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General Introduction 

This thesis is mainly focused on investigating the crystal structure evolution and the 

distribution of polymorphic crystals within semicrystalline biodegradable polymers. 

Semicrystalline biodegradable polymers are very important kinds of polymer materials, which 

have been widely used in our daily life. For the real application of the biodegradable polymers, it 

is indubitable that the mechanical property and biodegradability are always the most important. 

These properties are highly related to the inner physical structure of the biodegradable polymers, 

such as crystal structures, crystal morphologies, crystal or amorphous phase distribution, etc. 

Therefore, the knowledge about these factors will help us better understanding and application of 

the biodegradable polymers. 

    A crystal structure, or a crystal phase, can form by a phase transition process from an 

amorphous phase or another crystal phase. Phase transition from the amorphous phase is usually 

called crystallization, and that from the crystal phase is named as crystal phase transition. Note 

that the phase transition behavior for polymeric materials is a multiple process, containing the 

evolution of complex hierarchical structures. Therefore, the research on the phase transition 

process is one of the most important topics of polymers. In the first and second chapters of this 

thesis, two typical semicrystalline biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and 

poly(butylene adipate) (PBA) (also named poly(tetramethylene adipate) (PTMA)) were chosen as 

candidates to systemically investigate the crystallization process during solvent evaporation and 

crystal phase transition behavior by using time-dependent attenuated total reflection Fourier-

transform infrared (ATR-FTIR) spectroscopy, FTIR spectroscopy, grazing incidence wide angle 

X-ray diffraction (GI-WAXD), and WAXD/small-angle X-ray scattering (SAXS). 

    The crystal morphologies, such as spherulitic morphologies and the distribution of the 

different phases within the polymeric material system can also affect the biodegradability. Since 

different morphologies and phases show different biodegradability as well. When PBA is 

isothermal melt-recrystallized at an ambient temperature, it will exhibit both ring-banded 

spherulite and polymorphic crystals, which makes the situation more complicated. To investigate 
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that, Raman imaging technique is a good choice, for the reason that Raman imaging combines the 

information not just from the morphologies but also the molecular structure. In the third chapter 

of the present thesis, the author studied and discussed in detail the distribution of the polymorphic 

crystals within the spherulite of PBA using Raman imaging. 

    The originality and novelty of this thesis can be described as follows: 

(1) Up to now, studies on the crystallization of PHB have been mainly concerned with melt 

crystallization process, but no related studies on solvent evaporation crystallization (SEC) 

process for PHB. Through the time-dependent ATR-FTIR spectra of PHB/chloroform solution 

during SEC process, the author found out that PHB/chloroform solution was in a homogeneous 

state at first. With the evaporation of chloroform, the separated PHB from the solution was in 

the mixture of intermediate and amorphous states, but no crystal structure formed due to the 

presence of chloroform. Moreover, there was no C−H⋯O=C intramolecular interactions 

within the intermediate structure of PHB. Subsequently, further evaporation induced a 

transition from intermediate phase to crystal phase and the formation of C − H ⋯ O=C 

intramolecular interactions within the latter. As the crystal structure developed, the 

intramolecular interaction become stronger due to the reduced intra-molecular distance within 

the lamella structure. Moreover, the time-dependent GI-WAXD profiles suggested the 

presence of two kinds of intermediate structures with different order (less ordered and highly 

ordered). 

(2) The author have solved the long-term controversial problem about the mechanism of the β-to-

α phase transition of PBA through the techniques of the time-resolved FTIR measurement as 

well as the simultaneous time-resolved WAXD/SAXS measurement in the quick and stable 

temperature jumping process, by which the time-dependent structural change has been traced 

quite clearly. The results indicated that the transformation from the β- to α-phase is not a solid-

to-solid mechanism but occurs through the process of the melting of the β-phase into the 

amorphous phase followed by the subsequent recrystallization of the amorphous phase into the 

high temperature α-form. 

(3) The relationship between ring-banded spherulites and polymorphic crystals behavior of PBA 

have been constructed based on Raman spectroscopy and Raman imaging technique. The 

characteristic Raman bands for α, β-form crystals and the amorphous phase of PBA, which are 
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suitable for quantitative analysis, have been identified. Through Raman imaging, the α- and β-

form crystals of PBA uniformly distributed rather than alternate distributed as suggested by 

precious study within the ring-banded region and they grow together when the ring-banded 

PBA spherulites are formed. 

1. Introduction of PHB and PBA 

    After the modern concept of polymers was proposed by Hermann Staudinger in 1920,1 the 

polymeric materials have acted as an essential role in our daily life, since they hold wide range of 

properties. The polymeric materials can be divided into synthetic plastics and natural biopolymers, 

but they are all formed by many repeat subunits which are created through polymerization of the 

monomers. The traditional synthetic plastics which derived from petrochemicals, such as 

polyethylene (PE), polystyrene (PS), poly(vinyl chloride) (PVC), etc., have been popular for more 

than one century since they can displace traditional materials in the industries of packaging, piping, 

etc. However, with the big amount usage of the synthetic plastics, the serious challenges for the 

environment also become a worldwide problem. That is because these plastics are very stable and 

cannot be degraded naturally. Replacing the usage of traditional plastics by biodegradable 

polymers (or plastics) is a good idea to overcome the above problems; since the polymer chains in 

the biodegradable polymers can break down into small, stable end-products in physiological 

environments.2 Moreover, some biodegradable polymers show not only good biocompatibility and 

bioresorbable but also excellent mechanical properties, which make them very suitable to be used 

in biomedical field, such as surgical suture, wound dressings, tissue engineering scaffolds, etc. The 

above advantages make biodegradable polymers a promising kind of materials and have received 

substantial interest in both fundamental research and technology in the recent several decades.2,3 

1.1 PHB and Its Crystallization Behavior 

    Linear aliphatic polyesters, for example, PHB, is one of the most popular biodegradable 

materials. PHB, which belong to the poly(hydroxyalkanoate)s (PHAs) family, was first reported 

to isolate from the bacterial cells and to characterize by Maurice Lemoigne in the 1920s.4 The 

chemical structure of PHB is presented in Figure 1(a), the typical features for not only PHB but 
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actually for all of the PHAs are that both of them having three-carbon backbone structure and one 

of the hydrogen atoms in the 3 position is substituted by an alkyl group,4 and the different types 

of alkyl groups in the 3 position play an important role in determine the physical properties of 

PHAs5. 

That alkyl group for PHB is a methyl group (−CH3), which can form a weak hydrogen 

bonding (HB) with a carbonyl group (C=O) within the PHB crystals. The HBs have been supposed 

to affect the thermal properties of the PHB crystals;6,7 which will be introduced in the following 

paragraph. PHB can crystallize in two types of crystal modifications, the α and β forms. The chains 

within the crystal structure of α-form is packed in an orthorhombic unit cell (P212121-D2
4) having 

axes a=5.76 Å, b=13.2 Å and c(fiber period)=5.96 Å with left-handed 21 helical conformation;8-

10 while the polymer chains of β-form crystals with nearly planar zigzag conformation 11-13 packed 

in an hexagonal unit cell12. Since PHB with the α-form crystals are most commonly used, which 

can be easily produced by melt, cold and solution crystallization, it has been extensively 

studied.6,7,14-29 PHB has a glass transition temperature (Tg) around 5 °C14 and a melting temperature 

(Tm) around 178 °C15. Due to nearly perfect stereoregularity of its molecular chains, PHB can 

achieve relative high crystallinity, which makes PHB products perform similar mechanical 

properties to isotactic polypropylene (iPP).30 

In 2004, Sato et al. firstly reported that C−H⋯O=C weak HBs existed between the C=O 

groups in one helix and one of the C−H groups of CH3 groups in the adjacent helix within PHB 

α-form crystals by temperature-dependent FTIR and WAXD experiments,6,7 the α-form crystal 

structure of PHB with HBs is illustrated in Figure 1(b). They showed the following evidences: (1) 

the IR band for CH3 asymmetric stretching vibration appeared at an unusual high wavenumber 

(around 3009 cm-1), while the corresponding C=O stretching mode showed relative low frequency 

shift to around 1731 cm-1;7 (2) the distance between the H atom of the CH3 group and the O atom 

of the C=O group (2.63 Å) is shorter than their van der waals separation (2.72 Å);7,31 Recently, 

Wang and Tashiro have further confirmed such HBs on the basis of accurate crystal structure 

analysis and the normal mode calculations of the α-form PHB.29 

For semicrystalline biodegradable polymers, like PHB, it is no doubted that the crystallization 

process is always the most important. Through controlling the crystal structures and the crystal 

morphologies, the crystallization can affect the final mechanical properties and biodegradability 
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for biodegradable polymers. Thus, the research topics about the crystallization is continuously 

popular throughout the development of the biodegradable polymers. The crystallization of polymer 

is a process that the polymer chains packed regularly into crystal region. Semicrystalline polymers 

consist of both crystalline and amorphous regions, since the usual length of the molecular chains 

is far greater than the size of the crystallites, one molecular chain is considered to pass through 

many crystalline and noncrystalline regions successively. Lotz and Cheng et al.32,33 suggested that 

every polymer chain should go through several selection processes on different length and time 

scales during crystallization. Therefore, the transformation from the entangled melt into the 

crystalline state will pass several steps, and each step will corresponds to a different state. Based 

on a variety of evidence from experiments on several polymer systems, Strobl34 suggested that the 

crystallization process from the amorphous state should passing over intermediate states 

(mesophase) before transforming to the lamellar crystallites. This novel crystallization model has 

been widely proven and used in the recent research of the semicrystalline polymers.19,26,35-43 

Due to its exceptional purity and low nucleation density,44,45 PHB is usually treated as a good 

model for investigating polymer crystallization behavior. FTIR spectroscopy and X-ray analysis 

are very popular techniques to study the crystallization behavior of polymer materials for a long 

time since not only they can provide abundant information about the crystal structure evolution, 

but they are also easy to be performed. FTIR spectroscopy can tell us the molecular structure 

change from a functional group level,46 for example, conformations and intermolecular interaction 

change during crystallization. While X-ray analysis can give information from unit cell to lamellar 

periodical structure. Therefore, by combing the information from FTIR and X-ray, we can deeply 

understand the crystallization process. 

Until now, by using FTIR,17,19,40,41,47,48 WAXD,26,49-52 and SAXS26,50-52 techniques, the 

crystallization behavior of PHB and its copolymer have been extensively studied. Through time-

dependent IR measurements combined with two-dimensional (2D) correlation analysis, Zhang et 

al.19 investigated the isothermal melt-crystallization process of PHB. They found out that during 

crystallization, the amorphous C=O stretching bands at 1747 and 1739 cm-1, the crystal band at 

1731 cm-1 and another crystal band at 1728 cm-1 showed sequence change, and they suggested the 

band at 1731 cm-1 might come from the intermediate structure. Recently, Suttiwijitpukdee et al.40 

and Guo et al.26 investigated and discussed the intermediate structure within PHB by time-resolved 
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FTIR spectroscopy and synchrotron WAXD/SAXS measurements, respectively in detail.  

It should be noted that, the studies on the crystallization of PHB have been mainly concerned 

with isothermal melt-crystallization process at around 110 °C thus far, but there has few research 

about the SEC process. Being different from crystallization from pure polymers system, such as 

melt-crystallization, SEC is in general more complex,53-56 since the solvent molecules usually 

exhibit complex interactions with polymer chains. Therefore, it is very necessary for us to 

investigate the SEC of PHB. Moreover, as mentioned above, HBs also exist within the lamellar 

structure of PHB, thus, study about the formation of HBs combining with the multiple crystal 

structure evolution during SEC (the molecular interaction exchange from polymer-solvent to 

polymer-polymer) is also very meaningful and importance.  

An SEC PHB film is formed in a few minutes at room temperature by using the solvent of 

chloroform, however, to ensure better signal-to-noise ratio (SNR), it usually takes at least 30 s to 

obtain one IR spectrum. Therefore, it is very difficult to measure SEC by normal FTIR. In Chapter 

1 of this thesis, a glass tube was used to hold the PHB/chloroform solution, and the author 

successfully investigated the SEC of PHB by using time-resolved ATR-FTIR and GI-WAXD 

methods. The author had detected the detail SEC process from homogeneous solution to phase 

separation and finally formation the crystal structure. The transformation of the intermediate 

structure and the evolution of the HBs were discussed systemically.  

1.2 β-to-α Phase Transition Behavior and the Spherulite of PBA 

    PBA is also an important kind of biodegradable linear aliphatic polyester, different from PHB, 

PBA is petroleum-based polyester. PBA has shown its potential as it can be used in biomedical 

and ecofriendly materials. PBA is also an shared comonomer in poly(butylene adipate-co-

terephthalate) (PBAT, Ecoflex®) and 57poly(butylene succinate-co-adipate) (PBSA, Bionolle®), 

which are known for flexible, toughness and good processability, and have been widely applied in 

cling wrap for food packing, water resistant coatings, plastic bags, drug encapsulation systems, 

and so on.58,59 Recent years, more attention has been paid on PBA for its complicated and 

interesting polymorphic crystalline structure, phase transition and crystal morphology.60-80 

    The chemical structure of PBA is shown in Figure 2(a). PBA has been reported to crystallize 
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into two types of crystal modifications under different conditions. The crystal structure of PBA 

was firstly studied by Fuller et al.81-83 and the lattice parameters were further identified later by 

Minke et al.84, 85 through studied the PBA single crystal. The α-form is characterized by its chain 

conformation of the planar zigzag type and these chains are packed in the monoclinic unit cell with 

the dimensions of a = 6.73 Å, b = 7.94 Å, c (fiber period) = 14.20 Å and β = 45.5°, while the β-

form of the planar zigzag chain conformation takes the orthorhombic unit cell with the dimensions 

of a = 5.06 Å, b = 7.35 Å and c (fiber period) = 14.67 Å.84, 85 The crystal structures of PBA are 

shown in Figure 2(b). It has been demonstrated that a film with α-form crystal structures has a 

higher degradation rate than that with β-form crystal structures, and that a film with both α- and β-

form crystal structures shows the slowest degradation rate.64 

1.2.1 β-to-α Phase Transition Behavior of PBA 

    In most of the cases, the β-form crystal structures for the linear aliphatic polyesters can be 

achieved only by stretching the polymer film or solution spun-coating to obtain the planar zigzag 

polymer chain conformation, like β-form PHB and PLA; by normal crystallization condition, such 

as solution-casting or isothermal melt-crystallization at Tc (crystallization temperature) higher than 

Tg, α-form is mainly formed. However, in the case of PBA, it has been reported that the β-form 

crystalline structure can be prepared by either stretching PBA film77 or just by simply isothermal 

melt-crystallized at Tc that lower than 29 °C60 (The Tg of PBA is around -55 °C). Moreover, when 

isothermal melt-crystallization at Tc that higher than 31 °C, α-form crystals of PBA are mainly 

formed, while α- and β-form crystals are formed simultaneously at Tc that between 29 and 31 °C. 

Such significantly temperature dependence of the PBA crystalline structure were firstly revealed 

by Gan et al.60 In the same research, they also indicated that the α-phase of PBA can form through 

non-isothermal crystallization with slow cooling rate of 1 °C/min from melt, while by fasters 

cooling (> 5 °C/min), β-phase is dominantly developed. 

    Spontaneous transformation from the β-phase to the α-phase of bulk PBA can occur slowly 

by storing the specimen at room temperature for a week.84 Which suggests that α-phase is 

thermodynamically more stable for the bulk PBA sample. This point was also proved by 

calculating the equilibrium melting temperature (Tm
0 ) value by both Gibbs-Thomson and Hoffman-
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Weeks methods; the Tm
0  value for the α-form is shown higher than that for the β-form, indicating 

the α-form is a structure stable phase, while the β-form is a metastable phase.62 

    The mechanism of the β-to-α phase transition of PBA is still unclear until now, even though 

some groups have already done some works about that. Gan et al.62 suggested this phase transition 

is a solid-to-solid process accompanied by the lamellar thickening, which based on the results of 

DSC, WAXD and SAXS. By time-resolved FTIR during annealing at 49 °C69 and temperature 

dependent FTIR during melting process of the β-form crystal structure72, Yan et al.69 and Yang et 

al.72, respectively also indicated the solid-solid phase transition. On the contrary, through FTIR 

and WAXD measurements during heating process of the PBA/poly(4-vinylphenol) (PVPh) blends, 

Sun et al.86 found out that the Tm of α-phase PBA depression with the addition of the PVPh, 

moreover, the β-to-α phase transition temperature showed parallel depression as well. They 

suggested that this phase transition might be a microdomain melting and recrystallization process. 

