m point Taylor expansion about x0, . . . , xm−1 with multiplicity
weight (w0, . . . , wm−1) on A.

The notion of two point or m point Taylor expanson is not new and Taylor expansions
of functions about two or three point has been studied as much useful expression in
mathematical analysis.

Representations of pf,X(n,...,n)(x) are seen in Davis [4, p. 37].

Theorem 1.3.2. Let f be a sufficiently differentiable at two points a and b and let X =
{a, b}. For a given positive integer n,

pf,X(n,n)(x) = (x − a)n

n−1∑
k=0

Bk(x − b)k

k!
+ (x − b)n

n−1∑
k=0

Ak(x − a)k

k!
,

where Ak =
dk

dxk

[
f(x)

(z − b)n

]
x=a

and Bk =
dk

dxk

[
f(x)

(z − a)n

]
x=b

, k = 0, . . . , n − 1.

In the report of Estes and Lancaster [7], a comparison of the resulting solutions for the
two-body problem from the two point Taylor expansions and one point Taylor expansions
is shown. In the book by Walsh [21, Chap. 3], we can see several results on m point
Taylor expansion of analytic functions on and within lemniscates of the complex plane.
By Theorem 1 in López and Temme [15], we can give the following result of two point
Taylor expansions of analytic functions on a simply connected domain of the complex
plane C.

Theorem 1.3.3. Let f(z) be an anlytic function on a simply connected domain Ω ⊂ C
and z1, z2 ∈ Ω with z1 6= z2. Let Oz1,z2 = {z ∈ Ω | |(z − z1)(z − z2)| < r}, where
r = infw∈C−Ω{|(w − z1)(w − z2)|}. Then, f(z) admits the two point Taylor expansion

f(z) =
∞∑

n=0

[an(z1, z2)(z − z1) + an(z2, z1)(z − z2)](z − z1)
n(z − z2)

n, z ∈ Oz1,z2 ,

where

an(z1, z2) =
1

2πi(z2 − z1)

∫
C

f(w) dw

(w − z1)n(w − z2)n+1
, n = 0, 1, 2, . . .

and C is a simple closed loop which encircles the points z1 and z2 in the counterclockwise
direction and is contained in Ω.

Furthermore, López and Sinuśıa [14] considered the boundary value problem

ϕ(x)y′′ + f(x)y′ + g(x)y = h(x) in (−1, 1)

B


y(−1)
y(1)

y′(−1)
y′(1)

 =

(
α
β

)
,
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where ϕ(x), f(x), g(x) and h(x) are analyitc in a Cassini disk with foci at x = ±1 contain-
ing the interval (−1, 1) and α, β ∈ R and B is a 2× 4 matrix of rank 2 which defines the
Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions. In order to give
a criterion for the existence and uniqueness of solution of this boundary value problem,
the two point Taylor expansion of the solution y(x) about the extreme points ±1 is used.

As another point of view of two point Taylor expansion, Kitahara et al [10, 13, 12],
Shimada [19] and Taguchi [20] have interesting discussions on possibility of two point
Taylor expansions of functions on a real interval which are not always analytic.

Theorem 1.3.4 (Kitahara, Chiyonobu and Tsukamoto [10, Theorem]). Let f be a func-
tion on R, which is expressed as

f(x) =

{
p(x) x ∈ [0,∞)
q(x) x ∈ (−∞, 0)

,

where p and q are polynomials of degree at most n. Let pf,{−1,1}(`,`), ` ∈ N be the Hermite
interpolating polynomials to f at −1, 1 with multiplicities `, `. Then, f has the two point
Taylor expansion about −1, 1 with multiplicity weight (1, 1) on

(
−
√

2, 0
)
∪

(
0,
√

2
)
, that

is,

lim
`→∞

pf,{−1,1}(`,`)(x) = f(x) for all x ∈
(
−
√

2, 0
)
∪

(
0,
√

2
)

.

Moreover, if p(0) = q(0), then f has the two point Taylor expansion about −1, 1 with
multiplicity weight (1, 1) on

(
−
√

2,
√

2
)
, that is,

lim
`→∞

pf,{−1,1}(`,`)(x) = f(x) for all x ∈
(
−
√

2,
√

2
)

.

Theorem 1.3.5 (Kitahara, Yamada and Fujiwara [13, Theorem 3]). Let f be a real-valued
function on R which is expressed as

f(x) =

{
C1 x ∈ [0,∞)
C2 x ∈ (−∞, 0)

,

where C1 and C2 are real numbers. Let pf,{−1,1}(`,`), ` ∈ N be the Hermite interpolating
polynomials to f at −1, 1 with multiplicities `, `. Then, it holds that

pf,{−1,1}(`,`)(0) =
C1 + C2

2
, ` ∈ N.

Theorem 1.3.6 (Kitahara, Yamada and Fujiwara [13, Theorem 4]). Let f be a real-valued
function on [−r, r] (r > 1 +

√
2) which is expressed as

f(x) =

{
α(x) x ∈ [0, r]
β(x) x ∈ [−r, 0)

,

where α (resp. β) is expressed as the Taylor expansion of α (resp. β) about 1 (resp. −1).
Let P`, ` ∈ N be the Hermite interpolating polynomials to f at −1, 1 with multiplicities
`, `. Then, it holds that, for any given positive integer k

lim
`→∞

P
(k)
` (x) = f (k)(x) for all x ∈

(
−
√

2, 0
)
∪

(
0,
√

2
)

.
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Theorem 1.3.7 (Kitahara and Okuno [12, Theorem 2]). Let f be a function on R, which
is expressed as

f(x) =

{
p(x) x ∈

[
1
3
,∞

)
q(x) x ∈

(
−∞, 1

3

) ,

where p and q are polynomials of degree at most n. Let pf,{−1,1}(2`,`), ` ∈ N be the Hermite
interpolating polynomials to f at −1, 1 with multiplicities 2`, `. Let α be the real number
with α < −1 and (α + 1)2(α − 1) = −32

27
and β the real number with β > 1 and (β +

1)2(β − 1) = 32
27

. Then, for each x ∈
(
α, 1

3

)
∪

(
1
3
, β

)
, there exists a positive number C

|pf,{−1,1}(2`,`)(x) − f(x)| ≤ C√
`

for all ` ∈ N,

that is, f has the two point Taylor expansion about −1, 1 with multiplicity weight (2, 1)
on

(
α, 1

3

)
∪

(
1
3
, β

)
. Moreover, if p

(
1
3

)
= q

(
1
3

)
, then there exists a positive number C such

that ∣∣∣∣pf,{−1,1}(2`,`)

(
1

3

)
− f

(
1

3

)∣∣∣∣ ≤ C√
`

, ` ∈ N,

that is, f has the two point Taylor expansion about −1, 1 with multiplicity weight (2, 1)
on (α, β).

Theorem 1.3.8 (Shimada [19]). Let m,n be positive integers. Let f be a piecewise
polynomial function

f(x) =

{
p(x) x ∈

[
n−m
n+m

,∞
)

q(x) x ∈
(
−∞, n−m

n+m

)
such that p and q are polynomials of degree at most k. Let pf,{−1,1}(n`,m`), ` ∈ N be the
Hermite interpolating polynomials to f at −1, 1 with multiplicities n`,m`. Let α be the
real number with α < −1 and |(α+1)n(α− 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number with

β > 1 and |(β +1)n(β−1)m| = 2n+m·nn·mm

(n+m)n+m . Then, for each x ∈
[
α, n−m

n+m

)
∪

(
n−m
n+m

, β
]
, there

exists a positive number C such that∣∣pf,{−1,1}(n`,m`)(x) − f(x)
∣∣ ≤ C√

`
for all ` ∈ N,

that is, f has the two point Taylor expansion about −1, 1 with multiplicity weight (n,m)
on

[
α, n−m

n+m

)
∪

(
n−m
n+m

, β
]
. In addition, for all real numbers a, b with α < a < n−m

n+m
< b < β,

the sequence of functions {pf,{−1,1}(n`,m`)}`∈N converges to f uniformly on [α, a] ∪ [b, β].
Moreover, if p

(
n−m
n+m

)
= q

(
n−m
n+m

)
, then there exists a positive number C such that∣∣∣∣pf,{−1,1}(n`,m`)

(
n − m

n + m

)
− f

(
n − m

n + m

)∣∣∣∣ ≤ C√
`

, ` ∈ N,

that is, f has the two point Taylor expansion about −1, 1 with multiplicity weight (n,m)
on [α, β].

Theorem 1.3.9 (Taguchi [20]). Let m,n be positive integers. Let f be a real-valued
function on R which is expressed as

f(x) =

{
C1 x ∈

[
n−m
n+m

,∞
)

C2 x ∈
(
−∞, n−m

n+m

) ,
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where C1 and C2 are real numbers. Let pf,{−1,1}(`,`), ` ∈ N be the Hermite interpolating
polynomials to f at −1, 1 with multiplicities n`,m`. Then, it holds that

lim
`→∞

pf,{−1,1}(n`,m`)

(
n − m

n + m

)
=

C1 + C2

2
.

There are three purposes of this thesis. The first purpose is to show a generalization of
Theorem 1.3.8 (see Chapter 2). The second purpose is to give another proof of Theorem
1.3.9 (see Chapter 3). The third purpose is to show a generalization of Theorem 1.3.6
(see Chapter 4).



Chapter 2

Two point Taylor expansion of
piecewise analytic function

2.1 Main Results

The purpose of this chapter is to prove the following theorem.