Li et al.76 based on the results of time-dependent FTIR of ultrathin PBA film during annealing at 

45 and 47 °C, respectively, also suggested a melt-recrystallization phase transition process.  

    The controversial about the β-to-α phase transition of PBA is continuing since there is no 

direct evidence to demonstrate which is the really phase transition pathway. In general, the phase 

transition of the crystalline polymers usually occurs over a relatively wide temperature region; this 

is due to the crystallite size in the semicrystalline polymer distributes over a wide range and so the 

melting point itself distributes correspondingly.87 Therefore, by the conventional temperature- or 

time-dependent X-ray and vibrational spectroscopic measurements, it is sometimes difficult to 

judge the phase transition process, since temporal resolution limitation. Moreover, to investigate 

the phase transition, the evolution of the amorphous structure is also very important to trace at the 

same time.  

    In Chapter 2 of the present thesis, a temperature-jump cell88 was used, the illustration is shown 

in Figure 3. Based on the temperature-jump time-resolved measurement of the FTIR, WAXD and 

SAXS, the phase transition behavior of PBA has been systemically investigated. The author 

directly traced the sequentially-occurring change of the different phases, and found out that it is 

not a solid-to-solid phase transition but the combined phenomena of the melting of the β-phase 

followed by the recrystallization to the high temperature α-phase. 
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1.2.2 Spherulite of PBA 

    Spherulites of semicrystalline polymeric materials are spherically symmetric crystal colonies 

which formation from viscous melts or solutions with enough supercooling degree ΔT (ΔT = Tm – 

Tc).
89-91 Spherulites are polycrystalline aggregates composed by highly anisometric crystallites 

called subindividuals or subunits; through polarized optical microscopy (POM) observation, the 

spherulite will shows dark Maltese cross pattern (Figure 4(a)), this is due to the fact that all 

transparent crystals that are not cubic are birefringent. The morphologies and the growth rate of 

the spherulites are highly depending both on the polymeric materials themselves and the 

crystallization conditions. For example, crystal structure,92-96 chiral of the polymer chains,97,98 

molecular weight,99,100 crystallization temperature,101-103 film thickness,104,105 etc. 

Among various morphologies, ring-banded spherulites have been attracting considerable 

attention for several decades. The ring-banded spherulite not only shows Maltese cross, but also 

shows alternately concentric light-dark rings by POM observation. The typical ring-banded 

spherulite is shown in Figure 4(b). Evidences show that the ring-banded pattern is originated from 

the continuous helicoidally twisted of the lamellar crystals along the growth direction of the 

banded spherulite, with just a few exceptions.89,106,107 The mechanism of the lamellar twisting has 

been considered over the decades, three major ideas have been proposed until now, they are: (1) 

unbalanced surface stress effects of the lamellae;97,98,108 (2) isochiral giant screw dislocations along 

the lamellar crystals;108,109 (3) response to the compositional or mechanical fields in the melt near 

the interface that generated during the crystal growth process110. It should be noted that the present 

theories are still not enough to release all of the ambiguities about the formation of the ring-banded 

spherulites, these theories will be improved to more perfect in the future with more deeply studying 

and understanding of this fascinating phenomenon. 

    The banding phenomenon is usually found in the spherulites of chiral polymers, such as 

PHAs,98,111 PLA,112,113 poly(propylene oxide) (PPO),114 etc. However, some of the achiral 

polymers, for example, PBA, can also crystallized into ring-banded spherulite under specific 

conditions. It was firstly reported by Gan et al.60 at 2002 that when isothermal melt-crystallized 

PBA in the temperature range of 30–33 °C, banded spherulites were formed, while when the 

crystallization temperature below 29 °C or above 34 °C, only ringless spherulites could form. What 
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more interesting they found was that the temperature region at which the ring-banded spherulites 

formed was just similar with the region that α- and β-form crystals of PBA can crystallized together, 

which has already mentioned in the Section 1.2.1. However, the ringless PBA spherulites only 

contain pure α- or β-form crystals. 

    Since this particular phenomenon, it is reasonable for people to wonder what the relationship 

is between ring-banded morphology and the polymorphic crystals. Thus, many studies have been 

done about this “correlation” since 2002.64,65,67,71,73,74,115 Zhao et al.67 first investigated the banded 

PBA spherulites based on the different biodegradation behaviors of the two crystal forms and the 

results of atomic force microscopy (AFM); they suggested that the banded spherulites are 

composed of alternating edge-on and flat-on lamellae along the radial direction, and that the edge-

on and flat-on domains are composed of β- and α-form crystals, respectively. On the contrary, the 

following research by Woo et al.71 revealed that the ring-banded pattern had no relation with the 

polymeric crystals, since they found the banded pattern can be composed by even singly α-form 

crystals. More recently, Liu et al.73 researched the effect of the different molecular weights on the 

morphologies of the PBA spherulite. Their results showed that either α or β crystals can form 

regular ring-banded spherulites. The research by Wang et al.74 also suggested the similar result 

through analyzed the crystallization behavior of PBA blended with structurally similar acrylic 

polymers.  

    Thus, the evidences from previous studies have shown that the mixture of the two crystal 

forms is not the fundamental reason for the formation of the ring-banded PBA spherulites. Even 

though, this particular phenomenon of PBA still left a lot of unresolved problem. For example, 

what is the truly reason that when PBA crystallized by itself, the ring-banded pattern only appear 

with the coexistence of the two crystal forms, but when the system is crystallized by just either 

one crystal form, only ringless spherulite can be detected and what is the formation process of the 

ring-banded PBA spherulite with polymeric crystals? What is more, the banded pattern which is 

formed by a single crystal form or by mixed crystal forms at the same crystallization temperature 

appear very different band spacing,73 which means that the coexistence of the two crystal forms 

may affect the ring-banded morphology. In addition, since the two crystal forms result in different 

mechanical properties and biodegradation behavior, their distribution will also affect the final 

performances of the PBA products. Accordingly, more systematically works about the relationship 
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between PBA spherulite and its polymeric crystals are still very necessary to be done. 

    In order to achieve that final goal, the first step for us to do should be finding out the 

distribution of polymeric crystals in the ring-banded spherulites of PBA. Until now, a vast majority 

of spherulite studies rely on POM. Interpretations of the POM images can provide important 

information about the structures of spherulites;89 however, POM cannot give detailed information 

on the internal structures. Recent years, vibrational spectroscopy-based chemical imaging 

technique, for instance, Raman or FTIR imaging technique, has showed its potential in the research 

of polymer science, since it combines the information from both morphology and molecular 

structure. Therefore high spatial resolution Raman imaging technique was used to investigate the 

distribution of polymeric crystals, as well as the molecular chains orientation within the ring-

banded PBA spherulites for the first time. Moreover, since there is no Raman studies on PBA, 

particularly, the polymorphic crystals of PBA, have been reported thus far. Therefore, in present 

thesis, Raman spectroscopy and Raman imaging were used to explore the PBA spherulites for the 

first time. This part will be discussed in detail in Chapter 3 of the present thesis. 

2. Vibrational Spectroscopy-Based Chemical Imaging Technique and Its 

Application in Polymer Science 

    Vibrational spectroscopy-based chemical imaging technique, which has application in 

various academic and industries fields, is a very powerful tool for solving real-world issues.116 

Raman and FTIR imaging are the two typical branches of vibrational spectroscopy-based chemical 

imaging. Simply speaking, these imaging techniques are combining the advantages of digital 

imaging techniques and vibrational spectroscopy. The key points of chemical imaging based on 

Raman or FTIR spectroscopy are chemical specificity and the abundant information that stems 

from the full-range spectra. 

    Both of the IR and Raman spectroscopy are based on the fact that the chemical bonds between 

two or more atoms vibrate continually, such as stretching, bending, wagging, etc. When a “light”, 

or in other words, an electromagnetic radiation incident to a material, some of it will be absorbed 

when its frequency is resonant with the molecular vibration within the material. The vibrational 

energy of the molecular will be excited to a higher energy state by absorbing the light, and higher 
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energy state usually relaxes back to the lowest energy state quickly by releasing heat and/or 

light.116  

    Assuming that the groups of atoms in a molecule are not vibrationally coupled to the rest of 

the molecule, which means they have almost the same vibration frequencies in any molecule. 

Therefore, it is possible to associate a vibrational frequency with a particular chemical functional 

group.116 The IR and Raman spectra are the absorbance and scattering spectra, respectively, and 

the laser source of the IR and Raman are infrared light and visible laser, respectively. The basic 

principle of the IR and Raman spectroscopy have been well published elsewhere.116 

    The semicrystalline polymer system is usually in spatially inhomogeneous state, for example, 

there should contain crystal and amorphous phases at the same time. If a polymer also shows 

polymorphic crystals behavior, the situation will become more complex. Since different phases 

will show different properties, such as mechanical property and biodegradability. Thus, fully 

understanding the distribution of different phases in the polymer system is very important to 

control and predict its final performance. 

    Since different phases or structures usually have their own molecule-specific band(s) in the 

IR or Raman spectrum. Then, the imaging instrument are used to collect IR or Raman spectra 

associate with the sample from every pixel of the region that is interested. The final chemical 

image is generated by calculating the relative value (intensity, intensity ratio, etc.) of the molecule-

specific band at each pixel, and then drawing these values in the Cartesian coordinates.116 The 

schematic of chemical imaging technique is shown in Figure 5. 

FTIR imaging has been extensively applied in the research of polymer science in the recent 

two decades since it can collect full IR image which containing hundreds or thousands of IR 

spectra in a few minutes.28,41,42,96,113,117-127 For example, Siesler group have done a lot of work on 

various of polymer blending system by using FTIR imaging;28,41,122-125 Hekima and Morikawa 

investigated the inner molecular chains orientation within the stretched polymer fiber and different 

kinds of spherulites of polymeric materials by polarized FTIR imaging through their newly 

proposed multipolarization calculation method.113,126,127 Using the same method, Hu and Tashiro 

studied the phase transition behavior from form-II to form-I in the melt-grown spherulites of 

isotactic polybutene-1 (it-PB-1) at 25 °C.96 Even though FTIR imaging technique has many 

advantages, its spatial resolution is just around 5 μm by normal mode, which limits the application 
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of IR imaging if the inhomogeneous part is very small. 

Compared to FTIR imaging, Raman imaging can give much better spatial resolution (0.3 μm 

can be achieved), and it can also provide marked information about the molecular structure. Raman 

imaging instrument usually composed by a laser source, optical microscopy system, computer-

controlled motorized sample stage and a CCD detector. Back-scattering is the most common mode 

for Raman imaging measurement, which means that during Raman experiment, the laser always 

focus on the surface or any another point along the thickness direction of the sample, and thus, 

only the thin laser focus plane of the sample will be measured. This feature makes Raman imaging 

can easily be used to measure the sample in not only two-dimensional (2D) plane but also three-

dimensional (3D) space. Hence, Raman imaging has shown its powerful in recent decades and has 

been widely applied to investigate the distribution of different phase and structures in polymeric 

materials.28,128-133 For example, Van Apeldorn et al.130 studied about the intracellular degradation 

behavior and mechanism of the poly(lactic-co-glycolic acid) (PLGA) microsphere inside 

macrophages by using confocal Raman spectroscopy and imaging with spatial resolution of 1.5 

μm; Chernenko et al.132 investigated the intracellular drug-delivery and degradation of the 

biodegradable nanocarrier systems of poly(ε-caprolactone) (PCL) and PLGA;132 Huan et al. 

researched about the phase behavior in poly(ethylene terephthalate)/high-density poly(ethylene) 

(PET/HDPE) polymer blends using high-spatial resolution Raman imaging.  

    In the third chapter of the present thesis, Raman imaging technique was chosen to investigate 

the complex distribution of inner physical structure within ring-banded PBA spherulites instead of 

FTIR imaging. That is mainly due to that spatial resolution of FTIR imaging is not enough to 

investigate such small band spacing of PBA spherulites efficiency. 

3. Outline of Each Chapter 

    The outline of each chapter for the present thesis will be described as follows. 

    This thesis consists of three chapters. 

    Chapter 1: this chapter describes the evolution of the intra-molecular interaction within PHB 

chains and inter-molecular interaction between PHB chains and chloroform molecules during SEC 

of PHB in a PHB/chloroform solution by using time-solved ATR-FTIR spectroscopy; and the 
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crystal structure formation of PHB during SEC by using time-solved GI-WAXD. From ATR-FTIR, 

it is found that the PHB/chloroform solution was in a homogeneous state at first, and within the 

solution, there contains the intermolecular interaction between C=O groups of the PHB chains and 

the C−H groups of chloroform. With the evaporation of chloroform, phase separation started since 

the solution concentration reached the saturation point, and PHB started to separate from the 

solution. The separated PHB was in the mixture of intermediate and amorphous states, but no 

crystal structure formed due to the presence of chloroform. Moreover, no C=O…H−C interaction 

within PHB was formed, which in other others, hydrogen bonding was not exist within the 

intermediate structure. Subsequently, further evaporation induced a transition from intermediate 

to crystal structure and the formation of C=O…H−C intramolecular interactions within the latter. 

As the crystal structure developed, the intramolecular interaction changed from weak to strong due 

to the reduced intra-molecular distance within the lamella structure. The results of the GI-WAXD, 

it is suggested the presence of two kinds of intermediate structures with different order (less 

ordered and highly ordered). During SEC, the intermediate structures formed firstly, subsequently 

transforming into a crystal structure. 

Chapter 2: the mechanism of the β-to-α phase transition of PBA was systematically 

investigated by using the techniques of the time-resolved measurements of the FTIR spectra as 

well as the simultaneous time-resolved WAXD/SAXS measurements in the quick and stable 

temperature-jump process. A majority of papers published so far reported that the phase transition 

from the β-form to the α-form occurs as the direct solid-to-solid process when the sample is heated 

up to the high temperature. However, the author found out that this phase transition was not a 

solid-to-solid phase transition but the melting of the β-phase into the amorphous phase and the 

subsequently occurred recrystallization of the amorphous phase into the α-form. The α-phase 

obtained by the melt-recrystallization of the original β-phase is different not only in the lamellar 

stacking structure but also in the degree of orderliness in the crystal lattice compared to the normal 

α-phase as judged from the SAXS and WAXD data. 

Chapter 3: in this chapter, the author discussed the polymorphic crystals and the molecular 

chains orientation within the PBA spherulites in detail by using Raman spectroscopy and Raman 

imaging technique. Special attention has been paid to the so-called “ring-banded” PBA spherulites 

with out-layer ringless region that were isothermally crystallized at Tc = 31–33 °C. The 
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characteristic Raman peaks for both α- and β-form crystal structures and the amorphous structure 

of PBA were observed for the first time. These peaks were employed to investigate the 

polymorphic crystal distribution through Raman imaging. It was found that the center and ring-

banded regions contained both α- and β-form crystals, while the out-layer region contained only 

α-form crystals. The α- and β-form crystals can nucleate and grow in the same temperature range 

(31–33 °C), and the relative content of these two crystal forms within the ring-banded spherulites 

show temperature dependence. The higher isothermal melt-crystallization temperature, the higher 

content of the α-form crystals within the ring-banded PBA spherulites. The molecular chains 

within the PBA spherulites are oriented almost perpendicular to the spherulite growth direction. 

However, the ring-banded domains have different orientations about the substrate plane; the 

molecular chains orient perpendicular to the substrate plane in the flat-on domains and parallel to 

the substrate plane in the edge-on domains 
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Figure 1. The chemical structure of PHB (a) and the α-form crystal structure of PHB with HBs (b) 

((b) is reproduced from ref 29 with permission. Copyright 2016 American Chemical 

Society). 
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Figure 2. The chemical structure of PBA (a) and the α- and β-form crystal structure of PBA (b) 

((b) is reproduced from ref 62 with permission. Copyright 2004 American Chemical 

Society). 
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Figure 3. Illustration of temperature jump cell for time-resolved FTIR and WAXD/SAXS 

measurements (Reproduced from ref 88 with permission. Copyright 2002 John Wiley 

& Sons). 
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Figure 4. Dark Maltese cross pattern of the typical spherulite (a) (Reproduced from ref 89 with 

permission. Copyright 2015 Elsevier Ltd.) and the typical ring-banded spherulite (b). 
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Higher-Order Structure Formation of a Poly(3-hydroxybutyrate) 

Film during Solvent Evaporation 
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ABSTRACT 

Solvent evaporation crystallization (SEC) of poly(3-hydroxybutyrate) (PHB) in a 

PHB/chloroform solution was investigated by time-resolved attenuated total reflection Fourier-

transform infrared  (ATR-FTIR) spectroscopy and grazing incidence wide angle X-ray diffraction 

(GI-WAXD). The ATR-FTIR investigation reveals that the PHB/chloroform solution was in a 

homogeneous state at first, and with the evaporation of chloroform, the separated PHB from the 

chloroform solvent was in the mixture of intermediate and amorphous states, but no crystal 

structure formed due to the presence of chloroform. Subsequently, further evaporation induced a 

transition from intermediate to crystal structure and the formation of C=O…H−C intramolecular 

interactions within the latter. As the crystal structure developed, the intra-molecular interaction 

changed from weak to strong due to the reduced intra-molecular distance within the lamella 

structure. The results of the GI-WAXD investigation suggest the presence of two kinds of 

intermediate structures with different order (less ordered and highly ordered). During SEC, the 

intermediate structures formed first, subsequently transforming into a crystal structure. 
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Introduction 

Crystallization is the most important step during crystal structure formation of semicrystalline 

polymers.1–5 For polymer materials, a crystalline state is a highly stable state with low free energy. 

Different crystallization pathways can yield different crystal structures, which is reflected in the 

polymorphic behavior of polymers. For example, poly(L-lactic acid) (PLA) has four different 

crystalline modifications (α,  𝛼′, 𝛽, 𝛾); the α and  𝛼′ forms are obtained by crystallization from 

amorphous states at temperatures higher and lower than 120 °C, 6,7 respectively, while the 𝛽 and 

𝛾 forms are prepared using a high draw ratio at high temperature and epitaxial crystallization,8-11 

respectively. The formation of final crystal structure involves the transformation of the molecular 

chain package from an amorphous state to a crystalline state. During this process, the molecular 

structure passes many states since long molecular chains are highly entangled,12 and every 

macromolecular chain has to pass selections on different length and time scales.13,14 Therefore, 

investigations of structural changes during crystallization are very important for understanding the 

growth mechanism of polymer polymorphisms. 

Being different from crystallization from pure polymers system, such as cold and melt 

crystallization, solvent evaporation crystallization (SEC) is in general more complex.15–21 For a 

polymer solution, the solvent molecules usually exhibit some interactions with polymer chains,22 

and phase separation occurs during solvent evaporation when the concentration reaches a 

saturation point. A SEC polymer film is usually formed in a very short time, so that in situ 

synchrotron radiation X-ray has usually been used to investigate this process.16,19,20,23–25 

Heinzer et al.23 studied the spacing change of hexagonally packed cylinders in a poly(styrene-

b-butadiene) copolymer film during solvent drying by in situ grazing incidence small-angle X-ray 

scattering (GI-SAXS) measurements. They found that the above spacing increases on solvent 

evaporation, with the segregation of blocks increasing first. When the solution concentration 

reaches a critical point, the spacing decreases due to the loss of solvent. Using same method, 

Ogawa et al.24 studied the structural development of symmetric poly(styrene-b-2-vinylpyridine) 

block copolymers thin films during spin-coating. They suggested that the microstructure of 

poly(styrene-b-2-vinylpyridine) is first created from randomly distributed spherical micelles 

forming a body-centered cubic (BCC) lattice, with further evaporation inducing a transition from 
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spheres in the BCC lattice to cylindrical structures. 

Compared to X-ray analysis, it is well known that Fourier-transform infrared (FTIR) 

spectroscopy is more suitable for investigating the conformational and local molecular 

environments changes of polymers.26–28 Therefore, time-resolved FTIR spectroscopy has been 

extensively used to investigate the crystallization of semicrystalline polymers.7,29–31 However, to 

ensure better signal-to-noise ratio (SNR), IR spectra are usually obtained using 64 or 128 scans at 

2–4 cm–1 resolution. Thus, it takes about 1–2 min to obtain one spectrum. Therefore, FTIR 

investigations of solvent evaporation crystallization are difficult. Due to this limitation, to the best 

of our knowledge, no reports on FTIR characterization of SEC exist. 

During the last two decades, biodegradable polymers have attracted considerable interest. 

Among them, poly(3-hydroxybutyrate) (PHB) has been extensively studied,32–37 since it has 

mechanical properties similar to those of conventional synthetic polymers.38–41 The α crystal 

modification of PHB is the most common form, and its helical chain is packed as an orthorhombic 

unit cell, P212121-D
4

2, with dimensions of a = 5.76 Å, b = 13.20 Å, and c = 5.96 Å.42–44 Based on 

IR and X-ray crystallographic studies, Sato et al. suggested the existence of weak hydrogen 

bonding between the carbonyl and methyl groups (C=O…H−C) in the unit cell. The distance 

between them is 2.62 Å,44 which is shorter than the sum of van der Waals radii of O and H atoms, 

2.72 Å. The FTIR investigation of Sato et al. 45 showed that the asymmetric CH3 stretching band 

appears at an abnormally high frequency (3009 cm–1), providing more evidence for the 

C=O…H−C hydrogen bonding. Very recently, Wang and Tashiro44 studied the crystal structure 

and intermolecular interactions of the α-form of PHB in detail, confirming the existence of 

C=O…H−C hydrogen bonding. 

PHB is also a good model for investigating polymer crystallization behavior due to its 

exceptional purity and low nucleation density.46,47 Therefore, it was chosen as a candidate to 

investigate SEC in this work. Until now, studies on the crystallization of PHB have been mainly 

concerned with melt crystallization (around 110 °C).34,37,48 However, no related studies on the cold 

crystallization of PHB at lower temperature (e.g., room temperature) exist, probably due to the Tg 

(glass transition temperature) of PHB is relatively low (around 5 °C) and the cold crystallization 

of PHB at room temperature is very fast, therefore, it is little bit difficult to carry out such 

measurement. Therefore, investigating the SEC of PHB is very meaningful. In this research, SEC 
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studies are carried out at room temperature (25 °C), even though this temperature is higher than 

the Tg of PHB, the crystallization from an amorphous state can still be traced very clearly due to 

the presence of solvent. It should be noticed that by SEC, PHB can form only one kind of crystal 

structure (α-form) from amorphous state, changing SEC condition will not change the 

crystallization process and the final crystal structure. 

    In the present study, the author focus on such two points: (1) the structure change of PHB 

from molecular level during SEC; (2) the multi molecular interaction change between PHB and 

chloroform and within PHB crystal structure during SEC. Attenuated total reflection Fourier-

transform infrared (ATR-FTIR) spectroscopy was used to investigate the SEC of a 

PHB/chloroform solution. To overcome the conflict between high IR signal-to-noise ratio and high 

evaporation rate of chloroform, a glass tube was used to hold the PHB/chloroform solution (Figure 

1). This can slow down the evaporation rate due to the reduction of exposed area and increase the 

chloroform concentration in vapor on the solution surface. Therefore, the PHB/chloroform 

solution in the glass tube provided enough time for FTIR measurements during SEC. ATR-FTIR 

spectroscopy can be used to investigate the SEC of the PHB/chloroform solution in detail, 

especially in terms of the formation of intermediate structures and hydrogen bonding. Moreover, 

time-resolved in situ grazing incidence wide angle X-ray diffraction (GI-WAXD) was also used to 

support the results of ATR-FTIR.  
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Experimental Section 

Materials and Sample Preparation 

Bacterially synthesized PHB with a number-average molecular weight of Mn = 42000 g/mol 

was purchased from Sigma-Aldrich Chemical Co., Ltd., and was used without further purification. 

A PHB/chloroform solution was prepared by dissolving PHB powder in hot chloroform at 80 °C 

to produce a homogeneous solution with a concentration of 5 wt.%. 

Time-Resolved In Situ ATR-FTIR Measurements 

    Time-resolved in situ ATR-FTIR measurement of the PHB/chloroform solution were carried 

out during SEC using a Thermo Nicolet Magna 6700 Fourier-transform FTIR spectrometer with a 

liquid nitrogen-cooled mercury-cadmium-telluride (MCT) detector. The IR spectra were collected 

using a PIKE MIRacle (WI, USA) single reflection ATR cell with a 45° ZnSe ATR crystal, which 

was connected to a dry air supply for purging and aligned for the measurements. Figure 1-1 shows 

a picture (Figure 1-1(a)) and a scheme (Figure 1-1(b)) of the ATR accessories used. A glass tube 

was used to hold the PHB/chloroform solution in the ATR cell. Each IR spectrum was obtained at 

room temperature (25 °C) by co-adding 32 scans at a spectral resolution of 2 cm–1. There was no 

interval time between the collection of two adjacent spectra. The 0 min point was defined as the 

time when the addition of the PHB/chloroform solution into the glass tube was finished. The 

amount of the added solution was about 200 μL, and it took 160 min to complete the SEC of PHB 

in this experiment. It should be noted that the time required for completing SEC does not have a 

real physical meaning, since it depends on the amount of solution. Actually, SEC is polymer weight 

fraction dependent, but it is difficult to simultaneously measure (by gravimetrically method) that 

change during the spectral measurement, necessitating the use of time instead of polymer weight 

fraction change. 

Time-Resolved In Situ GI-WAXD Measurements 

Time-resolved in situ GI-WAXD measurements were performed using an X-ray 

diffractometer (Nanoviewer, Rigaku Co., Japan). The system consisted of a rotating anode X-ray 

generator (Cu Kα, 40 kV, 30 mA) and a specifically designed confocal X-ray mirror with three slit 

optic collimators and a two-dimensional (2D) detector (Pilatus 100K, Dectris, Switzerland). A Si 
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(100) wafer was used as a substrate. The SEC of PHB in chloroform was investigated using GI-

WAXD by placing a 50 μL drop of the above solution onto the substrate. Each WAXD pattern 

was acquired using a 5s exposure, with no interval time between subsequent data collections. The 

angle of incidence was fixed to be 0.19°, which corresponds to 1.14 times of the critical angle for 

total reflection (θc), indicating that the incident X-way fully illuminate the surface region of the 

sample as well as the deeply-buried interfacial region. The camera distance was chosen to be 131 

mm, allowing the (020) and (110) reflections to be measured simultaneously with sufficient 

angular resolution. 
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Results and Discussion 

Structure Evolution of PHB during SEC Studied by ATR-FTIR Spectroscopy 

Figure 1-2 shows the IR spectra and their second derivatives in the C−H stretching region 

(a), C=O stretching region (b), and C−Cl stretching region (c) of pure PHB and chloroform. The 

corresponding assignments are summarized in Table 1-1. Chloroform shows only two bands, at 

3020 and 742 cm–1 (Figures 1-2(a) and (c)). Attention should be paid to the PHB bands at 1722 

and 3009 cm–1, which are characteristic of the crystalline state (Figures 1-2(a) and (b)). The 

frequency of these bands indicates the existence of C=O…H−C hydrogen bonding in crystalline 

PHB.34,44,45 Bands at 1738 and 1748 cm–1 are due to the C=O stretching modes of different PHB 

conformations in the main chain34,45 or to differently ordered49 amorphous parts of PHB. The bands 

at 2974, 2934, and 2874 cm–1 are assigned to CH3, CH2 asymmetric, and CH symmetric stretching 

modes in the crystalline region, respectively,36 while the band at 2998 cm–1 exists both in the 

crystalline and amorphous regions (Figure 1-2(a)).34 During the crystallization of PHB, these IR 

bands show sequential changes, which can be used to track the molecular structure change of PHB 

during SEC. 

Figures 1-3(a) and (b) show time-dependent variations of IR spectra in the 3050–2800 and 

1770–1680 cm–1 regions during the SEC of PHB, respectively. The yellow and blue regions in 

Figure 1-3(a) stand for the C=O stretching bands of PHB in the amorphous and crystalline regions, 

respectively. Figure 1-4 shows changes in the amorphous (a) and crystalline (b) C=O stretching 

bands of the PHB/chloroform solution during SEC. SEC prior to the appearance of the crystal C=O 

band (1722 cm–1) is discussed first. Based on Figure 1-4(a), the changes in the amorphous PHB 

C=O stretching band (denoted C=O (amorphous)) can be divided into two regions, depending on 

the absorbance and wavenumber changes: time range ∆t1, from 0 to 117 min, and time range ∆t2, 

from 117 to 146 min. In the first time range, the wavenumber and absorbance of C=O (amorphous) 

do not change much. Chloroform is good solvent for PHB, and it is reasonable to consider that 

intermolecular interactions exists between PHB molecular chains and chloroform molecules 

(denoted as inter).50 Jacquel et al.49 studied the solubility of polyhydroxyalkanoates (PHAs) in 

different solvents. They found that among tetrachloromethane, chloroform, dichloromethane, and 
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1,2-dichloroethane, chloroform and dichloromethane exhibited high solubilizing properties for 

PHAs, while tetrachloromethane and 1,2-dichloroethane exhibited lower solubilizing properties. 

The carbon atom in solvent molecules with high PHA solubilizing properties should carry at least 

one chlorine atom and one hydrogen atom. These high solubilizing properties can be explained by 

a polar interaction between the chloride atom and the carbonyl group carbon, together with the 

fact that the electron-deficient hydrogen atom of the halogenated compound is linked to the 

carbonyl group of the polymer [see Figure 4 in ref 50]. 

Figure 1-5(a) and (b) shows IR spectra of the PHB/chloroform solution in the C=O 

(amorphous) stretching region and the chloroform CH3 asymmetric stretching band region during 

∆t1, respectively. The absorbance of C=O (amorphous) increases with time due to chloroform 

evaporation, but the wavenumber remains constant at around 1739 cm–1 (Figures 1-4(a) and 5(a)). 

Similar behavior is also observed for the CH3 asymmetric stretching band region of chloroform. 

These results imply that even though the PHB concentration increases due to solvent evaporation, 

the inter changes little. In the other words, the PHB/chloroform solution is still homogenous, and 

no phase separation takes place. 

Time range ∆t2. This time range shows a spectral variation clearly different from that of ∆t1 

in terms of both absorbance and wavenumber. It can be seen from Figure 1-4(a) that the 

wavenumber shows a red shift from 1739 to 1735 cm-1, while the absorbance keeps increasing. 

These spectral changes can also be seen in the raw spectra (Figure 1-6(a)). It is interesting to note 

that the changes of absorbance and wavenumber for ∆t2 are not linear, and that there is a sudden 

increase in absorbance starting from 127 min. After 132 min, the absorbance curve enters another 

linear change region. Similarly to the absorbance change, the wavenumber also shows a discrete 

red shift between 127 and 132 min. Therefore, ∆t2 can be divided into three ranges: 117–127, 

127–132, and 132 – 146 min. The wavenumber is related to the local chemical environment. For 

the PHB/chloroform solution during SEC, changes of the latter may be very complex due to the 

occurring phase separation. Therefore, to investigate the structural changes of PHB in the 117–146 

min interval, second derivatives of IR spectra are used, as shown in Figure 1-6(a). Two sudden 

change points, 127 and 132 min, are indicated by red and blue broken lines, respectively (Figure 

1-6(a)).  