Theorem 2.1.1. Let m,n be positive integers. Let δ1 be a real number with δ1 > n−m
n+m

−
(−1) and δ2 a real number with δ2 > 1 − n−m

n+m
, where n−m

n+m
is the point which divides the

interval [−1, 1] in the ratio n : m. Let f be a piecewise analytic function

f(x) =

{
p(x) x ∈

[
n−m
n+m

,∞
)

q(x) x ∈
(
−∞, n−m

n+m

)
such that f is equal to an analytic function p on

[
n−m
n+m

,∞
)

which has the Taylor expansion

of p about 1 on (1−δ2, 1+δ2), and f is equal to an analytic function q on
(
−∞, n−m

n+m

)
which

has the Taylor expansion of q about −1 on (−1 − δ1,−1 + δ1). Let pf,{−1,1}(n`,m`), ` ∈ N
be the Hermite interpolating polynomials to f at −1, 1 with multiplicities n`,m`. Let α be
the real number with α < −1 and |(α + 1)n(α − 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number

with β > 1 and |(β + 1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Then, the following propositions hold:

(1) For each x ∈
[
α, n−m

n+m

)
∪

(
n−m
n+m

, β
]
, there exists a positive number C such that∣∣pf,{−1,1}(n`,m`)(x) − f(x)

∣∣ ≤ C√
`

for all ` ∈ N,

that is, f has the two point Taylor expansion about −1, 1 with multiplicity weight (n,m)
on

[
α, n−m

n+m

)
∪

(
n−m
n+m

, β
]
.

(2) For any real numbers a, b with α < a < n−m
n+m

< b < β, the sequence of functions
{pf,{−1,1}(n`,m`)}`∈N uniformly converges to f on [α, a] ∪ [b, β].
(3) If p

(
n−m
n+m

)
= q

(
n−m
n+m

)
, then there exists a positive number C such that∣∣∣∣pf,{−1,1}(n`,m`)

(
n − m

n + m

)
− f

(
n − m

n + m

)∣∣∣∣ ≤ C√
`

, ` ∈ N,

that is, f has the two point Taylor expansion about −1, 1 with multiplicity weight (n,m)
on [α, β].

9
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2.2 Estimation of the absolute values of divided

differences

First, we review the definition of divided differences and give three necessary proposi-
tions.

Definition 2.2.1. Let x0, . . . , xn be a list of nodes. In the list of nodes, only distinct
nodes z0, . . . , zj appear and each node zi, i = 0, . . . , j is just appeared ki times. Let f
be sufficiently differentiable at z0, . . . , zj. Let p be the Hermite interpolating polynomials
to f at z0, . . . , zj with multiplicities k0, . . . , kj. Then, we call the coefficient of xn of the
polynomial p is called the n-th order divided difference of f at x0, . . . , xn and it is denoted
by f [x0, . . . , xn]. To make sure of multiplicities, we express

f [z0, . . . , zj; k0, . . . , kj]

for the divided difference f [x0, . . . , xn].

Proposition 2.2.2 (Kincaid and Cheney [9, p. 346]). Let x0, . . . , xn be a list of nodes and
let f be a sufficiently differentiable function at x0, . . . , xn. If p is the Hermite interpolating
polynomial of f at x0, . . . , xn, then p is expressed as

p(x) = f [x0] +
n∑

k=1

f [x0, . . . , xk](x − x0) · · · (x − xk−1).

From Theorem 3 in Kincaid and Cheney[9, p. 333], we easily have the following.

Proposition 2.2.3. Let x0, . . . , xn be a list of nodes and let f be a real-valued function
on an interval [a, b] which is sufficiently differentiable at x0, . . . , xn. If p is the Hermite
interpolating polynomial of f at x0, . . . , xn, then

f(x) − p(x) = f [x0, . . . , xn, x](x − x0)(x − x1) · · · (x − xn) , x ∈ [a, b].

Proposition 2.2.4 (Kincaid and Cheney [9, p. 347]). Let z0, . . . , zj be a list of distinct
nodes and k0, . . . , kj positive integers. Let x0, . . . , xn be a list of nodes which satisfy that
each node zi, i = 0, . . . , j is just appeared ki times like this:

(x0, . . . , xn) = (z0, . . . , z0︸ ︷︷ ︸
k0

, . . . , zj, . . . , zj︸ ︷︷ ︸
kj

).

If a function f is sufficiently differentiable at z0, . . . , zj, then the divided differences of f
obey the following recursive formula:

f [x0, . . . , xk] =


f [x1, . . . , xk] − f [x0, . . . , xk−1]

xk − x0

(xk 6= x0)

f (k)(x0)

k!
(xk = x0)

, k = 0, . . . , n.

Next, we need to prepare propositions to show Theorem 2.1.1.
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Proposition 2.2.5. Let M,N be positive integers. Let f be a real-valued function on R
which is sufficiently differentiable at −1, 1. Then, the following inequality holds:

|f [−1, t, 1; N, 1,M ]|

≤ 1

2N+M

(
N + M

M

) (
N∑

k=1

(
2N

N + M

)k

|f [−1, t; k, 1]| +
M∑

k=1

(
2M

N + M

)k

|f [t, 1; 1, k]|

)
.

Proof. First, we show that for any positive integers M,N ,

f [−1, t, 1; N, 1,M ] =
N∑

k=1

(−1)M

2N+M−k

(
N + M − (k + 1)

M − 1

)
f [−1, t; k, 1]

+
M∑

k=1

(−1)M−k

2N+M−k

(
N + M − (k + 1)

N − 1

)
f [t, 1; 1, k].

(∗)

We prove this by induction. Suppose that N = M = 1. Then we have

f [−1, t, 1; 1, 1, 1] =
f [t, 1; 1, 1] − f [−1, t; 1, 1]

2
,

which is equal to the right hand formula of (∗).
Next, under the condition that (∗) hold for N = 1 and M = m, we consider the case

N = 1,M = m + 1. We obtain

f [−1, t, 1; 1, 1, m + 1] =
f [t, 1; 1,m + 1] − f [−1, t, 1; 1, 1,m]

2

=
1

2
f [t, 1; 1, m + 1] − 1

2

(−1)m

21+m−1

(
1 + m − 2

m − 1

)
f [−1, t; 1, 1]

−1

2

m∑
k=1

(−1)m−k

21+m−k

(
1 + m − (k + 1)

0

)
f [t, 1; 1, k]

=
(−1)m+1

21+(m+1)−1

(
1 + (m + 1) − 2

m

)
f [−1, t; 1, 1]

+
m+1∑
k=1

(−1)(m+1)−k

21+(m+1)−k

(
1 + (m + 1) − (k + 1)

0

)
f [t, 1; 1, k],

which is equal to the right hand formula of (∗). Hence, in an analogous way to the above,
we show that (∗) hold for the cases that N = 1, M is any positive integer or the cases
that N is any positive integer, M = 1.

Finally, under the condition that (∗) hold for the cases N + M ≤ m + n, we consider
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the case N = n + 1,M = m. From this assumption, we get

f [−1, t, 1; n + 1, 1,m]

=
f [−1, t, 1; n, 1,m] − f [−1, t, 1; n + 1, 1, m − 1]

2

=
1

2

(
n∑

k=1

(−1)m

2n+m−k

(
n+m−(k+1)

m−1

)
f [−1, t; k, 1] +

m∑
k=1

(−1)m−k

2n+m−k

(
n+m−(k+1)

n−1

)
f [t, 1; 1, k]

)

− 1

2

(
n+1∑
k=1

(−1)m−1

2n+m−k

(
n+m−(k+1)

m−2

)
f [−1, t; k, 1] +

m−1∑
k=1

(−1)m−1−k

2n+m−k

(
n+m−(k+1)

n

)
f [t, 1; 1, k]

)

=
1

2

(
n∑

k=1

(−1)m

2n+m−k

((
n+m−(k+1)

m−1

)
+

(
n+m−(k+1)

m−2

))
f [−1, t; k, 1]

)

+
1

2

(
m−1∑
k=1

(−1)m−k

2n+m−k

((
n+m−(k+1)

n−1

)
+

(
n+m−(k+1)

n

))
f [t, 1; 1, k]

)

+
1

2

(−1)m−m

2n+m−m

(
n+m−(m+1)

n−1

)
f [t, 1; 1,m] − 1

2

(−1)m−1

2n+m−(n+1)

(
n+m−(n+1+1)

m−2

)
f [−1, t; n + 1, 1]

=
n+1∑
k=1

(−1)m

2n+1+m−k

(
n+1+m−(k+1)

m−1

)
f [−1, t; k, 1] +

m∑
k=1

(−1)m−k

2n+1+m−k

(
n+1+m−(k+1)

n

)
f [t, 1; 1, k],

which is equal to the right hand formula of (∗). In an analogous way to the above, we
show that (∗) hold for the cases that N + M ≤ m + n + 1.