- 42 - 

 

<1> 117 - 127 min. The second derivative spectrum at 117 min in Figure 1-6(a) features two 

bands at around 1741 and 1727 cm–1. The former band is due to the C=O (amorphous) of PHB, 

while the new band at 1727 cm–1 is present in neither pure PHB nor pure chloroform spectrum. As 

discussed above for ∆t1 , the solution is still homogeneous, with no phase separation and 

nucleation taking place. Thus, no crystal structure is formed. Therefore, this new peak of the 

PHB/chloroform system may reflect inter C=O. In the 117–127 min interval, the 1741 cm–1 band 

becomes stronger and is shifted to lower frequency, while the intensity of the 1727 cm–1 band 

slightly increases. The absorbance increase in this range is due to the increase of PHB 

concentration (Figure 1-5(a)). However, the reason behind the hardly detectable concentration 

change in the ∆t1 range may be due to the sensitivity of the FTIR instrument, since even though 

chloroform undergoes extensive evaporation, the solution is still dilute, and the amount of PHB 

on the surface of the ATR crystal does not change much. Thus, the absorbance of PHB changes 

little. 

<2> 127 - 132 min. In this time range, the absorbance shows an abnormal increase (Figure 

1-4(a)). If the solution is still homogeneous, and only the concentration changes, the rate of 

absorbance increase should be equal to that in the 117–127 min range. Therefore, it is very likely 

that other processes happen in this time domain. It can be seen from Figure 1-6(a) that in the 127–

132 min range a band at around 1731 cm–1 gradually becomes more distinct, while the one at 1727 

cm–1 becomes less distinct. In the spectrum recorded at 132 min, the 1731 cm–1 band shows up 

more clearly. The weaker 1727 cm–1 band indicates that the amount of inter C=O decreases. In 

other words, the interaction between chloroform and PHB starts to gradually disappear. This means 

that the amount of chloroform is not sufficient to completely dissolve PHB. Therefore, PHB starts 

to separate out from chloroform (phase separation). It is reasonable to speculate that the IR 

absorbance of PHB separated out from chloroform is stronger than that of PHB in solution. 

Therefore, the absorbance in Figure 1-4(a) shows a sudden increase from 127 min onwards. 

The most interesting finding in this time domain is that a new band appears at 1731 cm–1. 

Since this band shows up after phase separation occurs, it is not due to the interaction between 

PHB and chloroform. In our previous research, the author also observed the 1731 cm–1 band during 

the isothermal crystallization of PHB from melt.34,48 This band was assigned to an intermediate 

structure between the amorphous and crystalline states of PHB following the concept proposed by 
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Strobl51, since the intensity of the 1731 cm–1 band tends to decrease as the intensity of the 

crystalline band around 1722 cm–1 increases. The results in Figure 1-6(b) show that the intensity 

of the 1731 cm–1 band decreases, while that of the crystalline band at 1722 cm–1 increases, which 

is similar to the results of previous studies.34,48 Therefore, the author assign the 1731 cm–1 band to 

the intermediate structure. However, contrary to the previous results, the 1731 cm–1 band (e.g., in 

the spectrum at 132 min) does not appear simultaneously with the 1722 cm–1 band. 

It should be noted that the so-called crystalline band of PHB at 1722 cm–1 is the crystalline 

C=O stretching band featuring intramolecular interactions (denoted intra) within PHB, and this 

band starts to appear just after secondary crystallization. During the introduction period, only the 

1732 cm–1 band (due to the C=O stretching mode without intra) shows complex change.48 

Therefore, studying the intermediate structure of PHB is very important for understanding the 

crystallization process. However, the isolated intermediate structure is difficult to form during melt 

crystallization of bulk PHB, since the crystal with intra has a lower energy than the intermediate 

state, and the transformation of the latter into the former is very fast and spontaneous. However, 

in the present study, the intermediate state is relativity stable during SEC. This may be due to the 

presence of chloroform solvent, which weakly interacts with PHB to loosen the crystal structure 

of the latter. In other words, the distance between CH3 and C=O groups in the molecular chain of 

PHB may become longer than the van der Waals separation between the O and H atoms (2.72 Å), 

thus excluding the formation of intra. Therefore, only the amorphous and intermediate structures 

appear before intra. 

<3> 132 - 146 min. In this time domain, the increase in absorbance becomes slower than in 

the 127–132 min interval. Since the latter is a transition region between the 117–127 min and 132–

146 min intervals, complex changes (e.g., phase separation) start to happen between 127–132 min. 

Therefore, the absorbance increase is faster between 127–132 min than between 117–127 min and 

132–146 min. A similar trend is also observed for the wavenumber changes. Figure 1-6(a) reveals 

that the 1731 cm–1 band becomes stronger in the 132–146 min interval, and that the 1739 cm–1 

band shows no frequency shift compared to the 117–127 min and 127–132 min intervals. However, 

the intensity of the 1727 cm–1 band continually decreases. This information indicates that the phase 

separation continues with the evaporation of chloroform in the 132–146 min region, but the rate 

of phase separation is lower than that in the 127–132 min interval, since most of the PHB has 
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already separated out between 127–132 min. However, chloroform can still affect the structure of 

PHB, and the crystal structure with intra does not appear. 

The 1722 cm–1 band starts to appear from 146.5 min, as shown in Figure 1-6(b). The 

absorbance and wavenumber changes between 147.5–160 min are shown in Figure 1-4(b) (since 

the absorbance at 146.5 and 147 min are difficult to read from the raw IR spectra, the absorbance 

in Figure 1-4(b) is plotted starting from 147.5 min). The crystallization process is almost complete 

after 153 min, as shown by the black broken dotted line in Figure 1-4(b). Figure 1-4(b) shows that 

the wavenumber is shifted to lower frequency (from 1722 to 1720 cm–1), accompanied by an 

increase of absorbance intensity between 146.5–153 min. This change can also be seen from the 

second derivative spectra in this time domain, as shown in Figure 1-7. The low frequency shift of 

the 1722 cm–1 band is due to the intra becoming stronger during crystallization. This behavior is 

easy to understand, since the formation of intra involves the creation of C=O…H−C hydrogen 

bonds in PHB, where the distance between the crystal lattice planes is becoming shorter. With 

closer packing of the crystal lattice planes, the distance between the C=O and CH3 groups becomes 

shorter, so that intra becomes stronger during 146.5–153 min.  

The IR and corresponding second-derivative spectra of the 3040–2950 cm–1 CH stretching 

region during SEC in the 146.5–153 min interval are shown in Figure 1-8. The three bands at 3008, 

2997, and 2976 cm–1 are assigned to the CH3 asymmetric stretching modes of PHB,34 with their 

intensities increasing concomitantly with that of the 1722 cm–1 band (Figure 1-7). The 3008 cm–1 

band is due to the weak C=O…H−C hydrogen bonds44 and shows a shift to higher frequency from 

3008 to 3010 cm–1, presenting additional evidence of the intra becoming stronger during SEC.  

Structure Evolution of PHB during SEC Studied by Time-Resolved In Situ GI-WAXD 

Time-resolved in situ GI-WAXD was used in the present study to support the results of ATR-

FTIR. Since GI-WAXD measurements cannot employ the glass tube used in the latter 

measurements for lowering the evaporate rate of chloroform, a PHB/chloroform solution was 

directly dropped on a Si substrate, letting the solvent evaporate at room temperature. Subsequently, 

GI-WAXD measurements were carried out. 

Time-resolved evolution of two-dimensional GI-WAXD patterns during SEC of the 

PHB/chloroform solution is shown in Figure 1-9. No diffraction pattern of PHB is observed before 
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50 s, and the diffraction profile of crystalline PHB appears after 55 s (not always clear in the 2D 

pattern in Figure 1-9, see Figure 1-10(a)). The diffraction arcs of the (020) and (110) lattice planes 

of PHB44 become more distinct with the evaporation of chloroform starting from 75 s (as shown 

by the white arrows in Figure 1-9(c)). Since each diffraction arc is continuous, there is no preferred 

orientation within the film. Time-resolved GI-WAXD profiles of the (020) reflection during SEC 

between 0–300 s integrated from 2D diffraction patterns are shown in Figure 1-10(a). It can be 

seen from the latter figure that the diffraction profiles are very broad and unsymmetrical, implying 

the presence of more than one diffraction peak.  

To quantitatively investigate the SEC of PHB, diffraction profiles of the (020) reflection were 

deconvoluted assuming a Gaussian shape of the underlying peaks. Figures 1-10(b) and (c) depict 

two typical curve fitting results of the diffraction profiles at 75 and 100 s, respectively. Four peaks 

are present at 2θ ≈  12.96°, 13.21°, 13.68° and 14.21°. The diffraction arc at 2θ≈  14.21°, 

indicated by the black arrow in Figure 1-10(a), is clearly separated from the (020) diffraction arc, 

as can be seen in Figure 1-10(d). Therefore the above ghost peak does not arise from the (020) 

lattice plane and necessitates future research. It is very interesting that three peaks overlap in the 

(020) diffraction region, with their relative intensity also changing during SEC. From the relative 

intensity change and diffraction angle, it is reasonable to assign the peak at 2θ ≈ 13.68° to the 

crystalline PHB. Meanwhile, the intensities of the other two diffraction peaks at 2θ ≈ 12.96° and 

13.21° decrease with time. Their lattice plane distance is slightly larger than the one of the crystal 

structure, so it is reasonable to assign them to intermediate structures. Very recently, Khasanah et 

al.50 found that ultra-thin PHB films contain stable intermediate structures, and the GI-WAXD 

diffraction profile of the (020) lattice plane is overlapped by two peaks, assigned to the 

intermediate and highly-ordered structures. 

The two kinds of intermediate structure observed in this study may also be due to their 

different order (the reason why only one intermediate structure was reported by Khasanah et al., 

but two are reported in this study may be due to the different confinement in ultrathin and thin 

films); the lower angle one arises from the less ordered intermediate structure (inter, L), whereas 

the higher angle one is due to the highly-ordered intermediate structure (inter, H). One may wonder 

about the controversy between the GI-WAXD and ATR-FTIR observations in this study: the IR 

spectra indicate the presence of only one intermediate state (1731 cm–1 band), whereas the GI-
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WAXD results show two kinds of intermediate states. The reason for this controversy may be 

ascribed to the different principles of IR and WAXD, which are sensitive to changes of the dipole 

moment and the crystal lattice, respectively. Therefore, IR spectra usually reflect different 

conformations of polymers, whereas WAXD is usually used to investigate ordered structures 

having three-dimensional periodicity, such as crystals. Therefore, one possibility is that the two 

intermediate structures possess similar conformations. To find the true reason, it is crucial to 

conduct simultaneous GI-WAXD and ATR-FTIR measurements. 

Time-resolved fractions of less ordered intermediate structure (Xinter, L(t)), highly-ordered 

intermediate structure (Xinter, H (t)), and crystalline structure (XCrys (t)) during SEC between 75–100 

s are shown in Figure 1-11. Even though the diffraction peaks of crystalline PHB appeared after 

55 s, their intensity was very low, and the noise level was high. Therefore, it was impossible to 

successfully carry out curve-fitting of the profiles in the 55–70 s domain. Thus, the plot starts at 

75 s in Figure 1-11. The fraction of each part was calculated based on the curve-fitting result using 

the following equation (using Xinter, L(t) as an example): 

                                  Xinter, L(t) %= 
Ainter, L

Ainter, L+Ainter, H+ACrys

×100                                            (1-1) 

where Ainter, L is the diffraction peak area of inter, L. From Figure 1-11 (at 75 s), XCrys is calculated 

to be around 30%, whereas Xinter, L and Xinter, H are around 25 and 45%, respectively. With the 

progress of SEC, XCrys increases to about 41% and Xinter, L and Xinter, H decrease to about 8% and 

21%, respectively, at 80 s. Starting from 85 s, XCrys, Xinter, L, and Xinter, H are stable around 70, 8, and 

22%, respectively. It should be noted that GI-WAXD could not detect scattering due to the 

amorphous region in this study, so the transition from amorphous to intermediate and then to 

crystalline structure cannot be reflected. These changes very clearly indicate the existence of an 

intermediate structure in the PHB/chloroform solution system, which can transform into crystalline 

structure during SEC. Moreover, based on the behavior observed from 75 to 85 s, it is reasonable 

to speculate that the pure intermediate structure is formed before the onset of crystalline structure 

formation. This also agrees with the ATR- FTIR results of the present study. 
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Conclusion 

Solvent evaporation crystallization of a PHB/chloroform solution was investigated at room 

temperature by time-resolved ATR-FTIR and GI-WAXD. A glass tube was used to hold the 

solution, slowing down the evaporation rate of chloroform during ATR-FTIR measurements. The 

SEC in the ATR-FTIR measurement can be divided into the following 5 steps: <1> only the PHB 

concentration increases with time, and the solution is still homogeneous; <2> the concentration is 

beyond the saturation point of the PHB/chloroform solution. Phase separation starts to occur and 

PHB begins to separate out from the chloroform solvent. The separation of PHB produces a 

mixture of intermediate and amorphous structures; <3> PHB continues to separate out from 

solution as chloroform evaporates, but the rate of phase separation is lower than between step <2>; 

<4> intra starts to appear in the crystal structure of PHB, becoming stronger as crystallization 

progresses; <5> the IR absorbance and wavenumber of the intra C=O stretching band show almost 

no change, indicating that the SEC is complete. 

    Time-resolved GI-WAXD measurements were performed by casting the PHB/chloroform 

solution on a Si substrate. The diffraction arcs of PHB during SEC were very broad. The curve 

fitting procedure revealed that the diffraction peak of the (020) lattice plane contained three 

overlapping peaks, attributable to the less ordered intermediate, highly-ordered intermediate, and 

crystalline structures. During SEC, the intermediate structure was formed first, subsequently 

transforming into the crystalline structure. 
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Figure 1-1: The picture (a) and the schema (b) of the ATR accessory during measurement. 
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Figure 1-2: ATR-FTIR spectra (top panels) and their second derivatives spectra (bottom panels) 

in the C−H stretching region (a), C=O stretching region (b) and C−Cl stretching 

region (c) of pure PHB and chloroform. 
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Figure 1-3: ATR-FTIR spectra in the C=O stretching region (a) and C−H stretching region (b) 

from 0 to 160 min during SEC. 
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Figure 1-4: ATR-FTIR absorbance and wavenumber change of amorphous (a) and crystal (b) C=O 

stretching bands of PHB/chloroform solution with time during SEC. 
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Figure 1-5: ATR-FTIR spectra of the C=O (amorphous) (a) and C-H stretching band in chloroform 

(b) during ∆t1. 
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Figure 1-6: ATR-FTIR spectra (top panels) and their second derivatives spectra (bottom panels) 

in the C=O stretching band region of PHB during 117-146 min (a) and 146-148 min 

(b). 
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Figure 1-7: Second derivative spectra in C=O stretching band region of PHB during 146.5-153 

min. 
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Figure 1-8: ATR-FTIR spectra (top panels) and their second derivatives spectra (bottom panels) 

in the C−H stretching region of PHB/chloroform solution during SEC from 146.5 to 

153 min. 
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Figure 1-9: Time-resolved two-dimensional GI-WAXD patterns of PHB/chloroform solution 

during SEC at 0s (a), 50 s (b), 75 s (c), 150 s (d), 200 s (e) and 300 s (f). 
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Figure 1-11: Percentage fraction of the less ordered intermediate structure (black solid symbols 

line), highly-ordered intermediate structure (purple solid symbols line) and crystal 

(blue solid symbols line) as a function of time. 
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Chapter 2 

 

 

 

Reinvestigation of the β-to-α Crystal Phase Transition of 

Poly(butylene adipate) by the Time-Resolved X-ray Scattering and 

FTIR Spectral Measurements in the Temperature-Jump Process 
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ABSTRACT 

Poly(butylene adipate) (PBA) exhibits the two types of crystal modification, the α and β forms, 

depending on the sample preparation conditions. They show the different degree of 

biodegradability. A majority of papers published so far reported that the phase transition from the 

β-form to the α-form occurs as the direct solid-to-solid process when the sample is heated up to 

the high temperature of around 55 °C. The author have reinvestigated this β-to-α phase transition 

by performing the temperature-jump time-resolved measurement of the FTIR, WAXD, and SAXS 

measurements. This transition has been found to be not a solid-to-solid phase transition but the 

combined phenomena of the melting of the β-phase followed by the recrystallization to the high-

temperature α-phase. 
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Introduction 

Recently, environmental issues become severe all around the world. Especially, so-called 

“plastic pollution”, which is caused by such synthetic polymers as polyethylene (PE), polystyrene 

(PS), poly(vinyl chloride) (PVC), etc., has given serious problems since they cannot be degraded 

naturally. The usage of a biodegradable polymer may be a good idea to reduce the above issues. 