Hence, we have shown the validity of (∗). Furthermore, since it holds that(
N + M

M

)
=

(
N + M

N

)
,

(
N + M

M

)(
N

N + M

)k

≥
(

N + M − (k + 1)

M − 1

)
for k = 1, . . . , N

and (
N + M

N

) (
M

N + M

)k

≥
(

N + M − (k + 1)

N − 1

)
for k = 1, . . . ,M,

we have

|f [−1, t, 1; N, 1,M ]|

≤ 1

2N+M

N∑
k=1

2k
(

N+M−(k+1)
M−1

)
|f [−1, t; k, 1]| + 1

2N+M

M∑
k=1

2k
(

N+M−(k+1)
N−1

)
|f [t, 1; 1, k]|

≤ 1

2N+M

(
N + M

M

) (
N∑

k=1

(
2N

N + M

)k

|f [−1, t; k, 1]| +
M∑

k=1

(
2M

N + M

)k

|f [t, 1; 1, k]|

)
.
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Proposition 2.2.6. Let m,n be positive integers. Let δ1 be a real number with δ1 >
n−m
n+m

− (−1) and δ2 a real number with δ2 > 1− n−m
n+m

, where n−m
n+m

is the point which divides
the interval [−1, 1] in the ratio n : m. Let f be a piecewise analytic function

f(x) =

{
p(x) x ∈

[
n−m
n+m

,∞
)

q(x) x ∈
(
−∞, n−m

n+m

)
such that f is equal to an analytic function p on

[
n−m
n+m

,∞
)

which has the Taylor expansion

of p about 1 on (1 − δ2, 1 + δ2), and f is equal to an analytic function q on
(
−∞, n−m

n+m

)
which has the Taylor expansion of q about −1 on (−1 − δ1,−1 + δ1). Let α be the real
number with α < −1 and |(α + 1)n(α − 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number with

β > 1 and |(β + 1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Then, the following hold:

(i) There exists an N ∈ N such that for each t ∈ [α, β] \
{

n−m
n+m

}
, there exist real constants

C1, C2, r1

(
0 < r1 < n+m

2n

)
, r2

(
0 < r2 < n+m

2m

)
such that

|f [−1, t; i, 1]| ≤ C1r
i
1, i ≥ N,

and
|f [t, 1; 1, i]| ≤ C2r

i
2, i ≥ N.

(ii) If p
(

n−m
n+m

)
= q

(
n−m
n+m

)
, there exists an N ∈ N such that for each t ∈ [α, β], there exist

real constants C1, C2, r1 (0 < r1 < n+m
2n

)
, r2

(
0 < r2 < n+m

2m

)
such that

|f [−1, t; i, 1]| ≤ C1r
i
1, i ≥ N,

and
|f [t, 1; 1, i]| ≤ C2r

i
2, i ≥ N.

Proof. Since the proof of (ii) can be reduced to that of (i), we prove (i). And we only
show |f [−1, t; i, 1]| ≤ C1r

i
1, i ∈ N because |f [t, 1; 1, i]| ≤ C2r

i
2, i ∈ N are analogously

shown. Let R1, R2 be real numbers with δ1 > R1 > 2n
n+m

and δ2 > R2 > 2m
n+m

. From the
assumption, q has the Taylor expansion of q about −1 on [−1 − R1,−1 + R1],

q(x) =
∞∑

j=0

q(j)(−1)

j!
(x + 1)j, x ∈ [−1 − R1,−1 + R1].

Hence, there exists a positive integer N1 such that∣∣∣∣q(j)(−1)

j!
Rj

1

∣∣∣∣ < 1, j ≥ N1.

And we have
|q(j)(−1)|

j!
<

1

Rj
1

, j ≥ N1. (∗∗)

Now, we consider estimations of |f [−1, t; i, 1]| for the cases that (1) t ∈
[
α, n−m

n+m

)
and

(2) t ∈
(

n−m
n+m

, β
]
.
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Case (1). Since f(t) = q(t), t ∈
[
α, n−m

n+m

)
, by using Proposition 2.2.3 for t 6= −1, we

obtain

f [−1, t; i, 1] =
1

(t + 1)i

(
f(t) −

i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

)

=
1

(t + 1)i

(
q(t) −

i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

)

=
1

(t + 1)i

∞∑
j=i

q(j)(−1)

j!
(t + 1)j =

∞∑
j=0

q(i+j)(−1)

(i + j)!
(t + 1)j.

For t = −1, since

f [−1, t; i, 1] = f [−1; i + 1] =
q(i)(−1)

i!
,

the equality stated above also holds. Noting that R1 > max
{
−1 − α, n−m

n+m
− (−1)

}
,

|t + 1| < R1 and from (∗∗), for each positive integer i with i ≥ N1, we have

|f [−1, t; i, 1]| ≤
∞∑

j=0

∣∣∣∣q(i+j)(−1)

(i + j)!

∣∣∣∣ |t + 1|j

≤
(

1

R1

)i ∞∑
j=0

(
|t + 1|

R1

)j

<
1

1 −
2n

n+m

R1

(
1

R1

)i

.

From the definition of R1, it follows that 0 < 1
R1

< n+m
2n

.

Case (2). Since f(t) = p(t), t ∈
(

n−m
n+m

, β
]
, by using Proposition 2.2.3 we have

f [−1, t; i, 1] =
1

(t + 1)i

(
p(t) −

i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

)
.

Since p is continuous on [1 − R2, 1 + R2]
(
⊃

(
n−m
n+m

, β
])

, putting

M1 = max
x∈[1−R2,1+R2]

|p(x)|,

we have

|f [−1, t; i, 1]| ≤ |p(t)|
(t + 1)i

+
1

(t + 1)i

∣∣∣∣∣
i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

∣∣∣∣∣
≤ M1 ·

(
1

t + 1

)i

+
1

(t + 1)i

∣∣∣∣∣
i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

∣∣∣∣∣ .
To estimate 1

(t+1)i

∣∣∣∑i−1
j=0

q(j)(−1)
j!

(t + 1)j
∣∣∣, we consider the cases that

(a) t ∈
(

n − m

n + m
,−1 + R1

]
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and
(b) t ∈ (−1 + R1, β].

Case (2-a). Since q has the Taylor expansion of q about −1 on (−1− δ1,−1+ δ1) and the

sequence of functions
{∑N

j=0
q(j)(−1)

j!
(t + 1)j

}
N≥0

is uniformly bounded on [−1−R1,−1+

R1], there exists a positive number M2 such that∣∣∣∣∣
N∑

j=0

q(j)(−1)

j!
(t + 1)j

∣∣∣∣∣ < M2, N ∈ {0, 1, 2, · · · }, t ∈ [−1 − R1,−1 + R1].

Easily seeing that

1

(t + 1)i

∣∣∣∣∣
i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

∣∣∣∣∣ ≤ M2 ·
(

1

t + 1

)i

,

we get

|f [−1, t; i, 1]| ≤ (M1 + M2) ·
(

1

t + 1

)i

.

Since t + 1 ∈
(

2n
n+m

, R1

]
, 0 < 1

t+1
< n+m

2n
hold.

(2-b) For each positive integer i with i ≥ N1 +1, noticing that t+1 ∈ (R1, β +1], we have

1

(t + 1)i

∣∣∣∣∣
i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

∣∣∣∣∣
≤ 1

(t + 1)i

∣∣∣∣∣
N1−1∑
j=0

q(j)(−1)

j!
(t + 1)j

∣∣∣∣∣ +
1

(t + 1)i

i−1∑
j=N1

(
t + 1

R1

)j

≤
N1−1∑
j=0

|q(j)(−1)|
j!

(β + 1)j ·
(

1

R1

)i

+
1

t + 1

R1

− 1
·
(

1

R1

)i

.

Therefore, we get

|f [−1, t; i, 1]| ≤

M1 +

N1−1∑
j=0

|q(j)(−1)|
j!

(β + 1)j +
1

t + 1

R1

− 1

(
1

R1

)i

.

As is seen in the case (1), 1
R1

satisfies 0 < 1
R1

< n+m
2n

.

Consequently, for each t ∈ [α, β] \
{

n−m
n+m

}
, there exist C1 and r1

(
0 < r1 < n+m

2n

)
such

that
|f [−1, t; i, 1]| ≤ C1r

i
1, i ≥ N1 + 1,

which leads to the validity of (i).
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Corollary 2.2.7. Let m,n be positive integers. Let δ1 be a real number with δ1 > n−m
n+m

−
(−1) and δ2 a real number with δ2 > 1 − n−m

n+m
, where n−m

n+m
is the point which divides the

interval [−1, 1] in the ratio n : m. Let R1, R2 be real numbers with δ1 > R1 > 2n
n+m

and

δ2 > R2 > 2m
n+m

. Let f be a piecewise analytic function

f(x) =

{
p(x) x ∈

[
n−m
n+m

,∞
)

q(x) x ∈
(
−∞, n−m

n+m

)
such that f is equal to an analytic function p on

[
n−m
n+m

,∞
)

which has the Taylor expansion

of p about 1 on (1 − δ2, 1 + δ2), and f is equal to an analytic function q on
(
−∞, n−m

n+m

)
which has the Taylor expansion of q about −1 on (−1 − δ1,−1 + δ1). Let α be the real
number with α < −1 and |(α + 1)n(α − 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number with

β > 1 and |(β +1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Let the functions C1(t), r1(t), C2(t) and r2(t)

on [α, β] be defined as follows:

C1(t) =


1 , t ∈ [α,−1 + R1]

1 +
1

t + 1

R1

− 1
, t ∈ (−1 + R1, β] ,

r1(t) =



1

R1

, t ∈
[
α,

n − m

n + m

]
1

t + 1
, t ∈

(
n − m

n + m
,−1 + R1

]
1

R1

, t ∈ (−1 + R1, β]

,

C2(t) =


1 , t ∈ [1 − R2, β]

1 +
1

1 − t

R2

− 1
, t ∈ [α, 1 − R2) ,

r2(t) =



1

R2

, t ∈
[
n − m

n + m
,β

]
1

1 − t
, t ∈

[
1 − R2,

n − m

n + m

)
1

R2

, t ∈ [α, 1 − R2)

.