After the concept of synthetic biodegradable polymers was first introduced in 1980s,1 they have 

attracted more attention. The most important property for biodegradable polymers is their 

biodegradability, the degree of which is dependent on not only the chemical structure but also the 

crystal modification of the polymer.2-4 Among the family of biodegradable polymers, 

poly(butylene adipate) (PBA, –[–O(CH2)4OOC(CH2)4CO–]n–) and its copolymers have received 

substantial interest in the past two decades or so.5-11 

PBA has been reported to crystallize into two kinds of crystal forms designated as α-form and 

β-form.12-17 Gan et al.18 demonstrated that a film of the α-crystal form has a faster degradation rate 

than that of the β-crystal form. The mixture of the α and β crystal forms showed the lowest 

degradation rate. In this way, the difference of the crystal structure (and the related morphology) 

between the α and β forms is very important for the control of the biodegradability. The crystal 

structure of PBA was reported by several research groups.12-17,19 The α-form is characterized by 

its chain conformation of the planar zigzag type, and these chains are packed in the monoclinic 

unit cell with the dimensions of a = 6.73 Å, b = 7.94 Å, c (fiber period) = 14.20 Å and β= 45.5°, 

while the β-form of the planar zigzag chain conformation takes the orthorhombic unit cell with the 

dimensions of a = 5.06 Å, b = 7.35 Å and c (fiber period) = 14.67 Å. 

The isothermal crystallization behavior of PBA was first studied by Gan et al.20 They found 

that the pure β-form is formed below 29 °C, while the pure α-form is formed above 31 °C, and 

these two crystals are formed simultaneously at 30±1 °C. It has been found also that the β-form 

crystal transforms spontaneously into the a-form by storing at room temperature.21 The β-form 

was considered to be the kinetically preferable crystal, while the a-form is the thermodynamically 

more stable.19 

The thermal treatment of the crystal modification of PBA was studied by focusing on the β-

to-α phase transition behavior.19,20,22-26 From the differential scanning calorimeter (DSC) and wide-
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angle X-ray diffraction (WAXD) results, Gan et al.19 suggested that this process is a solid-to-solid 

phase transition since it can occur even when the annealing temperature is lower than the Tm of the 

original β-form crystal. On the contrary, on the basis of the temperature-dependent Fourier-

transform infrared (FTIR) spectral measurement, Li et al.26 found out that the β-form crystals still 

remain after annealing at 45 °C for a long time. They suggested that the heat-treated β-form has 

the higher stability and that it may be from the recrystallization of the original β-form crystals. 

From the significant drop of the crystallinity during the phase transition, they suggested also that 

the β-to-α phase transition is a melt-recrystallization process. 

In general, the phase transition of the crystalline polymers usually occurs over a relatively 

wide temperature region.27 By the conventional temperature-dependent X-ray or vibrational 

spectroscopic measurements, it is sometimes difficult to judge whether the phase transition occurs 

by the direct solid-to-solid mechanism or by the process of the melt of the low-temperature phase 

followed by the recrystallization to the high-temperature phase. The crystallite size in the 

semicrystalline polymer distributes over a wide range and so the Tm itself distributes 

correspondingly. The smaller crystallites are melted at a lower temperature, and they are 

crystallized again on the surface of the larger crystallites. If the thermodynamically more-stable 

crystal phase can exist there, the crystallization of the once-melted region may occur with the 

appearance of the thermodynamically stable phase, which is named often the melt-recrystallization. 

Because of such a complicated structural situation of crystalline polymer, it is quite difficult 

to distinguish the above-mentioned two transition processes (the solid-to-solid transition or the 

melt-recrystallization) on the basis of the conventional and easier temperature-dependent 

measurement of the X-ray diffraction and/or vibrational spectral data. Even the DSC thermogram 

might become ambiguous to choose the correct transition mechanism definitely because the 

endothermic and exothermic peaks are broad and overlapped together. 

The key point of tracing the concretely occurring structural change during the phase transition 

is to clarify the sequentially occurring phenomena at the different timings. Ratri and Tashiro27 

performed the temperature-jump experiment for this purpose. The principle is as follows. The 

temperature is changed quite quickly from a low temperature to a preset high temperature, and 

then it is kept at the latter value constantly. During this process the IR spectra or X-ray diffraction 

data are measured at as short and constant time interval as possible. If the time resolution is high 
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enough to separate the various sequentially occurring phenomena, we can know the structural 

changes of the individual stages. They performed this type of experiment for the high-temperature 

phase transitions of poly(vinylidene fluoride) [PVDF] form I and trans-1,4-polyisoprene.27 For 

example, in the case of PVDF form I, the form I crystals disappeared at first and the amorphous 

phase started to appear after the temperature jump to near the Tm, and then the form III (or V) 

crystal appeared at a later timing along with the decrease of the amorphous phase. This experiment 

revealed clearly the form I transforms to the melt state at first then followed by the recrystallization 

into the form III at a temperature immediately below the Tm of form III. This time-dependent 

temperature-jump experiment gave an answer for the long-time unsolved problem whether the 

polar-to-nonpolar phase transition (or ferroelectric phase transition) of the PVDF crystal form I 

can be observed in the temperature region below the Tm or not.28 

In the present study, therefore, on the basis of the temperature-jump experiments of the time-

resolved FTIR and X-ray scattering measurements, the author have been challenged to reveal the 

above-mentioned problem about the phase transition behavior of PBA. As will be described below, 

the author have found that the β-to-α phase transition is not a simple solid-to-solid process, but the 

β-form is melted once to the amorphous phase and then recrystallization occurs into the α-form. 

The thus-obtained α-phase was found to be different from the α-form obtained by slow cooling 

from the melt to the room temperature in such a point of crystalline regularity and crystallite size. 

In other words, the α-phase obtained from the β-phase at a high temperature may be named the 

“high-temperature α-phase”. 
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Experimental Section 

Materials 

PBA with MW = 12000 g/mol was purchased from Polysciences, Inc., and was used without 

further purification. A PBA solution with a concentration of 1 wt % was prepared by dissolving 

PBA chips in hot chloroform to make a homogeneous solution. For FTIR and simultaneous 

WAXD/DSC measurements, the samples were prepared by casting from the solutions on a KBr 

single crystal plate and an Al substrate at room temperature, respectively. After fully dried, the 

sample was directly used for FTIR or simultaneous WAXD/DSC measurements. This is to ensure 

that no phase transition occurs before the measurements, since as mentioned in the Introduction, 

the phase transition of PBA can occur even by storing it at room temperature. The author also 

compared the FTIR spectra for the samples with and without keeping in a vacuum oven; both of 

them did not show any chloroform absorbance. The sample thus prepared was designated hereafter 

as “the as-cast” film. 

For the time-dependent simultaneous WAXD/small-angle X-ray scattering (SAXS) 

measurements, the sample was prepared by casting a PBA/chloroform solution on a microscope 

glass slide at room temperature first, and then the film was peeled off after it was completely dried. 

The film was cut to several pieces and set into a sample holder. A polyimide film was used to seal 

on the two sides of the sample holder. 

For the WAXD/SAXS experiments at room temperature, the original β-form crystal sample 

was used the as-cast film directly; the original α-form crystal sample was prepared by melting 

PBA chips on a hot stage at 80 °C for 5 min to erase heat history first22 and then quenched into a 

water bath at 35 °C to induce the isothermal crystallization. 

FTIR Measurements  

Temperature-dependent FTIR spectra were measured using a Thermo Nicolet 6700 FTIR 

spectrometer equipped with a liquid-nitrogen-cooled mercury cadmium telluride (MCT) detector. 

The as-cast film was set into a temperature controller CHINO (model SU) and heated from room 

temperature to 70 °C at 1 °C/min. During heating, FTIR spectra were measured at every one degree 

at a 2 cm-1 spectral resolution, and a total of 64 scans were accumulated for each IR spectral 
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measurement. 

For time-dependent FTIR measurements, a Varian FTS 7000 rapid-scanning FTIR 

spectrometer equipped with a liquid-nitrogen-cooled MCT detector was used. The as-cast film was 

set into a homemade optical cell for the temperature-jump measurement.27,29 The temperature was 

changed quickly from room temperature to 55 °C at the heating rate 180 °C/min and then kept 

constantly at 55 °C for a long time, during which the FTIR spectra were measured at every 2 s 

interval with resolution of 2 cm-1. 

The decomposition of the overlapped FTIR spectral bands was put forward using a GRAMS 

software (Thermo Fisher Scientific, Inc.). 

Simultaneous WAXD/DSC Measurements 

A Rigaku (Tokyo, Japan) X-ray diffractometer RINT-TTR III was used for the simultaneous 

measurement of WAXD and DSC in the heating–cooling–reheating processes from the ambient 

temperature. The sample temperature was changed linearly by controlling the heater and liquid 

nitrogen gas. The incident X-ray beam used was Cu Kα radiation (λ = 1.5418 Å) from the X-ray 

generator (50 kV and 300 mA). The X-ray diffraction patterns were measured in the 2θ 

(diffraction/scattering angle) range of 17°–26°, and scan speed was 15°/min. The thermal program 

employed is depicted in Figure A1-1 of the Appendix 1. The diffraction profiles were obtained at 

every 1 °C. 

Time-Resolved Simultaneous WAXD/SAXS Measurements.  

Time-resolved simultaneous WAXD/SAXS measurements were performed using a Rigaku 

Nanoviewer X-ray diffractometer. A two-dimensional (2D) detector (Pilatus 300K, Dectris, 

Switzerland) was used to detect the WAXD patterns, and the SAXS patterns were recorded using 

a two-dimensional (2D) detector (Pilatus 100K, Dectris, Switzerland) at 684.1 mm distance from 

the sample. The system consisted of a rotating anode X-ray generator (Cu Kα, 40 kV, 20 mA) and 

a specially designed confocal X-ray mirror with three slit optic collimators. 

The measurements were performed with the temperature-jump cell used for the time-

dependent FTIR measurements under the same conditions. The WAXD/SAXS patterns were 

recorded at every 3 min. 
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Results and Discussion 

Temperature-Dependent IR Spectral Measurement 

Temperature-dependent FTIR spectra of the as-cast PBA film in the 1000–700 cm−1 region 

are shown in Figure 2-1. The characteristic bands of the α and β forms as well as the amorphous 

phase are listed in Table 2-1. The IR spectrum at 30 °C is that of the pure β-form crystal. The 

typical β-form bands are detected at 930, 910, and 735 cm-1. When the temperature increased to 

around 50 °C, the β-form gradually transformed into the α-form as known from the decrease of 

the intensity of the 930 cm-1 β-form band and the shift of the bands at 910 and 735 cm-1 to 909 and 

734 cm-1, which are intrinsic to the α-form bands. By heating to a higher temperature, the α-form 

bands disappeared, and the IR spectra changed to those of the melt. The spectral data tell us that 

the phase transition is observed to take place at around 55 °C during the heating process, consistent 

with the previous studies.23,24 

    The clearer results were obtained also from the simultaneous WAXD/DSC measurements 

during the heating process, as shown in Figure 2-2. With temperature increase, the diffraction 

peaks β(110) and β(020) at 2θ = 21.4° and 24.5°, respectively, shifted toward to the lower angle 

due to the thermal expansion of the unit cell, and then disappeared totally at around 55 °C, where 

the diffraction peaks of the α-form started to appear at 2θ = 21.7° (α(110)) and 22.3° (α(110)), and 

coexisted with the β-form peaks and then stayed alone at higher temperature. These α-form peaks 

disappeared above 60 °C due to the melting. 

    In this way, both of the temperature-dependent IR spectra and WAXD profiles collected in the 

heating process indicated that the β-to-α phase transition took place below the Tm of the α-phase. 

As shown in Figure 2-2, the DSC thermogram revealed the existence of the two endothermic peaks. 

It is difficult to interpret this DSC data on the basis of the simple β-to-α phase transition scheme. 

Such a transition scheme as the melt of the original β-phase followed by the recrystallization into 

the α-phase may be possible. If our interpretation is reasonable, we should detect the evolution of 

the amorphous signals in the heating process. However, as mentioned in the Introduction, this 

prediction is difficult to check by the normal continuous heating experiments carried out in Figures 

2-1 and 2-2. 
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Temperature-Jump Measurements 

Therefore, we need to perform the so-called temperature-jump measurement for this purpose. 

Figure 2-3 shows the IR spectra of PBA during the temperature-jump experiment. The temperature 

was jumped from 26.5 to 55 °C at a heating rate of 180 °C/min and kept at 55 °C constantly. The 

IR bands of the β-form at 930, 910, and 735 cm-1 almost disappeared in the heating process as seen 

in Figures 2-3(a) and (c). However, the important point is that the amorphous bands at 745 and 

760 cm-1 increased in intensity in parallel to the disappearance of the β-form bands, and no IR 

bands of the α-form appeared even after the temperature reached at 55 °C. The α-form bands at 

909 and 734 cm-1 were found to appear quite slowly after long time of the temperature jump, as 

shown in Figures 2-3(b) and (d). To make this process more clearly, the integrated intensity was 

estimated for the IR bands of the β, α, and amorphous phases and plotted against time as shown in 

Figure 2-4 The integrated absorbance of amorphous (745 and 760 cm-1), β-form (735 cm-1) and α-

form (734 cm-1) bands was obtained by decomposition of the IR spectra in the region of 770–720 

cm-1. Immediately after the temperature was jumped to 55 °C, the β-form bands at 930 and 735 

cm-1 disappeared at first and the integrated intensity for the amorphous phase bands increased 

conspicuously. The α-form bands appeared about 40 min later and the amorphous bands decreased 

in intensity again. 

    The similar temperature-jump experiment was performed for the simultaneous time-resolved 

WAXD/SAXS measurement. Figures 2-5(a) and (b) show the time dependence of the WAXD 

profiles measured in the temperature-jump procedure and WAXD profiles of the original α- and β-

form measured at room temperature, respectively. Although the profile itself is quite noisy because 

the thin film was used for the measurement so that the temperature changed quickly and 

homogeneously over through the sample cross section. In Figure 2-5(a), the starting sample was 

of the β-phase. After the temperature jump, the β-form diffraction peaks disappeared immediately, 

and the broad amorphous halo peak was detected instead. The α-phase peaks started to appear at 

around 40 min after the jump. 

From both of the experimental data of IR and X-ray diffraction, we can conclude that the 

apparently solid-to-solid transition from the β-to-α phase occurs actually through such a 

mechanism as the melt of the β-phase followed by the recrystallization to the α-phase. 
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    The higher-order structural change during the phase transition process was deduced from the 

SAXS data analysis, which was obtained at the same time as the WAXD data during the 

temperature-jump experiment. As can be seen in Figure 2-5(c), the original β-form crystal showed 

the broad peak at around q = 0.049 Å-1, where q is the scattering vector and defined as q = 

(4π/λ)sinθ. It should be noticed that this broad peak disappeared totally immediately after the 

temperature jump, and the new peak appeared at around q = 0.033 Å-1. This new peak increased 

the intensity with the passage of time. By referring to the above-mentioned WAXD profiles in 

Figure 2-5(a), this new peak can be assigned to that of the α-form crystal. However, when 

compared with the SAXS data of the normally prepared pure α and β forms measured at room 

temperature (Figure 2-5(d)), the SAXS peak position of the α-phase obtained at 55 °C by the 

temperature jump from the β-phase is different from that of the original α-phase prepared by melt-

quenching method (q = 0. 055 Å-1). 