Then, the following hold:
(i) There exist C > 0, N ∈ N such that for each t ∈ [α, β] \

{
n−m
n+m

}
,

|f [−1, t; i, 1]| ≤ CC1(t)(r1(t))
i, i ≥ N,

and
|f [t, 1; 1, i]| ≤ CC2(t)(r2(t))

i, i ≥ N.
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(ii) If p
(

n−m
n+m

)
= q

(
n−m
n+m

)
, there exist C > 0, N ∈ N such that for each t ∈ [α, β],

|f [−1, t; i, 1]| ≤ CC1(t)(r1(t))
i, i ≥ N,

and
|f [t, 1; 1, i]| ≤ CC2(t)(r2(t))

i, i ≥ N.

Proposition 2.2.8. Let m,n,N be positive integers. Let δ1 be a real number with δ1 >
n−m
n+m

− (−1) and δ2 a real number with δ2 > 1− n−m
n+m

, where n−m
n+m

is the point which divides
the interval [−1, 1] in the ratio n : m. Let f be a piecewise analytic function

f(x) =

{
p(x) x ∈

[
n−m
n+m

,∞
)

q(x) x ∈
(
−∞, n−m

n+m

)
such that f is equal to an analytic function p on

[
n−m
n+m

,∞
)

which has the Taylor expansion

of p about 1 on (1 − δ2, 1 + δ2), and f is equal to an analytic function q on
(
−∞, n−m

n+m

)
which has the Taylor expansion of q about −1 on (−1 − δ1,−1 + δ1). Let α be the real
number with α < −1 and |(α + 1)n(α − 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number with

β > 1 and |(β + 1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Then, there exist numbers M1,M2 ∈ R such
that

|f [−1, t; i, 1]| ≤ M1

and
|f [t, 1; 1, i]| ≤ M2

for each i = 1, 2, . . . , N and for each t ∈ [α, β].

Proof. We only prove |f [−1, t; i, 1]| ≤ M1. Let us recall that from Taylor’s theorem, for
any t ∈ [α, n−m

n+m
) there exists an a ∈

[
α, n−m

n+m

]
such that

1

(t + 1)i

(
q(t) −

i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

)
=

1

(t + 1)i

q(i)(a)

i!
(t + 1)i =

q(i)(a)

i!
.

Therefore, we have

|f [−1, t; i, 1]|

=



∣∣∣∣∣ 1

(t + 1)i

(
p(t) −

i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

)∣∣∣∣∣ , t ∈
[
n − m

n + m
,β

]
∣∣∣∣∣ 1

(t + 1)i

(
q(t) −

i−1∑
j=0

q(j)(−1)

j!
(t + 1)j

)∣∣∣∣∣ , t ∈
[
α,

n − m

n + m

)

≤


1(

n−m
n+m

+ 1
)i

(
max

x∈[n−m
n+m

,β]
|p(x)| +

i−1∑
j=0

|q(j)(−1)|
j!

(β + 1)j

)
, t ∈

[
n − m

n + m
,β

]

max
x∈[α, n−m

n+m ]

|q(i)(x)|
i!

, t ∈
[
α,

n − m

n + m

) .
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Putting
M1 = max

i=1,...,N
Ci,

where

Ci = max

{
1(

n−m
n+m

+ 1
)i

(
max

x∈[n−m
n+m

,β]
|p(x)| +

i−1∑
j=0

|q(j)(−1)|
j!

(β + 1)j

)
, max
x∈[α, n−m

n+m ]

|q(i)(x)|
i!

}
,

we obtain for each i = 1, . . . , N ,

|f [−1, t; i, 1]| ≤ M1, t ∈ [α, β].

Proposition 2.2.9. Let m,n be positive integers. Let δ1 be a real number with δ1 >
n−m
n+m

− (−1) and δ2 a real number with δ2 > 1− n−m
n+m

, where n−m
n+m

is the point which divides

the interval [−1, 1] in the ratio n : m. Let R1, R2 be real numbers with δ1 > R1 > 2n
n+m

and δ2 > R2 > 2m
n+m

. Let f be a piecewise analytic function

f(x) =

{
p(x) x ∈

[
n−m
n+m

,∞
)

q(x) x ∈
(
−∞, n−m

n+m

)
such that f is equal to an analytic function p on

[
n−m
n+m

,∞
)

which has the Taylor expansion

of p about 1 on (1 − δ2, 1 + δ2), and f is equal to an analytic function q on
(
−∞, n−m

n+m

)
which has the Taylor expansion of q about −1 on (−1 − δ1,−1 + δ1). Let α be the real
number with α < −1 and |(α + 1)n(α − 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number with

β > 1 and |(β +1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Let the functions C1(t), r1(t), C2(t) and r2(t)

on [α, β] be defined as follows:

C1(t) =


1 , t ∈ [α,−1 + R1]

1 +
1

t + 1

R1

− 1
, t ∈ (−1 + R1, β] ,

r1(t) =



1

R1

, t ∈
[
α,

n − m

n + m

]
1

t + 1
, t ∈

(
n − m

n + m
,−1 + R1

]
1

R1

, t ∈ (−1 + R1, β]

,
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C2(t) =


1 , t ∈ [1 − R2, β]

1 +
1

1 − t

R2

− 1
, t ∈ [α, 1 − R2) ,

r2(t) =



1

R2

, t ∈
[
n − m

n + m
,β

]
1

1 − t
, t ∈

[
1 − R2,

n − m

n + m

)
1

R2

, t ∈ [α, 1 − R2)

.

Then, the following hold:
(i) For each t ∈ [α, β],

0 < r1(t) <
n + m

2n
,

and

0 < r2(t) <
n + m

2m
.

(ii) There exists a C > 0 such that for each t ∈ [α, β] \
{

n−m
n+m

}
,

|f [−1, t; i, 1]| ≤ CC1(t)(r1(t))
i, i ∈ N,

and
|f [t, 1; 1, i]| ≤ CC2(t)(r2(t))

i, i ∈ N.

(iii) If p
(

n−m
n+m

)
= q

(
n−m
n+m

)
, there exists a C > 0 such that for each t ∈ [α, β],

|f [−1, t; i, 1]| ≤ CC1(t)(r1(t))
i, i ∈ N,

and
|f [t, 1; 1, i]| ≤ CC2(t)(r2(t))

i, i ∈ N.

Proof. (i) can be easily obtained from the definition of r1(t), r2(t). We only prove (ii)
since we can prove (iii) similarly to (ii).

From Corollary 2.2.7, there exist C0 > 0, N ∈ N such that for each t ∈ [α, β]\
{

n−m
n+m

}
,

|f [−1, t; i, 1]| ≤ C0C1(t)(r1(t))
i, i ≥ N,

and
|f [t, 1; 1, i]| ≤ C0C2(t)(r2(t))

i, i ≥ N.

Also, from Proposition 2.2.8, there exists M ∈ R such that

|f [−1, t; i, 1]| ≤ M,

and
|f [t, 1; 1, i]| ≤ M
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for each i = 1, 2, . . . , N − 1 and for each t ∈ [α, β]. We put

C = max
{
C0, R1M, . . . , RN−1

1 M,R2M, . . . , RN−1
2 M

}
.

Now, we prove
|f [−1, t; i, 1]| ≤ CC1(t)(r1(t))

i

for each t ∈ [α, β] \
{

n−m
n+m

}
and for each i ∈ N by considering the cases that (1) t ∈[

α, n−m
n+m

)
, (2) t ∈

(
n−m
n+m

,−1 + R1

]
and (3) t ∈ (−1 + R1, β].

Case (1). We have for each i ≥ N ,

|f [−1, t; i, 1]| ≤ C0 ·
(

1

R1

)i

≤ C ·
(

1

R1

)i

.

Also, we obtain for each i = 1, . . . , N − 1,

|f [−1, t; i, 1]| ≤ M = MRi
1 ·

(
1

R1

)i

≤ C ·
(

1

R1

)i

.

Case (2). We have for each i ≥ N ,

|f [−1, t; i, 1]| ≤ C0 ·
(

1

t + 1

)i

≤ C ·
(

1

t + 1

)i

.

Also, we obtain for each i = 1, . . . , N − 1,

|f [−1, t; i, 1]| ≤ M

= M(t + 1)i ·
(

1

t + 1

)i

≤ MRi
1 ·

(
1

t + 1

)i

≤ C ·
(

1

t + 1

)i

.

Case (3). We have for each i ≥ N ,

|f [−1, t; i, 1]| ≤ C0 ·

1 +
1

t + 1

R1

− 1

 ·
(

1

R1

)i

≤ C ·

1 +
1

t + 1

R1

− 1

 ·
(

1

R1

)i

.
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Also, we obtain for each i = 1, . . . , N − 1,

|f [−1, t; i, 1]| ≤ M

= M · 11 +
1

t + 1

R1

− 1

 ·
(

1

R1

)i

·

1 +
1

t + 1

R1

− 1

 ·
(

1

R1

)i

= MRi
1 ·

t + 1 − R1

t + 1
·

1 +
1

t + 1

R1

− 1

 ·
(

1

R1

)i

≤ MRi
1 ·

1 +
1

t + 1

R1

− 1

 ·
(

1

R1

)i

≤ C

1 +
1

t + 1

R1

− 1

 ·
(

1

R1

)i

.