    The illustration of the stacked lamellar structure is shown in Figure 2-6. The structure 

parameters were estimated by calculating the correlation function K(z) from the SAXS data, where 

K(z) is defined as30 

              𝐾(𝑧) = 〈[𝑐𝑒(𝑧′) − 〈𝑐𝑒〉][〈𝑐𝑒(𝑧 + 𝑧′) − 〈𝑐𝑒〉〉]〉 ∝ 2 ∫ 𝐼(𝑞)
∞

0

𝑞2𝑐𝑜𝑠(𝑞𝑧)𝑑𝑞            (2-1) 

The ce(z) and 〈𝑐𝑒〉 are the electron density ce at the position z along the lamellar stacking direction 

and the averaged electron density, respectively. The 〈 〉 is the statistic ensemble average. The 

illustration of the stacked lamellar structure and the electron density distribution along the stack 

normal are shown in Figures 2-6(a) and (b), respectively. The evolution of the long period (LP) 

and the averaged lamellar thickness 〈𝑑〉 of the stacked lamellar structure are obtained from the 

various particular positions in the correlation function curves as shown in Figure 2-6(c). Since the 

crystallinity of the sample used here was less than 50%, the correlation function gave the thickness 

of the crystalline lamellae, not that of the amorphous region. The change of the scattering invariant 

Q during the β-to-α phase transition was calculated as follows: 

                                                       Q = ∫ 𝐼(𝑞)
∞

0

𝑞2𝑑𝑞                                                                 (2-2) 

The Q value is related to the degree of crystallinity Xc as Q  Xc(1 – Xc), where the Xc is the 1D 

crystallinity defined as Xc = <d>/LP. 
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Figures 2-7(a–c) show the time evolution of Q, LP and 〈𝑑〉. The Q is the Fourier transform 

of the scattering intensity of every particle within the sample; the evolution of Q is only related to 

the fluctuation of the electron density. Which means during the phase transition of PBA, the 

evolution of Q is only related to the relative amount of the amorphous and crystalline component, 

which in another word, crystallinity. The Q of the β-phase became almost 0 immediately after the 

temperature jump. After 32 min, the Q of the α-phase increased gradually, which corresponds well 

to the result obtained from the time-dependent IR and WAXD analyses. The averaged lamellar 

thickness 〈𝑑〉 and long period LP of the recrystallized α-phase are larger than those of the original 

β-phase. The <d> and LP of the α-phase did not change remarkably with the passage of time once 

after the α-phase appeared from the melt. The 1D crystallinity Xc is almost the same before and 

after the transition process between the β and α phases, as shown in Figure 2-7(d). From the 

increment of Q value and the constancy of the 1D crystallinity Xc during the phase transition 

process, we may be able to assume that the number of the α-form lamellae increased gradually 

once when the α-form lamellae started to appear. But such a geometrical relation between <d> and 

LP as Xc (= <d>/LP) was kept almost unchanged. This is not inconsistent with the increasing 

content of the α-form as detected in Figures 2-4 and 2-5. 

It should be noted that the β-to-α phase transition mechanism via the molten state is not 

affected by the difference in the annealing temperature of the starting sample. In fact, we 

performed the similar temperature-jump experiment at 50 °C also, which was just below the Tm of 

the as-cast β-phase. The result is shown in Figure A1-2 in the Appendix 1. The melt-

recrystallization phase transition phenomenon was detected as similarly to the above-mentioned 

case at 55 °C. 

Normal α-Phase and High-Temperature α-Phase 

The SAXS data told us that the α-phase obtained through the melt-recrystallization at a high 

temperature shows the different higher-order structure from that of the α-form prepared by 

quenching the melt (Figure 2-7(c)) and (d)). The lamellar thickness and long period of the stacked 

lamellae are larger for the recrystallized high-temperature α-form crystals than those of the melt-

quenched α-form crystals. As seen in Figure 2-8, the half-widths of the WAXD (110) and (020) 

diffraction peaks were found to be appreciably larger for the high-temperature α-form in the 
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temperature region of 50–60 °C (the WAXD profiles during the second heating process are shown 

in Figure A1-3 in Appendix 1). Therefore, we may have such an imagination for the recrystallized 

α-form existing at a high temperature that this crystal is more or less disordered in the chain 

packing mode although the thickness of the lamellae is larger. We may call this high-temperature 

α-phase the structurally disordered phase. 
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Conclusion 

In the present study, the author have solved the long-term controversial problem about the β-

to-α phase transition mechanism of PBA by using the techniques of the time-resolved 

measurements of the FTIR spectra as well as the simultaneous time-resolved WAXD/SAXS 

measurements in the quick and stable temperature-jumping measurements. From both the FITR 

and WAXD results, the direct phase transition of the β-phase to the α-phase does not occur but the 

transition occurs at the two stages; the melting of the β-phase into the amorphous phase and the 

subsequently occurred recrystallization of the amorphous phase into the α-form. The α-phase 

obtained by the melt-recrystallization of the original β-phase is different in the lamellar stacking 

structure and also in the degree of orderliness in the crystal lattice as judged from the SAXS and 

WAXD data analysis. 

The PBA is one of the most representative biodegradable polymers. The degree of 

biodegradability depends on the two types of the crystal modification: the α and β phases. The 

control of the morphology or higher-order structure is affected sensitively by the generation of 

these crystal modifications. The basic knowledge about the crystalline phase transition behavior 

of the two types of crystal forms of PBA, which is revealed in the present research, will be useful 

for the development of PBA as a biodegradable environmentally friendly polymer material. 
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Table 2-1. Assignments for IR Absorbance Bands of PBA in the Region of 1000–700 cm-1 

assignments wavenumber (cm-1) 

β-form crystal 930 

 911 

 735 

α-form crystal 909 

 734 

amorphous 760 

 745 
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Figure 2-1. Temperature-dependent FTIR spectra of PBA as-cast film in the region 

of 1000–700 cm-1 over a temperature range of 25–70 °C at a heating rate 

of 1 °C/min. 
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Figure 2-2. Simultaneous measurements of (a) DSC curve and (b) WAXD profiles of 

the as-cast film during first heating process from 25 to 70 °C at a heating 

rate of 1 °C/min. 
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Figure 2-3. Temperature-jump time-dependent FTIR spectra for the as-

cast PBA film at 55 °C in the region of (a) and (b) 980–850 

cm-1 and (c) and (d) 790–700 cm-1. 
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Figure 2-4. Temperature-jump time-dependent FTIR absorbance for the as-

cast PBA film at 55 °C estimated for the IR bands of the β, α, 

and amorphous phases. The temperature of the sample was 

raised steeply to 55 °C at around 1 min after the start of the IR 

measurement and kept there at the fluctuation of 0.5 °C. The 

increasing rate of the temperature was 180 °C/min. The IR band 

of the β-form decreased quickly as the temperature was 

increased rapidly and became quite weak when the temperature 

reached at 55 °C. On the other hand, the amorphous band 

intensity increased in parallel and was kept almost constant for 

a while. About 40 min later after the temperature jump, the 

intensity of the amorphous band started decreasing and the α-

form IR band started to appear and increased. 
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Figure 2-5. Temperature-jump time-dependent (a) WAXD and (b) SAXS 

profiles for PBA as-cast film at 55 °C; (c) WAXD and (d) SAXS 

profiles for PBA with original β- or α-form crystals. 
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Figure 2-6. (a) Illustration of the stacked lamellae structure. (b) A model of electron density 

distribution along the stack normal. (c) The time dependence of the correlation 

functions calculated for the as-cast PBA film at 55 °C. 
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Figure 2-7. Temperature-jump time-dependent evolution of (a) scattering invariant Q, 

(b) average lamellar thickness 〈𝑑〉 , (c) long period (LP), and (d) the 

apparent 1-dimensional (1D) crystallinity. 
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Figure 2-8. Half-width evolution of (a) β(110), β(020), α(110), and α(020) during first 

heating process and (b) α(110) and α(020) in the second heating process. 
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Appendix 1 

 

 

 

 

 

Figure A1-1. Thermal program used for the DSC-WAXD simultaneous measurements of the as-

cast film. 
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Figure A1-2. Temperature-jump time-dependent FTIR spectra for the as-cast PBA film at 50 °C 

in the region of 1000–680 cm-1. 
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Figure A1-3. Simultaneous measurements of (a) DSC curve and (b) WAXD profiles for the as-

cast film during second heating process from 40 to 70 °C at a heating rate of 

1 °C/min. 
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Distribution of Polymorphic Crystals in the Ring-Banded 

Spherulites of Poly(butylene adipate) Studied Using High-

Resolution Raman Imaging 

  



- 94 - 

 

ABSTRACT 

Poly(butylene adipate) (PBA), an important biodegradable polymer, can crystallize into a 

particular type of ring-banded spherulite, in each of which two crystal forms, α and β, coexist. 

However, the distribution of the polymorphic crystals and the molecule chain orientation within 

the ring-banded PBA spherulites are still unclear. To determine these, Raman spectroscopy and 

high spatial resolution Raman imaging were used. Characteristic Raman peaks were identified for 

both the α and β forms and for amorphous structure. Using these peaks, the author investigated the 

polymorphic crystal distribution and molecular chain orientation within the spherulites through 

Raman imaging. The two crystal forms are found to be unevenly distributed in the center, ring-

banded and out-layer ringless region. The results of this study also suggested that the two crystal 

forms can nucleate and grow in the same temperature range (31–33 °C), but the relative content 

of the α-form in the ring-banded region becomes higher with the higher crystallization temperature. 

Polarized Raman images for the ring-banded spherulite shows both bow-tie and ring-banded 

patterns, which means that the molecular chains in the ring-banded region orient not only about 

the radial direction of the spherulites but also about the substrate plane. The present study shows 

that Raman imaging is a very powerful technique in polymer crystal structure research. 
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Introduction 

Spherulites have spherically symmetric crystal colonies, and spherulitic morphologies are the 

most common crystal morphologies.1-4 For polymeric materials, spherulites are usually formed 

when they are crystallized from viscous melts5-9 or deposited from a solution.10,11 Some polymers 

can form different spherulite patterns under different crystallization conditions.12-17 In the case of 

poly(butylene adipate) (PBA, –[–O(CH2)4OOC(CH2)4CO–]n–; see Figure A2-1 in the Appendix 

2), it can form ring-banded or ringless spherulites when isothermally crystallized at different 

temperatures from the melt.17-19 

PBA is a representative biodegradable synthetic linear aliphatic polyester that has good tensile 

properties and potential applications as an ecofriendly material.20-22 Two polymorphs of PBA can 

develop depending on the crystallization conditions;23-27 the α-form is characterized by an axially 

compressed planar zigzag conformation and is packed as a monoclinic unit cell, while the β-form 

with a planar zigzag conformation, is packed as an orthorhombic unit cell. Isothermal 

crystallization behavior of PBA from the melt was first reported by Gan et al.24 They found out 

that the pure β-form is formed below 29 °C, while the pure α form is formed above 31 °C, and that 

both crystal structures form simultaneously (a mixture of α- and β-form crystals) at 30±1 °C. What 

is more interesting is that the formation of the ring-banded PBA spherulites and the formation of 

mixed crystals occur in similar temperature ranges,19 which means that the α- and β-form crystals 

will have some distributions within the ring-banded spherulites system. However, pure α- or β-

form crystals can only form ringless pattern. Therefore, the following questions arise: how are 

these two crystal forms distributed and how do PBA molecular chains orient within the spherulite 

system? Note that the microstructures of PBA play a significant role in its properties, such as its 

mechanical properties and biodegradability. Therefore, it is essential to answer these questions. 

The relationship between the ring-banded pattern, polymorphic crystals, and lamellar 

orientation of PBA has been studied extensively.17-19,28-30 Evidence has shown that the mixture of 

the two crystal forms is not the fundamental reason for the formation of the ring-banded PBA 

spherulites.17,28 However, since the ring-banded PBA spherulite consists of two types of crystal 

forms, it is reasonable to speculate that the distribution and relative content of the α- and β-form 

crystals will affect the mechanical properties and biodegradability of PBA. Thus, investigating the 
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distribution of the two types of crystal forms is of utmost importance. Moreover, PBA is also a 

unique model for studying the ring-banded spherulite system with polymorphic crystals. To our 

knowledge, only one study has suggested that the α- and β-form crystals were alternately 

distributed in the ring-banded region.19 However, they did not provide any direct evidence. 

Periodic ring-banded spherulites have been attracting considerable attention for several 

decades owing to their unique morphological features,1,2,31 and a vast majority of spherulite studies 

rely on polarized optical microscopy (POM). Interpretations of the Maltese cross, the concentric 

rings, and light-scattering patterns can provide important information about the structures of 

spherulites;2 however, POM cannot give detailed information on the internal structures. 

Vibrational spectroscopy and X-ray crystallography can yield more information about crystal 

structures, such as the conformation and the orientation of the chain polymer molecules and crystal 

system. In fact, there have already been many studies on PBA crystal structures in which these 

methods were used.23-27,32-36 However, the conventional vibrational spectroscopy and X-ray 

analysis can only give average information about the sample as a whole, which does not provide 

enough spatial information for a deep exploration of the ring-banded spherulites. 

    If we could directly “see” the molecular orientation and the distribution of the polymorphic 

crystals, a better understanding of the ring-banded PBA spherulite will be achieved. Chemical 

imaging techniques, which combine macro morphology with micro molecular information should 

be a powerful tool for this purpose. In recent years, chemical imaging techniques have been utilized 

more in research about polymer science and engineering,37-50 and Fourier transform infrared 

spectroscopic (FTIR) imaging is used in the majority of these studies since it can be easily proceed. 

However, FTIR imaging is not always suitable for studies on ring-banded spherulites. This is 

because the spatial resolution of FTIR imaging is usually around 5.5 μm,42,44,47,48,51 but the band 

spacing of ring-banded spherulites for some polymers is very small, such as that of PBA, which is 

around 4–5 μm.52 Therefore, FTIR imaging does not always have sufficient resolution to allow 

concave and convex structures within the ring-banded spherulites to be distinguished from each 

other. In addition, in the FTIR spectrum of PBA, only the β-form crystal has a clearly characteristic 

peak (at around 930 cm−1),33,35 while the α-form crystal does not, so FTIR imaging cannot clearly 

reveal the distribution of the polymorphic crystals of PBA.  

Compared to FTIR imaging, Raman imaging can give much better spatial resolution (0.3 μm 
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in present research), and it can also provide marked information about the molecular structure.52-

56 Unger et al.55 investigated the phase-separation behavior in a poly(3-hydroxybutyrate) (PHB) 

and poly(L-lactic acid) (PLLA) blend by Raman and FTIR imaging. They found that the size of the 

PHB-rich domains from Raman imaging was only about 1–20 μm at 25 °C, while a result of 50 

μm was obtained from FTIR imaging. The fact that Raman imaging has better spatial resolution 

than FTIR imaging was responsible for the differences in these results. Likewise, Martin et al.56 

successfully distinguished the spherulites with α- or β-form crystals of isotactic polypropylene 

(iPP) within one iPP slice by Raman imaging with spatial resolution of about 1 μm. 

Thus, Raman imaging is very suitable for investigating PBA spherulites. However, to the best 

of our knowledge, no detailed Raman studies on PBA, particularly, the polymorphic crystals of 

PBA, have been reported thus far. Therefore, in present study, Raman spectroscopy and Raman 

imaging were used to explore the PBA spherulites for the first time. The following interesting 

points were achieved from the present study. (1) Both α- and β-form crystals, as well as the 

amorphous structure, have their own characteristic Raman peaks. (2) The α- and β-form crystals 

of PBA are unevenly distributed within the center, ring-banded and out-layer ringless region; in 

the center and ring-banded region, the two crystal forms are coexisted, while the α-form crystals 

are dominated in the out-layer ringless region. The two crystal forms grow together when the ring-

banded spherulites are formed, but their relative content shows temperature dependence in the 

center and ring-banded region. (3) The molecular chains in the crystalline domains within the 

spherulites are not only all oriented perpendicular to the radial direction of the spherulites, but they 

display periodical orientation changes with regard to the substrate plane as well. This corresponds 

to the results from previous studies that a ring-banded PBA spherulite arises from the twisting of 

the lamellar structure along the radial growth direction of the spherulite. 
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Experimental Section 

Materials and Sample Preparation 

PBA (molecular weight (MW) = 12000 g/mol) was purchased from Polysciences, Inc. and 

used without further purification. A homogeneous solution with a concentration of 1 wt % was 

prepared by dissolving PBA in hot chloroform. PBA films were prepared by casting the solution 

on microscope glass slides for Raman imaging measurements and POM observation or on Si (100) 

wafers for wide-angle X-ray diffraction (WAXD) at room temperature (RT). After most of the 

solvent had evaporated, the glass slides and Si wafers were covered with cover glasses, and then 

melted on a hot stage at 80 °C for 5 min to erase any memory effects.57 The melted sample was 

then immersed promptly and isothermally crystallized in a water bath that was at the desired 

temperature. After spherulite growth, the samples were quickly cooled in ice water and stored in 

a refrigerator until Raman imaging, POM, and WAXD measurements were performed. All the 

above measurements were carried out after gently removed the cover glass on the top-surface of 

the PBA film. The thickness of the PBA films was ~10 μm. The PBA spherulites that were grown 

at different temperatures are designated hereafter as “PBAX,” where X represents the isothermal 

crystallization temperature; for example, PBA28 indicates PBA spherulites grown in a water bath 

at 28 °C. 

For temperature-dependent Raman measurements, a PBA film was prepared by casting the 

PBA chloroform solution on a cover glass. 

POM, WAXD, and Raman Measurements 

The PBA spherulites that were crystallized at different temperatures were observed at room 

temperature using an optical microscope (Olympus BX50, Japan) equipped with a crossed 

polarizer and a 530 nm sensitive tint (full-wave) plate (U-TP530, Olympus, Japan) as well as a 

digital camera system (DP21, Olympus, Japan) to take polarized optical micrographs. WAXD 

profiles were recorded at room temperature on a Rigaku SmartLab with Cu Kα1 radiation (λ = 

1.5418 Å); the scan rate was 3°/min and the step size was 0.05°. 

Temperature-dependent Raman measurements were performed at different temperatures 

using a Horiba LabRAM HR-800 Raman spectrophotometer with holographic grating of 1800 

http://www.baidu.com/link?url=mbnORqM91yEyeKGgOue5nbdFq7fLPTt65AGYHTUh_FUjKu7vjGrTxzzljv5Jd7YfWZpvzk8omEmWQtoTj3WQli6IwRhMnvTRandLtlbZYaO
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grooves/mm and equipped with a 514.5 nm Ar ion laser, a charge-coupled device (CCD) detector, 

and a 100×/0.9 numerical aperture (NA) objective lens. Raman spectra were obtained with an 

exposure time of 10 s and an effective laser power of 5 mW. The spectral resolution was 0.5 cm−1. 

The temperature was controlled using an Oxford MercuryiTC system, and the sample was placed 

inside an optical microscopy variable-temperature cryostat (Microstat He2, Oxford). The Raman 

spectrum of pure β-form PBA crystals was obtained by measuring the as-cast sample directly at 

room temperature, and then the sample was heated to 80 °C at 1 °C/min so that the Raman spectrum 

of the pure amorphous structure could be measured. Afterward, the sample was cooled slowly to 

room temperature at 1 °C/min so that the spectrum of pure α-form crystals could be obtained. 

Raman imaging measurements based on the confocal technique, which allowed for high 

spatial resolution were conducted using a Renishaw inVia Raman spectrometer system with a 

grating of 1800 gr/mm and equipped with a 532 nm solid-state laser, 50×/0.75 NA objective lens, 

Renishaw CCD detector, and Leica DM2500 upright microscope with a computer-controlled 

motorized stage for XY imaging. A linear polarizer and a half-wave plate were also inserted 

between the laser and the sample for the polarization measurements. Two different polarizer angles, 

0° and 90°, were used, and the corresponding polarization geometries (Porto notation) were Z(X, 

XY)Z̅ and Z(Y, XY)Z̅, respectively, on the XYZ Cartesian coordinates system, where the X and Y 

directions were parallel to the sample surface while the Z direction was perpendicular to the sample 

surface (see Figure A2-2 in the Appendix 2). The imaging was conducted in point-by-point mode. 

In Raman imaging, the laser was focused on the sample surface, the sample stage moved 

automatically, and Raman signals generated from the sample were collected by the CCD detector. 

The exposure time for each point was 0.4 s and the effective laser power was 10 mW. The spectral 

resolution was 1.5 cm−1. The spatial resolution was approximately 0.35 μm in the XY plane (R = 

λ/2NA,58 where R is the maximum spatial resolution). Every spectrum was collected at a 0.35 μm 

grid, but the final imaging areas were decided based on the size of the spherulites of different 

samples. 

Analysis of Raman imaging data was performed using the Renishaw WiRE 4.2 software. 

Before the calculation of each Raman image, all of the Raman peaks that were used were truncated 

and then corrected by subtracting the baseline. Raman peak areas were calculated by integrating 

the areas between the Raman peaks and the baseline. Raman peak positions were determined by 
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curve fitting under Gaussian function. 
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Results and Discussion 

Polymorphic Behaviors and Spherulite Morphologies of PBA Isothermally Melt-Crystallized 

at Different Temperatures 

Figures 3-1(a–j) show POM images of PBA26–35. These samples exhibited different 

spherulite morphologies depending on the crystallization temperature, as summarized in Figure 3-

1(k). The typical ringless spherulites were formed below 29 °C (zone 1 in Figure 3-1(k)) and above 

34 °C (zone 4), whereas more complex patterns consisting of ring-banded with out-layer ringless 

textures were obtained after the isothermal melt crystallization at 31–33 °C (zone 3), as shown by 

the white and black arrows, respectively, in Figure 3-1(h). The POM image of PBA crystallized at 

30 °C (zone 2) displays semi-banded spherulites with irregular alternately distributed bright and 

dark regions; the texture seems to be intermediate between the ringless and banded spherulites. 

WAXD profiles of PBA films that were treated under the same conditions as those used for 

the samples examined using POM are shown in Figure 3-2. The results reveal that pure β- and α-

form crystals were formed when PBA was crystallized below 29 °C and above 34 °C, respectively. 

At 29–33 °C, the β- and α-form crystals coexist, and as the crystallization temperature increases, 

the intensity of the α(020) diffraction peak increases, while that of the β(020) peak decreases. It is 

noted that the relative diffraction intensities of α(110)/α(020) and β(110)/β(020) are also different 

for PBA26–35. For the films with pure β- and α-form structures, the intensity of the (110) peak is 

much higher than that of the (020) peak; however, for the films with mixed crystal structures, the 

intensity of the (110) peak is much lower than that of the (020) peak. Since the WAXD 

measurements in the present study were performed in the reflection mode, in this geometry, only 

the crystal lattice planes that are oriented parallel to the substrate contribute to the intensity of 

Bragg diffraction. Therefore, it is suggested based on Figure 3-2 that the orientation of the crystal 

structure for the ring-banded spherulites is different from that of ringless spherulites, and this may 

be related to lamellar twisting, which will be discussed in the following section. 

The results of POM observation and the WAXD profiles from the present study are almost 

identical to those from previous studies, which have been mentioned in the Introduction, except 

for those of Zone 3. The previous works only reported that a PBA film with mixed crystal 
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modifications forms a banded pattern, but not a ring-banded spherulites with an out-layer ringless 

region.29 A similar ringless-banded mixed pattern was reported by Liu et al.;17 they used a low- 

MW sample (MW = 5.2k) and grew spherulites at 30 °C. The growth of the low- MW PBA sample 

showed a ringless pattern initially, then a ring-banded pattern, and finally a ringless pattern again 

(see Figure 17 in ref. 17). The ringless and ring-banded parts were composed of the α and β forms, 

respectively. However, in contrast to the results of the present study, a pure β-form crystal formed 

ring-banded spherulites in their study when PBA was crystallized at a lower temperature. Moreover, 

their POM images clearly showed that the ring-banded spherulite was formed through β-form 

nucleation at the edge of ringless spherulites (α-form). Therefore, there should be another reason 

for the formation of the ring-banded pattern of PBA in the present study. It should be noted that 

the out-layer ringless region is not belong to the ring-banded PBA spherulite in the present work, 

the reason will be discussed in the following section. 

Polymorphic Crystal Distribution within Ring-Banded PBA Spherulites 

Figure 3-3(a) displays the 1900–700 cm−1 region of the Raman spectra of the amorphous state 

and the α and β crystals of PBA. Peaks due to backbone stretching and CH2 rocking modes are 

mostly located in the 1000–700 cm−1 region, while peaks in the 1600–1000 cm−1 region are mainly 

attributed to the C–O–C stretching modes and CH2 wagging mode, and a peak arising from the 

C=O stretching mode is observed at 1733 cm−1.59 

Figure 3-3(a) shows that most of the Raman peaks of pure α- and β-form crystals are located 

in nearly the same positions, and thus, peaks due to both forms are difficult to distinguish from 

each other. Only the relative intensities of some peaks are different, and they are correlated with 

the different crystal structures and the different orientations of the molecular chains.56,60,61 The 

Raman spectrum of the amorphous structure shows some different characteristics from those of 

the crystal structures. For example, a peak at 985 cm−1 is observed only in the spectra of the crystal 

structures, while a peak at 1142 cm−1 shows up only when PBA is in the amorphous state. 

Interestingly, in the 1300–1150 cm−1 region (Figure 3-3(b)), characteristic peaks for the β- and α-

form crystals and the amorphous structure are found at 1268 (blue line), 1185 (red line), and 1211 

cm−1 (brown line), respectively. In the 1260–1230 cm−1 region, the spectra of both types of 

structures show Raman peaks; the spectra of the β-form crystal and amorphous structure show a 
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peak at 1245 cm−1, and that of the α-form crystal shows a peak at 1247 cm−1. Since the 1245 and 

1247 cm−1 peaks are near each other, they combine to form one peak in the Raman spectra, and 

this peak is designated hereafter as the C-peak. The characteristic Raman peaks of PBA are listed 

in Table 3-1. These peaks will be used in Raman imaging analysis. Note that the current 

assignments are merely tentative and that more detailed and accurate peak assignments for PBA 

should be made in conjunction with the computational simulation, which need a further work. 

Since PBA32 contains the most typical ring-banded texture, as shown in Figure 3-1(g), it was 

selected for the examination of the formation mechanism of the interesting spherulite patterns of 

PBA. Figures 3-4(a and b) show an optical image and the Raman imaging results of PBA32, 

respectively. The author obtained polarized Raman images with both 0° and 90° polarization, 

which gives us information not only about the molecular structure, but also about the molecular 

chains orientation. The images generated from the integrated areas of the C-peak, α-form peak 

(1185 cm−1), and β-form peak (1268 cm−1), respectively, are presented in Figure 3-4(b). Figure 3-

4(b) shows that the crystal structure is distributed throughout the area, which means that the system 

is highly crystalline. Note that the surface topography fluctuation of PBA32, for example, different 

heights in the center, ring-banded, or edge regions of the spherulite, will not significantly affect 

our Raman results since the fluctuations were reported to be less than 100 nm,19 which is much 

smaller than the laser penetration depth (more than 1 μm) in the present study. The distribution of 

the amorphous structure is not shown since the intensity of the 1211 cm−1 peak due to the 

amorphous structure is too low; moreover, since the intensity of the amorphous peak at 1245 cm−1 

is much lower than that of the 1211 cm−1 peak (shown in Figure 3-3(b)), it will not affect the 

integrated area of the C-peak, even though they are overlapped. It was noted that the α- and β-form 

crystals are abundant in the out-layer and ring-banded region, respectively, in PBA32, as shown 

in Figure 3-4(b). Moreover, the patterns for both the β- and α-form peak areas and C-peak areas 

show polarization dependence, which is due to the molecular chains orientation within the 

spherulite, and this will be elucidated in the following section. 

Since the values of peak areas are affected by the molecular chains orientation, therefore 

Raman images of peak areas cannot reflect the real polymorphic crystals distribution. To eliminate 

such effect on the result of the polymorphic crystals distribution, images were generated from the 

Raman peak position obtained through curve fitting of the C-peak (examples of curve fitting are 
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shown in Figure A2-3 in the Appendix 2) and are shown in Figure 3-4(b). As mentioned above, 

the C-peak is composed of both the α- and β-form peaks (the amorphous peak at 1245 cm-1 can be 

ignored since it is too weak to be detected). Its position is mainly related to the relative content of 

the α- and β-form crystals, since the orientation of the molecular chains within the crystalline 

domains should be similar at every measuring spot. For example, if the β-form crystals are much 

more abundant than the α-form crystals, the C-peak will be near 1244 cm−1; on the other hand, this 

value will be closer to 1247 cm−1 when the α-form crystals are more abundant. Thus, the C-peak 

position will appear at different values in different spots, depending on the relative content of the 

α- and β-form crystals. Therefore, the Raman image based on the C-peak position is suitable for 

investigating the distribution of the polymorphic crystals. 

The C-peak position obtained from the center region of the spherulite is different from those 

obtained from other regions and is between those from the ring-banded (1244.5 cm−1) and out-

layer ringless (1247 cm−1) regions. This means that the α-form crystals exist in the center region. 

The images of the C-peak position and the α-form peak area are comparable to each other, because 

both show a similar distribution of the α-form crystals. This also demonstrates that using the C-

peak position to investigate the polymorphic crystals distribution is reasonable. The 1280–1170 

cm−1 region of the polarized Raman spectra of the center region (#1), the flat-on (#2) and edge-on 

(#3) domains of the ring-banded region, and the out-layer ringless region (#4) of the spherulites in 

Figure 3-4(a) are shown in Figures 3-4(c and d). It is clear that the α-form peak is more apparent 

in regions #1 and #4 than in regions #2 and #3, but the opposite is true for the β-form peak. The 

formation of the spherulite occurs through nucleation, and the Raman imaging results for PBA 

spherulites in this study suggest that the β- and α-form crystals can nucleate at the same time at 

32 °C.  

To study the ring-banded PBA spherulites further, the author carried out time-dependent in 

situ observation of the crystallization of PBA32 using POM, and the results are shown in Figure 

3-5. The crystallization process was complete within 60 s, and nucleation began at around 9 s. The 

ring-banded patterns appeared just after the formation of the crystal nuclei, as indicated by the 

white arrow, “A”, in Figure 3-5. Liu et al.17 found that the transformation from ringless to ring-

banded PBA spherulites began from several crystal nuclei of ring-banded spherulites formed at the 

edge of ringless spherulites. In the present study, however, it was difficult to see whether any 
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nucleation point was formed before the ring-banded spherulites appeared in Figure 3-5. Moreover, 

the subsequent growth process of the ring-banded pattern is very smooth, and the pattern grows at 

the entire periphery of the crystal nucleus. After the ring-banded spherulites had grown to some 

extent, the out-layer region started to appear, and it grew instead of the ring-banded spherulites 

until crystallization was complete. The growth rate of the ring-banded spherulites, calculated from 

the increase in the diameter, is shown in the blue region of Figure 3-6. It can be seen from Figure 

3-6 that the growth rate increases conspicuously to approximately 5 μm/s until approximately 18 

s, and then decreases to approximately 1 μm/s, and that the growth of the out-layer region began 

at 30 s, as shown by the yellow arrow, “B”, in Figure 3-5. 

On the structure origin of the ring-banded spherulites morphology of polymer, many evidence 

shows that it is related to the helicoidal twisted lamellae along the radial growth direction of the 

spherulites.7,62-70 Helicoidal twist has mainly explained by the unbalanced surface stress that 

results from differential congestion of fold surfaces31 or isochiral giant screw dislocations.71 

Untill now, AFM,7,8,11,17,19,30,72 tilt POM,7,8,17,72 and microbeam X-ray11,65,66-70 measurements 

have generally been used to investigate the hierarchical organization of ring-banded spherulites. 

By tilt POM and AFM experiments, it has been reported that the lamellar twisting also occurs in 

banded PBA spherulites.17,19 Our results show the periodic change of the molecular chain 

orientations, which corresponding well to the previous studies, this part will be discussed later in 

the following section. 