Similarly, we have
|f [t, 1; 1, i]| ≤ CC2(t)(r2(t))

i

for each t ∈ [α, β] \
{

n−m
n+m

}
and for each i ∈ N.

2.3 Proof of Theorem 2.1.1

Now we are in position to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. (1) Since we easily see that

|(t + 1)n(t − 1)m| ≤ 2n+m · nn · mm

(n + m)n+m
, t ∈ [α, β],

from Proposition 2.2.3, for each t ∈ [α, β], we have

|f(t) − pf,{−1,1}(n`,m`)(t)| = |f [−1, t, 1; n`, 1,m`]| · |(t + 1)n(t − 1)m|`

≤ |f [−1, t, 1; n`, 1,m`]| ·
(

2n+m · nn · mm

(n + m)n+m

)`

.

On the other hand, by using Proposition 2.2.5, Proposition 2.2.9 and Stirling’s formula,



22

there exist positive numbers C0, C3 satisfying that for each t ∈ [α, β] \
{

n−m
n+m

}
|f [−1, t, 1; n`, 1,m`]|

≤ 1

2(n+m)`

(
(n + m)`

m`

) (
n∑̀

k=1

(
2n

n + m

)k

|f [−1, t; k, 1]| +
m∑̀
k=1

(
2m

n + m

)k

|f [t, 1; 1, k]|

)

≤ C0

2(n+m)`

(
(n + m)`

m`

) (
n∑̀

k=1

(
2n

n + m

)k

C1(t)
(
r1(t)

)k
+

m∑̀
k=1

(
2m

n + m

)k

C2(t)
(
r1(t)

)k

)

≤ C0

2(n+m)`

(
(n + m)`

m`

)  C1(t)

1 − 2n

n + m
· r1(t)

+
C2(t)

1 − 2m

n + m
· r2(t)



≤ C0C3

2(n+m)`

1√
`

(
(n + m)n+m

nn · mm

)`

 C1(t)

1 − 2n

n + m
· r1(t)

+
C2(t)

1 − 2m

n + m
· r2(t)



= C0C3

 C1(t)

1 − 2n

n + m
· r1(t)

+
C2(t)

1 − 2m

n + m
· r2(t)

 1√
`

(
(n + m)n+m

2n+m · nn · mm

)`

.

Putting

C(t) = C0C3

 C1(t)

1 − 2n

n + m
· r1(t)

+
C2(t)

1 − 2m

n + m
· r2(t)

 ,

we obtain for each t ∈ [α, β] \
{

n−m
n+m

}
,

|f(t) − pf,{−1,1}(n`,m`)(t)| ≤
C(t)√

`

(
(n + m)n+m

2n+m · nn · mm

)`

·
(

2n+m · nn · mm

(n + m)n+m

)`

=
C(t)√

`
.

We can prove (3) in a similar way to the proof of (1).
(2) We show C(t) is bounded on [α, a] ∪ [b, β] by proving the following functions are

bounded on [α, a] ∪ [b, β].

(i) C1(t) (ii)
1

1 − 2n

n + m
· r1(t)

(iii) C2(t) (iv)
1

1 − 2m

n + m
· r2(t)
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From Proposition 2.2.9, the functions C1, C2, r1, r2 are expressed as follows:

C1(t) =


1 , t ∈ [α,−1 + R1]

1 +
1

t + 1

R1

− 1
, t ∈ (−1 + R1, β] ,

r1(t) =



1

R1

, t ∈
[
α,

n − m

n + m

]
1

t + 1
, t ∈

(
n − m

n + m
,−1 + R1

]
1

R1

, t ∈ (−1 + R1, β]

,

C2(t) =


1 , t ∈ [1 − R2, β]

1 +
1

1 − t

R2

− 1
, t ∈ [α, 1 − R2) ,

r2(t) =



1

R2

, t ∈
[
n − m

n + m
,β

]
1

1 − t
, t ∈

[
1 − R2,

n − m

n + m

)
1

R2

, t ∈ [α, 1 − R2)

.

Therefore, let a1, a2 be the real numbers with

0 < a1 < min

{
b − n − m

n + m
, δ1 −

2n

n + m

}
,

0 < a2 < min

{
n − m

n + m
− a, δ2 −

2m

n + m

}
,

by putting R1 = 2n
n+m

+ a1, R2 = 2m
n+m

+ a2, we can see that functions (i), (ii), (iii) and
(iv) are bounded on [α, a] ∪ [b, β].



Chapter 3

Two point Taylor expansion of
Heaviside function

3.1 Main Result

The purpose of this chapter is to prove the following theorem.

Theorem 3.1.1. Let m,n be positive integers. Let f be a real-valued function on R which
is expressed as

f(x) =

{
C1 x ∈

[
n−m
n+m

,∞
)

C2 x ∈
(
−∞, n−m

n+m

) ,

where C1 and C2 are real numbers. Let pf,{−1,1}(n`,m`), ` ∈ N be the Hermite interpolating
polynomials to f at −1, 1 with multiplicities n`,m`. Then, there exists a positive number
C such that ∣∣∣∣pf,{−1,1}(n`,m`)

(
n − m

n + m

)
− C1 + C2

2

∣∣∣∣ ≤ C√
`

, ` ∈ N.

3.2 The normal approximation to the negative

binomial distribution

To show Theorem 3.1.1, we need to prepare four propositions.
From Ex. 3 in Davis [4, p. 37], we obtain the following proposition.

Proposition 3.2.1. Let a, b be distinct nodes and m,n positive integers. Let f be a
sufficiently differentiable function at a, b. A,B are functions defined by

A(x) =
f(x)

(x − b)m
, B(x) =

f(x)

(x − a)n
.

Then, the polynomial pf,{a,b}(n,m)(x) is expressed as

pf,{a,b}(n,m)(x) = (x − a)n

m−1∑
k=0

B(k)(b)

k!
(x − b)k + (x − b)m

n−1∑
k=0

A(k)(a)

k!
(x − a)k.

24



25

Proposition 3.2.2 (Durrett [5, p. 137]). Let X1, X2, . . . be i.i.d with EXi = 0, EX2
i = σ2,

and E|Xi|3 = ρ < ∞. Then, for all x ∈ R and for all N = 1, 2, . . . it holds that∣∣∣∣P (
X1 + · · · + XN

σ
√

N
≤ x

)
− 1√

2π

∫ x

−∞
e−

y2

2 dy

∣∣∣∣ ≤ 3ρ

σ3

1√
N

.

Proposition 3.2.3. Let p be a real number with 0 < p < 1. Let X be a geometric random
variable with parameter p, that is,

P (X = k) = p(1 − p)k, k = 0, 1, 2, . . . .

Then, it holds that
E

(
|X − E(X)|3

)
< ∞.

Proof. Since X is a geometric random variable with parameter p, the mean of X is

E(X) =
1 − p

p
,

and the variance of X is

V (X) = E(X2) − (E(X))2 =
1 − p

p2
.

Therefore, we get

E(X2) = (E(X))2 +
1 − p

p2

=

(
1 − p

p

)2

+
1 − p

p2

=
2 − 3p + p2

p2
.

Now, we show that

E(X3) =
(1 − p)(6 − 6p + p2)

p3
.

Since we have

E ((X + 1)3) =
∞∑

k=0

(k + 1)3p(1 − p)k

=
1

1 − p

∞∑
k=0

(k + 1)3p(1 − p)k+1

=
E(X3)

1 − p
,

we obtain
E

(
(X + 1)3

)
− E(X3) =

p

1 − p
E(X3).
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Therefore, since we have

E ((X + 1)3) − E(X3) = 3E(X2) + 3E(X) + 1

=
6 − 6p + p2

p2
,

we get

E(X3) =
(1 − p)(6 − 6p + p2)

p3
.

From the above, we obtain

E(|X − E(X)|3)

=
∞∑

k=0

∣∣∣∣k − 1 − p

p

∣∣∣∣3 p(1 − p)k

≤
∞∑

k=0

k3p(1 − p)k + 3 · 1 − p

p

∞∑
k=0

k2p(1 − p)k + 3

(
1 − p

p

)2 ∞∑
k=0

kp(1 − p)k

+

(
1 − p

p

)3 ∞∑
k=0

p(1 − p)k

= E(X3) +
3(1 − p)

p
· E(X2) + 3

(
1 − p

p

)2

E(X) +

(
1 − p

p

)3

< ∞.

Proposition 3.2.4. Let p be a real number with 0 < p < 1. Then, there exists a positive
number C such that∣∣∣∣∣∣∣∣∣

∑
k∈Z

0≤k≤
“

q

1−p

p2

√
N

”

x+
N(1−p)

p

(
k + N − 1

k

)
pN(1 − p)k − 1√

2π

∫ x

−∞
e−

y2

2 dy

∣∣∣∣∣∣∣∣∣ ≤
C√
N

for all x ∈ R and for all N = 1, 2, . . ..

Proof. Let X1, X2, . . . be independent geometric random variables, where Xi has param-
eter p. Then, we have

E (Xi − E(Xi)) = 0,

V (Xi − E(Xi)) = V (Xi) =
1 − p

p2
.

From Proposition 3.2.3, we have E (|Xi − E(Xi)|3) < ∞. Therefore, from Proposition
3.2.2 there exists a positive number C such that∣∣∣∣∣∣∣∣P

 1√
1 − p

p2

√
N

N∑
k=1

(
Xk −

1 − p

p

)
≤ x

 − 1√
2π

∫ x

−∞
e−

y2

2 dy

∣∣∣∣∣∣∣∣ ≤
C√
N
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for all x ∈ R and for all N = 1, 2, . . .. Since
∑N

k=1 Xk obeys the negative binomial
distribution NB(N, p),

P

(
N∑

k=1

Xk ≤ x

)
=

∑
k∈{j∈Z|0≤j≤x}

(
k + N − 1

k

)
pN(1 − p)k.

Hence, there exists a positive number C such that∣∣∣∣∣∣∣∣∣
∑
k∈Z

0≤k≤
“

q

1−p

p2

√
N

”

x+
N(1−p)

p

(
k + N − 1

k

)
pN(1 − p)k − 1√

2π

∫ x

−∞
e−

y2

2 dy

∣∣∣∣∣∣∣∣∣ ≤
C√
N

for all x ∈ R and for all N = 1, 2, . . ..

3.3 Proof of Theorem 3.1.1

In this section, we prove Theorem 3.1.1. Taguchi [20] already proved Proposition 1.3.9.
Here we show a proof of Theorem 3.1.1 by Proposition 3.2.4 that the standard normal
distribution can be approximated by negative binomial distributions.

Proof of Theorem 3.1.1. Without loss of generality, we can assume that

f(x) =

{
1 x ∈

[
n−m
n+m

,∞
)

0 x ∈
(
−∞, n−m

n+m

) .

From Proposition 3.2.1, pf,{−1,1}(n`,m`)(x) is expressed as follows:

pf,{−1,1}(n`,m`)(x) = (x + 1)n`

m`−1∑
k=0

1

k!

(
(z + 1)−n`

)(k)
∣∣∣
z=1

(x − 1)k

=
m`−1∑
k=0

(
n` + k − 1

k

)(
x + 1

2

)n` (
1 − x

2

)k

.

We get

pf,{−1,1}(n`,m`)

(
n − m

n + m

)
=

m`−1∑
k=0

(
k + n` − 1

k

)(
n

n + m

)n` (
m

n + m

)k

.

Putting N = n`, p = n
n+m

, x = −
√

n
(n+m)m`

, for each ` = 1, 2, . . ., we obtain

(√
1 − p

p2

√
N

)
x +

N(1 − p)

p
= m` − 1,
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and ∣∣∣∣∣pf,{−1,1}(n`,m`)

(
n − m

n + m

)
− 1√

2π

∫ −
√

n
(n+m)m`

−∞
e−

y2

2 dy

∣∣∣∣∣ ≤ C√
n`

.

Therefore, for each ` = 1, 2, . . . we have∣∣∣∣pf,{−1,1}(n`,m`)

(
n − m

n + m

)
− 1

2

∣∣∣∣
≤ C√

n`
+

∣∣∣∣∣ 1√
2π

∫ 0

−∞
e−

y2

2 dy − 1√
2π

∫ −
√

n
(n+m)m`

−∞
e−

y2

2 dy

∣∣∣∣∣
≤ C√

n`
+

1√
2π

√
n

(n + m)m`

=

(
C√
n

+
1√
2π

√
n

(n + m)m

)
1√
`
.

Remark 3.3.1. (1) Let us show an intuitive interpretation of Theorem 1.3.5 by proba-
bility. Without loss of generality, we can assume that

f(x) =

{
1 x ∈ [0,∞)

0 x ∈ (−∞, 0)
.

We consider the following game for two players A, B: A coin is tossed repeatedly. The
probability of heads on any toss is p = 1

2
and the probability of tails on any toss is

1 − p = 1
2
. If the coin lands heads up, then player A goes forward 1 spaces. If the coin

lands on the reverse, then player B goes forward 1 spaces. The distance from the start
to player A’s goal is ` spaces. The distance from the start to player B’s goal is ` spaces.
The player who reaches the first, wins.

Since pf,{−1,1}(`,`) is expressed as

pf,{−1,1}(`,`)(x) =
`−1∑
k=0

(
` + k − 1

k

) (
x + 1

2

)` (
1 − x

2

)k

,

the number pf,{−1,1}(`,`)(0) represents the probability of player A winning. Since this game
is fair regardless of ` for players A and B, it holds that

pf,{−1,1}(`,`)(0) =
1

2
, ` ∈ N.
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(2) Analogously we can give an intuitive probabilistic explanation of Theorem 1.3.9. With-
out loss of generality, we can assume that

f(x) =

{
1 x ∈

[
n−m
n+m

,∞
)

0 x ∈
(
−∞, n−m

n+m

) .

Two players A, B play the following game:
A coin is tossed repeatedly. The probability of heads on any toss is p = n

n+m
and the

probability of tails on any toss is 1 − p = m
n+m

. If the coin lands heads up, then player
A goes forward 1 spaces. If the coin lands on the reverse, then player B goes forward 1
spaces. The distance from the start to player A’s goal is n` spaces. The distance from
the start to player B’s goal is m` spaces. The player who reaches the first, wins.

Since pf,{−1,1}(n`,m`) is expressed as

pf,{−1,1}(n`,m`)(x) =
m`−1∑
k=0

(
n` + k − 1

k

) (
x + 1

2

)n` (
1 − x

2

)k

,

the number pf,{−1,1}(n`,m`)

(
n−m
n+m

)
represents the probability of player A winning. When

we toss the coin (n + m)` times, we can expect that player A is near A’s goal and player
B is near B’s goal. Therefore, it holds that

lim
`→∞

pf,{−1,1}(n`,m`)

(
n − m

n + m

)
=

1

2
.

Corollary 3.3.2. Let m,n be positive integers. Let δ1 be a real number with δ1 > n−m
n+m

−
(−1) and δ2 a real number with δ2 > 1 − n−m

n+m
, where n−m

n+m
is the point which divides the

interval [−1, 1] in the ratio n : m. Let f be a piecewise analytic function

f(x) =


p(x) x ∈

(
n−m
n+m

,∞
)

p(n−m
n+m)+q(n−m

n+m)
2

x = n−m
n+m

q(x) x ∈
(
−∞, n−m

n+m

)
such that f is equal to an analytic function p on

[
n−m
n+m

,∞
)

which has the Taylor expansion

of p about 1 on (1−δ2, 1+δ2), and f is equal to an analytic function q on
(
−∞, n−m

n+m

)
which

has the Taylor expansion of q about −1 on (−1 − δ1,−1 + δ1). Let pf,{−1,1}(n`,m`), ` ∈ N
be the Hermite interpolating polynomials to f at −1, 1 with multiplicities n`,m`. Let α be
the real number with α < −1 and |(α + 1)n(α − 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number
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with β > 1 and |(β + 1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Then, for each x ∈ [α, β], there exists a
positive number C such that∣∣pf,{−1,1}(n`,m`)(x) − f(x)

∣∣ ≤ C√
`

for all ` ∈ N,

that is, f has the two point Taylor expansion about −1, 1 with multiplicity weight (n,m)
on [α, β].

p(x) =
1

1 − (x − 1)
, q(x) = cos 2x − 1, m = 1, n = 3, ` = 30



Chapter 4

Termwise differentiation of two point
Taylor expansion

4.1 Main Result

The purpose of this chapter is to prove the following theorem.

Theorem 4.1.1. Let m,n be positive integers. Let f be a piecewise polynomial function

f(x) =

{
p(x) x ∈

[
n−m
n+m

,∞
)

q(x) x ∈
(
−∞, n−m

n+m

)
such that p and q are polynomials of degree at most N . Let pf,{−1,1}(n`,m`), ` ∈ N be the
Hermite interpolating polynomials to f at −1, 1 with multiplicities n`,m`. Let α be the
real number with α < −1 and |(α+1)n(α− 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real number with

β > 1 and |(β + 1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Then, it holds that, for any given positive
integer k

lim
`→∞

p
(k)
f,{−1,1}(n`,m`)(x) = f (k)(x) for all x ∈

(
α,

n − m

n + m

)
∪

(
n − m

n + m
,β

)
.

4.2 Divided differences of a truncated power function

Before proving Theorem 4.1.1, we show three propositions about divided differences
of a truncated power function.

Proposition 4.2.1. Let a be a real number. Let m,n be positive integers and N an
integer with N ≥ 0. Then, it holds that

1

(m − 1)!

(
1

(x + a)n−N

)(m−1)
∣∣∣∣∣
x=a

=
(−1)m−1

(m − 1)!
(n−N) · · ·

{
(n−N)+(m−2)

} 1

(2a)n−N+m−1
.

31
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Proof. Since we have(
1

(x + a)n−N

)(m−1)

=
{
(x + a)−(n−N)

}(m−1)

=
{
− (n − N)

}{
− (n − N) − 1

}
· · ·

{
− (n − N) − (m − 1) + 1

}
(x + a)−(n−N)−(m−1)

= (−1)m−1(n − N) · · ·
{
(n − N) + (m − 1) − 1

} 1

(x + a)(n−N)+m−1
,

we obtain

1

(m − 1)!

(
1

(x + a)n−N

)(m−1)
∣∣∣∣∣
x=a

=
(−1)m−1

(m − 1)!
(n−N) · · ·

{
(n−N)+(m−2)

} 1

(2a)n−N+m−1
.

Proposition 4.2.2. Let k,m, n be positive integers and N an integer with N ≥ 0. Let
fN(x) and gN(x) be functions given by

fN(x) =


(x + 1)N , x ≥ n − m

n + m

0 , x <
n − m

n + m

and

gN(x) =


0 , x ≥ n − m

n + m

(x − 1)N , x <
n − m

n + m

.

Then, the following hold:

(1) For each j = 1, . . . , n,

fN [−1, 1; nk + j,mk]

=
(−1)mk−1

(mk − 1)!
(nk + j − N) · · ·

{
(nk + j − N) + (mk − 2)

} 1

2(n+m)k+j−N−1
.

(2) For each j = 1, . . . ,m,

fN [−1, 1; n(k + 1),mk + j]

=
(−1)mk+j−1

(mk + j − 1)!
(nk + n − N) · · ·

{
(nk + n − N) + (mk + j − 2)

} 1

2n(k+1)−N+mk+j−1
.

(3) For each j = 1, . . . , n,

gN [−1, 1; nk + j,mk]

=
(−1)mk−N

(nk + j − 1)!
(mk − N) · · ·

{
(mk − N) + (nk + j − 2)

} 1

2(n+m)k+j−N−1
.
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(4) For each j = 1, . . . ,m,

gN [−1, 1; n(k + 1),mk + j]

=
(−1)mk+j−N

(nk + n − 1)!
(mk + j − N) · · ·

{
(mk + j − N) + (nk + n − 2)

} 1

2mk+j−N+nk+n−1
.

Proof. We prove only (1), (2) since we can prove (3), (4) similarly to (1), (2), respectively.
First, we prove (1). From Proposition 3.2.1, we get

fN [−1, 1; n,m] =
1

(n − 1)!

(
fN(x)

(x − 1)m

)(n−1)
∣∣∣∣∣
x=−1

+
1

(m − 1)!

(
fN(x)

(x + 1)n

)(m−1)
∣∣∣∣∣
x=1

=
1

(m − 1)!

(
1

(x + 1)n−N

)(m−1)
∣∣∣∣∣
x=1

.

Therefore, from Proposition 4.2.1, we have

fN [−1, 1; nk + j,mk]

=
(−1)mk−1

(mk − 1)!
(nk + j − N) · · ·

{
(nk + j − N) + (mk − 2)

} 1

2nk+j−N+mk−1

=
(−1)mk−1

(mk − 1)!
(nk + j − N) · · ·

{
(nk + j − N) + (mk − 2)

} 1

2(n+m)k+j−N−1
.

Next, we prove (2). Similarly to (1), we have

fN [−1, 1; n(k + 1),mk + j]

=
(−1)mk+j−1

(mk + j − 1)!

(n(k + 1) − N) · · ·
{
(n(k + 1) − N) + (mk + j − 2)

}
2n(k+1)−N+mk+j−1

=
(−1)mk+j−1

(mk + j − 1)!

(nk + n − N) · · ·
{
(nk + n − N) + (mk + j − 2)

}
2n(k+1)−N+mk+j−1

.

Proposition 4.2.3. Let k,m, n be positive integers and N an integer with N ≥ 0. Let
fN(x) and gN(x) be functions given by

fN(x) =


(x + 1)N , x ≥ n − m

n + m

0 , x <
n − m

n + m

and

gN(x) =


0 , x ≥ n − m

n + m

(x − 1)N , x <
n − m

n + m

.
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Then, the following hold:

(1) For each j = 1, . . . , n,

lim
k→∞

∣∣∣∣ fN [−1, 1; nk + j,mk]

fN [−1, 1; n(k + 1) + j,m(k + 1)]

∣∣∣∣ =
mm · nn · 2n+m

(n + m)n+m
.

(2) For each j = 1, . . . ,m,

lim
k→∞

∣∣∣∣ fN [−1, 1; n(k + 1), mk + j]

fN [−1, 1; n(k + 2),m(k + 1) + j]

∣∣∣∣ =
mm · nn · 2n+m

(n + m)n+m
.

(3) For each j = 1, . . . , n,

lim
k→∞

∣∣∣∣ gN [−1, 1; nk + j,mk]

gN [−1, 1; n(k + 1) + j,m(k + 1)]

∣∣∣∣ =
mm · nn · 2n+m

(n + m)n+m
.

(4) For each j = 1, . . . ,m,

lim
k→∞

∣∣∣∣ gN [−1, 1; n(k + 1),mk + j]

gN [−1, 1; n(k + 2), m(k + 1) + j]

∣∣∣∣ =
mm · nn · 2n+m

(n + m)n+m
.

Proof. We prove only (1), (2) since we can prove (3), (4) similarly to (1), (2), respectively.
First, we prove (1). From Proposition 4.2.2, we get for each j = 1, . . . , n, and for

sufficiently large k,∣∣∣∣ fN [−1, 1; nk + j,mk]

fN [−1, 1; n(k + 1) + j,m(k + 1)]

∣∣∣∣
=

(nk + j − N) · · ·
{
(nk + j − N) + (mk − 2)

}
(mk − 1)!

1

2(n+m)k+j−N−1

(n(k + 1) + j − N) · · ·
{
(n(k + 1) + j − N) + (m(k + 1) − 2)

}
(m(k + 1) − 1)!

1

2(n+m)(k+1)+j−N−1

=

m︷ ︸︸ ︷
(mk − 1 + m) · · · (mk) ·

n︷ ︸︸ ︷
(nk + j − N) · · · (nk + j − N + (n − 1)) ·2n+m

(nk + j − N + (mk − 2) + 1) · · · (nk + j − N + (mk − 2) + (n + m))︸ ︷︷ ︸
n+m

→ mm · nn · 2n+m

(n + m)n+m
(k → ∞).

Next, we prove (2). From Proposition 4.2.2, we obtain for each j = 1, . . . ,m, and for



35

sufficiently large k,∣∣∣∣ fN [−1, 1; n(k + 1),mk + j]

fN [−1, 1; n(k + 2),m(k + 1) + j]

∣∣∣∣
=

(nk+n−N)···
{

(nk+n−N)+(mk+j−2)
}

(mk+j−1)!
1

2n(k+1)−N+mk+j−1

(n(k+1)+n−N)···
{

(n(k+1)+n−N)+(m(k+1)+j−2)
}

(m(k+1)+j−1)!
1

2n(k+2)−N+m(k+1)+j−1

=

m︷ ︸︸ ︷
(mk + j − 1 + m) · · · (mk + j) ·

n︷ ︸︸ ︷
(nk + n − N) · · · (nk + n − N + n − 1) ·2n+m

(nk + n − N + (mk + j − 2) + 1) · · · (nk + n − N + (mk + j − 2) + n + m)︸ ︷︷ ︸
n+m

→ mm · nn · 2n+m

(n + m)n+m
(k → ∞).

4.3 Proof of Theorem 4.1.1

We need to prepare four propositions to show Theorem 4.1.1.

Proposition 4.3.1. Let m,n be positive integers. Let {fN(x)}N≥0 be the sequence of
functions defined by

fN(x) =


(x + 1)N , x ≥ n − m

n + m

0 , x <
n − m

n + m

and {gN(x)}N≥0 the sequence of functions defined by

gN(x) =


0 , x ≥ n − m

n + m

(x − 1)N , x <
n − m

n + m

.

Let α be the real number with α < −1 and |(α + 1)n(α− 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real

number with β > 1 and |(β + 1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Then, the following hold:

(1) For each N = 0, 1, 2, . . ., the series

FN(x) =
n∑

j=1

(x + 1)j−1

∞∑
k=0

fN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

∞∑
k=0

fN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k

converges for x ∈
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

.
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(2) For each N = 0, 1, 2, . . ., the series

GN(x) =
n∑

j=1

(x + 1)j−1

∞∑
k=0

gN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

∞∑
k=0

gN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k

converges for x ∈
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

.

Proof. We prove only (1) since we can prove (2) similarly to (1). From Proposition 4.2.3,
we have for each N = 0, 1, . . . and for each j = 1, . . . , n, the power series

∞∑
k=0

fN [−1, 1; nk + j,mk]tk

converges on the interval
(
−nn·mm·2n+m

(n+m)n+m , nn·mm·2n+m

(n+m)n+m

)
and we have for each N = 0, 1, . . .

and for each j = 1, . . . ,m, the power series

∞∑
k=0

fN [−1, 1; n(k + 1),mk + j]tk

converges on the interval
(
−nn·mm·2n+m

(n+m)n+m , nn·mm·2n+m

(n+m)n+m

)
. Therefore, we see that for each

N = 0, 1, . . . and for each j = 1, . . . , n, the series

(x + 1)j−1

∞∑
k=0

fN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

converges for x ∈
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

and we observe that for each N = 0, 1, . . . and for
each j = 1, . . . ,m, the series

(x + 1)n(x − 1)j−1

∞∑
k=0

fN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k

converges for x ∈
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

. Hence, we see that FN(x), N = 0, 1, 2, . . .,

converge for x ∈
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

.

Proposition 4.3.2. Let `,m, n be positive integers and L1, L2 integers with L1 ≥ 0 and
L2 ≥ 0. Let {fN(x)}N≥0 be the sequence of functions defined by

fN(x) =


(x + 1)N , x ≥ n − m

n + m

0 , x <
n − m

n + m
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and {gN(x)}N≥0 the sequence of functions defined by

gN(x) =


0 , x ≥ n − m

n + m

(x − 1)N , x <
n − m

n + m

.

Let f(x) be a function given by

f(x) =



L1∑
i=0

ai(x + 1)i , x ≥ n − m

n + m

L2∑
i=0

bi(x − 1)i , x <
n − m

n + m

,

where a0, . . . , aL1 , b0, . . . , bL2 are real numbers. Let pf,{−1,1}(n`,m`)(x), ` ∈ N be the Hermite

interpolating polynomials to f at −1, 1 with multiplicities n`,m`. Let {FN(x)}L1
N=0 be the

sequence of functions on the set
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

defined by

FN(x) =
n∑

j=1

(x + 1)j−1

∞∑
k=0

fN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

∞∑
k=0

fN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k

and {GN(x)}L2
N=0 the sequence of functions on the set

(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

defined by

GN(x) =
n∑

j=1

(x + 1)j−1

∞∑
k=0

gN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

∞∑
k=0

gN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k .

Let S(x) be the function on the set
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

defined by

S(x) =

L1∑
i=0

aiFi(x) +

L2∑
i=0

biGi(x).

Let α be the real number with α < −1 and |(α + 1)n(α− 1)m| = 2n+m·nn·mm

(n+m)n+m and β the real

number with β > 1 and |(β + 1)n(β − 1)m| = 2n+m·nn·mm

(n+m)n+m . Then, for each k = 0, 1, 2, . . .,
it holds that

lim
`→∞

p
(k)
f,{−1,1}(n`,m`)(x) = S(k)(x) for all x ∈

(
α,

n − m

n + m

)
∪

(
n − m

n + m
,β

)
.
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Proof. For each N = 0, 1, 2, . . ., let pN,`(x), ` ∈ N be the Hermite interpolating polynomi-
als to fN at −1, 1 with multiplicities n`,m` and qN,`(x), ` ∈ N the Hermite interpolating
polynomials to gN at −1, 1 with multiplicities n`,m`. Then, from Proposition 2.2.2, we
obtain the following expressions of pN,`(x) and qN,`(x):

pN,`(x)

=
n∑

j=1

(x + 1)j−1

`−1∑
k=0

fN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

`−1∑
k=0

fN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k ,

qN,`(x)

=
n∑

j=1

(x + 1)j−1

`−1∑
k=0

gN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

`−1∑
k=0

gN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k .

Also, from Proposition 4.3.1, we see that FN(x), N = 0, 1, . . . are infinitely differen-
tiable on the set

(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

. Therefore, from the definition of FN(x), we have
for each i = 0, 1, . . . and for each k = 0, 1, . . .,

lim
`→∞

p
(k)
i,` (x) = F

(k)
i (x), x ∈

(
α,

n − m

n + m

)
∪

(
n − m

n + m
,β

)
.

Similarly, we obtain for each i = 0, 1, . . . and for each k = 0, 1, . . .,

lim
`→∞

q
(k)
i,` (x) = G

(k)
i (x), x ∈

(
α,

n − m

n + m

)
∪

(
n − m

n + m
, β

)
.

Hence, we have for each x ∈
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

,

lim
`→∞

p
(k)
f,{−1,1}(n`,m`)(x) = lim

`→∞

(
L1∑
i=0

aip
(k)
i,` (x) +

L2∑
i=0

biq
(k)
i,` (x)

)

=

L1∑
i=0

aiF
(k)
i (x) +

L2∑
i=0

biG
(k)
i (x)

= S(k)(x).

Proposition 4.3.3. Let f(x), S(x) be the functions defined in Proposition 4.3.2. Then,
it holds that, for each j = 0, 1, . . .,

S(j)(−1) = f (j)(−1)

and
S(j)(1) = f (j)(1).



39

Proof. We fix ` ∈ N. Let fN(x), gN(x), pf,{−1,1}(n`,m`)(x) be functions defined in Proposi-
tion 4.3.2. For each N = 0, 1, 2, . . ., let pN,`(x) be the Hermite interpolating polynomial
to fN at −1, 1 with multiplicities n`,m` and qN,`(x) the Hermite interpolating polynomial
to gN at −1, 1 with multiplicities n`,m`. Also, let p∗,N,`(x), q∗,N,`(x) be functions on the
set

(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)

defined by

p∗,N,`(x)

= FN(x) − pN,`(x)

=
n∑

j=1

(x + 1)j−1

∞∑
k=`

fN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

∞∑
k=`

fN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k

and

q∗,N,`(x)

= GN(x) − qN,`(x)

=
n∑

j=1

(x + 1)j−1

∞∑
k=`

gN [−1, 1; nk + j,mk] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n(x − 1)j−1

∞∑
k=`

gN [−1, 1; n(k + 1),mk + j] {(x + 1)n(x − 1)m}k .

Now we have

S(x) =

L1∑
i=0

aiFi(x) +

L2∑
i=0

biGi(x)

=

L1∑
i=0

ai (pi,`(x) + p∗,i,`(x)) +

L2∑
i=0

bi (qi,`(x) + q∗,i,`(x))

=

(
L1∑
i=0

aipi,`(x) +

L2∑
i=0

biqi,`(x)

)
+

L1∑
i=0

aip∗,i,`(x) +

L2∑
i=0

biq∗,i,`(x)

= pf,{−1,1}(n`,m`)(x) +

L1∑
i=0

aip∗,i,`(x) +

L2∑
i=0

biq∗,i,`(x).
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Since p∗,N,`(x), q∗,N,`(x) are expressed as

p∗,N,`(x)

=
n∑

j=1

(x + 1)n`+j−1(x − 1)m`

∞∑
k=0

fN [−1, 1; n(k + `) + j,m(k + `)] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n`+n(x − 1)m`+j−1

∞∑
k=0

fN [−1, 1; n(k + ` + 1),m(k + `) + j]

× {(x + 1)n(x − 1)m}k

and

q∗,N,`(x)

=
n∑

j=1

(x + 1)n`+j−1(x − 1)m`

∞∑
k=0

gN [−1, 1; n(k + `) + j,m(k + `)] {(x + 1)n(x − 1)m}k

+
m∑

j=1

(x + 1)n`+n(x − 1)m`+j−1

∞∑
k=0

gN [−1, 1; n(k + ` + 1),m(k + `) + j]

× {(x + 1)n(x − 1)m}k ,

we obtain
p

(j)
∗,N,`(−1) = q

(j)
∗,N,`(−1) = 0 for each j = 0, . . . , n` − 1,

and
p

(j)
∗,N,`(1) = q

(j)
∗,N,`(1) = 0 for each j = 0, . . . ,m` − 1.

Therefore, from the definition of pf,{−1,1}(n`,m`)(x), we have for each j = 0, . . . , n` − 1,

S(j)(−1) = p
(j)
f,{−1,1}(n`,m`)(−1) +

L1∑
i=0

aip
(j)
∗,i,`(−1) +

L2∑
i=0

biq
(j)
∗,i,`(−1)

= f (j)(−1),

and we obtain for each j = 0, . . . ,m` − 1,

S(j)(1) = p
(j)
f,{−1,1}(n`,m`)(1) +

L1∑
i=0

aip
(j)
∗,i,`(1) +

L2∑
i=0

biq
(j)
∗,i,`(1)

= f (j)(1).

Since ` is arbitrary, we get for each j = 0, 1, . . .,

S(j)(−1) = f (j)(−1)

and
S(j)(1) = f (j)(1).
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Proposition 4.3.4. Let f(x), S(x) be the functions defined in Proposition 4.3.2. Then,
it holds that, for each k = 0, 1, . . .,

S(k)(x) = f (k)(x) for all x ∈
(

α,
n − m

n + m

)
∪

(
n − m

n + m
,β

)
.

Proof. We fix k ∈ {0, 1, 2, . . .}. We put

p(x) =

L1∑
i=0

ai(x + 1)i

and

q(x) =

L2∑
i=0

bi(x − 1)i.

Since the function S(k)(x) is analytic on the interval
(
α, n−m

n+m

)
, there exists an ε > 0 such

that

S(k)(x) =
∞∑

j=0

S(k+j)(−1)

j!
(x + 1)j for all x ∈ (−1 − ε,−1 + ε).

Also, the function q(k)(x) can be expressed as

q(k)(x) =
∞∑

j=0

q(k+j)(−1)

j!
(x + 1)j.

Now, from Proposition 4.3.3, we have for each j ∈ {0, 1, . . .},

S(k+j)(−1) = f (k+j)(−1) = q(k+j)(−1).

Hence, from the identity theorem, we obtain

S(k)(x) = q(k)(x) for all x ∈
(

α,
n − m

n + m

)
.

Similarly, we have

S(k)(x) = p(k)(x) for all x ∈
(

n − m

n + m
,β

)
.

From the above, we obtain
S(k)(x) = f (k)(x)

for all x ∈
(
α, n−m

n+m

)
∪

(
n−m
n+m

, β
)
.

Now we are in position to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Let S(x) be the function defined in Proposition 4.3.2. We fix
k ∈ {0, 1, 2, . . .}. From Proposition 4.3.2, we have

lim
`→∞

p
(k)
f,{−1,1}(n`,m`)(x) = S(k)(x) for all x ∈

(
α,

n − m

n + m

)
∪

(
n − m

n + m
,β

)
.
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Furthermore, from Proposition 4.3.4, we obtain

S(k)(x) = f (k)(x) for all x ∈
(

α,
n − m

n + m

)
∪

(
n − m

n + m
,β

)
.

Hence, we get

lim
`→∞

p
(k)
f,{−1,1}(n`,m`)(x) = f (k)(x) for all x ∈

(
α,

n − m

n + m

)
∪

(
n − m

n + m
,β

)
.
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de Matemática Aplicada, Ciudad Real, pp. 1-8, 2009.
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