Figure 3-7(a) and (b) show optical images of PBA28–35 and the corresponding Raman 

images generated from the position of the C-peak, respectively. Like with the image in Figure 3-

4(b), the author used the C-peak position to determine the relative distributions of the two types 

of crystal structures. The ringless patterns can be seen for PBA28 and PBA35 in Figure 3-7(a), 

while the ring-banded patterns were observed for PBA30–33. As mentioned above, the Raman 

image based on the C-peak position of PBA32 shows mainly three different regions in the 

spherulite: the center, the region between the center and out-layer of the spherulite, and the out-

layer region. Therefore, in Figure 3-7(b), the author chose three small square regions as regions 

1–3 (designated hereafter as R1–R3), which are located in the center region, the region between 

the center and out-layer of the spherulite, and the out-layer region, respectively. The average peak 

position was calculated in each region, and the results are plotted in Figure 3-7(c). Since PBA28 
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and PBA35 contain pure β- and α-form crystals, respectively (Figure 3-2), only their center region 

and another region were chosen. The C-peak position in the 1247–1244 cm−1 region was 

determined from the relative contents of the β and α forms; hence, Figure 3-7(c) was divided into 

three regions based on the peak position (Raman shift): the β-form region (1244±0.3 cm−1, yellow), 

(α+β)-forms region (1244–1247 cm−1, green), and α-form region (1247±0.3 cm−1, blue). The peaks 

position for both R1 and R2 of PBA28 and PBA35 undoubtedly appear in the β- and α-form 

regions, respectively, as shown in Figure 3-7(c). What is more interesting is that R1 and R2 for 

PBA31–33 appear in the (α+β) region, which indicates conucleation and cogrowth of the α and β 

forms in PBA31–33. For PBA30, only R3 appears in the (α+β) region, while R1 and R2 appear in 

the β region. This is somewhat strange, although there is no doubt that the ring-banded region 

contains both the α and β forms for PBA30, which is in agreement with the results for PBA31–33.  

The C-peak positions of R3 for PBA31–33 in the α-form region are almost unchanged, while 

the positions of R1 and R2 are not constant; they increase with increasing Tc, owing to the fact that 

PBA prefers to crystallize into the α form at higher Tc. Moreover, it is of note that the peak positions 

of R1 are always higher than those of R2, suggesting that the α form is more abundant in the center 

region than in the ring-banded region. Two factors for this phenomenon should be considered. One 

is the relative primary nucleation rate, and the other is the radial growth rate. The primary 

nucleation rate of the α form is faster than that of the β form, while the growth rate of the α form 

is slower than that of the β-form.17 Therefore, in the center region, the α-form crystals, which form 

first, may restrict the formation of β-form crystals, while the α and β forms grow together during 

the growth process.  

The average band spacing (S) changes of PBA31–33 were also investigated, and the results 

are shown in Figure 3-7(d) (the band spacing for PBA31, PBA32, and PBA33 are shown in Figure 

A2-4 in the Appendix 2). As Tc increased, the band spacing decreased from approximately 4.6 to 

3 μm. If the lamellar twist resulting from surface stresses, the deformation energy for lamellar 

twisting, Utwist, is related to the band spacing, as shown in eq. 3-1:73 

 Utwist= 
π2GWl

2

6S
                  (3-1) 

where G is the rigidity modulus, W is the crystal width, and l is the lamellar thickness. Assuming 

that G of the lamellae is constant, increases in l and W and a decrease in S with Tc will lead to an 
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increase in Utwist. Moreover, in this study, since the relative contents of α- and β-form crystals in 

the ring-banded region also change with Tc, it is reasonable to speculate that changes in their 

contents may also affect Utwist. 

As for the formation of pure α-form crystals in the out-layer region (R3), based on the growth 

process of PBA32 (Figure 3-5), it seems that the pattern in the out-layer region is not smooth, but 

composed of many small fan-shaped parts. This may be due to the nucleation and growth of many 

small spherulites along the surface of the ring-banded spherulites at the same time. That is to say, 

the out-layer ringless region is not belong to the ring-banded PBA spherulite. Liu et al.17 had 

reported a similar phenomenon, which was attributed to the PBA molecular chains with low MW. 

They found that the low-MW molecular chains tend to form α-form crystals, while high-MW 

chains tend to form β-form crystals under the same supercooling. During crystallization, the β-

form crystals have a faster crystallization rate, which means that the molecular chains with high-

MW will be used up earlier than the low-MW chains. Thus, in the present study, the out-layer 

region consists only of α-form crystals, which are formed by the leftover low-MW chains. This 

can also be proven by the fact that the out-layer region becomes larger from PBA31 to PBA33, as 

shown in Figures 3-1(f–h), which suggests that more molecular chains are crystallized into α-form 

crystals at higher crystallization temperatures. The detailed distribution of different MW chains 

within the PBA spherulite is currently under investigation. 

Molecular Chains Orientation within the Ring-Banded PBA Spherulites. 

Since the molecular chains in the amorphous region are almost disordered, the following 

discussion are mainly about the molecular chains orientation in the crystal region. Note that the 

POM image of PBA32 (Figure 3-1(g)) shows a very orderly ring-banded pattern, which means the 

refractive index of the lamellar structure along the film thickness should be kept constant. 

Therefore, the molecular chains within the lamellar structure should have a similar orientation 

across the film thickness.  

As shown in the Figure 3-4(b), the Raman images which generated by the C-peak area present 

ring-banded bow-tie patterns, and the direction of the bow-tie also shows laser polarization 

dependence. While the Raman images for the C=O stretching band area show just bow-tie pattern 

without ring-banded (Figure A2-5). Moreover, the directions of the bow-tie patterns for the C=O 

stretching peak area are different with that of the C-peak area as well. For example, the bow-tie is 
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in vertical direction for the C-peak, while in horizontal direction for the v(C=O) peak when the 

incident laser polarization angle is 0°, and vice versa. These indicated that the molecular chains 

within the spherulites oriented not only about the radial direction of the spherulite, but also about 

the substrate plane. It is well known that the twisting lamellae will lead to the different orientations 

of the crystal axes with respect to the substrate (sample film) surface.70,72,74-77 

Thus, our Raman imaging results were in good agreement with previous studies; both 

suggested that the molecular chains have periodical orientations with respect to the substrate plane. 

Moreover, if the lamellar twisting model is also considered, then it is reasonable to speculate that 

the molecular chains are perpendicular to the substrate plane in the flat-on domains and parallel to 

the substrate plane in the edge-on domains within the ring-banded PBA spherulites, as shown in 

Figure 3-8. Since the helicoidal twisted lamellae have similar orientation across the film thickness 

as mentioned above, in general, it can be presented simplified as a screw.2,7,8,31,47,69 For PBA, there 

is no preferred twist handedness; since PBA is an achiral polymer, both left- and right-handed 

twists can exist in each of the ring-banded spherulite.17 The similar phenomenon has also been 

found in the ring-banded spherulite of poly(ε-caprolactone) (PCL).78 
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Conclusion 

The distribution of polymorphic crystals and the molecular chains orientation in PBA 

spherulites was investigated using Raman spectroscopy and Raman imaging for the first time. 

Special attention were paid to the so-called “ring-banded” PBA spherulites with out-layer ringless 

region that were isothermally crystallized at Tc = 31–33 °C; within each spherulite, two crystal 

forms, the α and β forms, coexisted (Figure 3-1). 

The characteristic Raman peaks for both α- and β-form crystal structures and the amorphous 

structure of PBA were observed (Figure 3-2). These peaks were employed to investigate the 

polymorphic crystal distribution through Raman imaging. It was found that the center and ring-

banded regions contained both α- and β-form crystals, while the out-layer region contained only 

α-form crystals (Figures 3-4 and 3-7). The formation of the α-form crystals in the out-layer ringless 

region is due to the crystallization of the low-molecular-weight PBA chains. The results of Raman 

imaging and in-situ time-resolved POM indicated that the α- and β-form crystals can nucleate and 

grow in the same temperature range (31–33 °C), and the relative content of these two crystal forms 

within the ring-banded spherulites show temperature dependence. The higher crystallization 

temperature, the higher content of the α-form crystals. 

The molecular chains within the PBA spherulites are oriented almost perpendicular to the 

spherulite growth direction. However, the ring-banded domains have different orientations about 

the substrate plane; the molecular chains orient perpendicular to the substrate plane in the flat-on 

domains and parallel to the substrate plane in the edge-on domains (Figure 3-8). 

    The present study has suggested that Raman imaging is a very powerful technique in polymer 

crystal structure research. Because of the high spatial resolution of Raman imaging, information 

about inhomogeneous structures even in a small crystal domain can be provided, and polarized 

measurements can be used to investigate the orientations of the molecular chains within a crystal 

structure as well. 
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54. Chernenko, T.; Matthäus, C.; Milane, L.; Quintero, L.; Amiji, M.; Diem, M. Label-Free Raman 

Spectral Imaging of Intracellular Delivery and Degradation of Polymeric Nanoparticle 

Systems. ACS Nano 2009, 3, 3552–3559. 

55. Unger, M.; Sato, H.; Ozaki, Y.; Fischer, D.; Siesler, H. W. Temperature-Dependent Fourier 

Transform Infrared Spectroscopy and Raman Mapping Spectroscopy of Phase-Separation In a 

Poly(3-hydroxybutyrate)-poly(L-Lactic Acid) Blend. Appl. Spectrosc. 2013, 67, 141–148. 

56. Martin, J.; Bourson, P.; Dahoun, A.; Hiver, J. M. The β-Spherulite Morphology of Isotactic 

Polypropylene Investigated by Raman Spectroscopy. Appl. Spectrosc. 2009, 63, 1377-1381. 

57. Wu, M. C.; Woo, E. M. Effects of α- form or β-form nuclei on polymorphic crystalline 



- 115 - 

 

morphology of poly(butylene adipate). Polym. Int. 2005, 54, 1681–1688. 

58. Gautam, R.; Samuel, A.; Sil, S.; Chaturvedi, D.; Dutta, A.; Ariese, F.; Umapathy, S. Raman 

and mid-infrared spectroscopic imaging: applications and advancements. Curr. Sci. 2015, 108, 

341–356. 

59. Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 

3rd ed.; Academic Press: London, 1990.  

60. Fernandez, M. R.; Merino, J. C.; Gobernado-Mitre, M. I.; Pastor, J. M. Molecular and Lamellar 

Orientation of α- and β-Transcrystalline Layers in Polypropylene Composites by Polarized 

Confocal Micro-Raman Spectroscopy: Raman Imaging by Static Point Illumination. Appl. 

Spectrosc. 2000, 54, 1105–1113. 

61. Song, K.; Rabolt, J. F. Polarized Raman Measurements of Uniaxially Oriented Poly(ε-

caprolactam). Macromolecules 2001, 34, 1650–1654. 

62. Keith, H. D. Optical Behavior and Polymorphism in Poly(ethylene sebacate). 1. Morphology 

and Optical Properties. Macromolecules 1982, 15, 114–122. 

63. Gazzano, M.; Focarete, M. L.; Riekel, C.; Scandola, M. Structural Study of Poly(L-lactic acid) 

Spherulites. Biomacromolecules 2004, 5, 553–558. 

64. Point, J. J. Multiple order light scattering by ringed spherulites. Polymer 2006, 47, 3186–3196. 

65. Tanaka, T.; Fujita, M.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Doi, Y.; Iwata, T. Structure 

investigation of narrow banded spherulites in polyhydroxyalkanoates by microbeam X-ray 

diffraction with synchrotron radiation. Polymer 2005, 46, 5673–5679. 

66. Kikuzuki, T.; Shinohara, Y.; Nozue, Y.; Ito, K.; Amemiya, Y. Determination of lamellar 

twisting manner in a banded spherulite with scanning microbeam X-ray scattering. Polymer 

2010, 51, 1632–1638. 

67. Rosenthal, M.; Bar, G.; Burghammer, M.; Ivanov, D. A. On the Nature of Chirality Imparted 

to Achiral Polymers by the Crystallization Process. Angew. Chem., Int. Ed. 2011, 50, 8881–

8885. 

68. Rosenthal, M.; Portale, G.; Burghammer, M.; Bar, G.; Samulski, E. T.; Ivanov, D. A. Exploring 

the Origin of Crystalline Lamella Twist in Semi-Rigid Chain Polymers: the Model of Keith 

and Padden revisited. Macromolecules 2012, 45, 7454–7460. 

69. Rosenthal, M.; Burghammer, M.; Bar, G.; Samulski, E. T.; Ivanov, D. A. Switching Chirality 



- 116 - 

 

of Hybrid Left–Right Crystalline Helicoids Built of Achiral Polymer Chains: When Right to 

Left Becomes Left to Right. Macromolecules 2014, 47, 8295–8304. 

70. Hsieh, Y.; Ishige, R.; Higaki, Y.; Woo, E. M.; Takahara, A. Microscopy and microbeam X-

ray analyses in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with amorphous poly(vinyl 

acetate). Polymer 2014, 55, 6906–6914. 

71. Toda, A.; Okamura, M.; Taguchi, K.; Hikosaka, M.; Kajioka, H. Branching and Higher Order 

Structure in Banded Polyethylene Spherulites. Macromolecules 2008, 41, 2484–2493. 

72. Meyer, A.; Yen, K. C.; Li, S.; Förster, S.; Woo, E. M. Atomic-Force and Optical Microscopy 

Investigations on Thin-Film Morphology of Spherulites in Melt-Crystallized Poly(ethylene 

adipate). Ind. Eng. Chem. Res. 2010, 49, 12084–12092. 

73. Keith, H. D.; Padden, F. J. Twisting orientation and the role of transient states in polymer 

crystallization. Polymer 1984, 25, 28–42. 

74. Sun, X.; Chen, Z.; Wang, F.; Yan, S.; Takahashi, I. Influence of Poly(vinylphenol) Sublayer 

on the Crystallization Behavior of Poly(3-hydroxybutyrate) Thin Films. Macromolecules 2013, 

46, 1573-1581. 

75. Sun, X.; Ren, Z.; Liu, J.; Takahashi, I.; Yan, S. Structure Evolution of Poly(3-hexylthiophene) 

on Si Wafer and Poly(vinylphenol) Sublayer. Langmuir 2014, 30, 7585–7592. 

76. Li, H.; Yan, S. Surface-Induced Polymer Crystallization and the Resultant Structures and 

Morphologies. Macromolecules 2011, 44, 417–428. 

77. Marubayashi, H.; Nobuoka, T.; Iwamoto, S.; Takemura, A.; Iwata, T. Atomic Force 

Microscopy Observation of Polylactide Stereocomplex Edge-On Crystals in Thin Films: 

Effects of Molecular Weight on Lamellar Curvature. ACS Macro Lett. 2013, 2, 355–360. 

78. Nozue, Y.; Hirano, S.; Kurita, R.; Kawasaki, N.; Ueno, S.; Iida, A.; Nishi, T.; Amemiya, Y. 

Co-existing handednesses of lamella twisting in one spherulite observed with scanning 

microbeam wide-angle X-ray scattering. Polymer 2004, 45, 8299–8302. 

  



- 117 - 

 

 

 

 

 

 

 

 

 

 

 

  

Table 3-1. Assignments for Characteristic Raman Peaks of PBA. 

Raman shift (cm-1) assignments 

1185  α-form crystal 

1245 β-form crystal, amorphous 

1247 α-form crystal 

1268 β-form crystal 
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Figure 3-1. POM images of PBA spherulites that underwent isothermal melt 

crystallization at different temperatures between 26 and 35 °C (a–j) 

(the scale bar is 20 μm for all micrographs) and the morphology 

diagrams of the PBA spherulites crystallized at different temperatures 

(k). 
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Figure 3-2. WAXD profiles of PBA films that underwent isothermal melt 

crystallization at different temperatures between 26 and 35 °C. 
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Figure 3-3. Raman spectra of PBA film with α- and β-form crystals, measured at 

room temperature, and with an amorphous structure, measured at 70 °C. 
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Figure 3-4. (a) Optical micrograph of PBA32. (b) Raman imaging of the same area 

as (a) with polarization parallel (0°) and perpendicular (90°) to the 

horizontal direction; imaging of the area was achieved by integrating the 

C-peak, α-form peak, and β-form peak regions. The image based on the 

C-peak position was obtained by point-by-point peak fitting of the C-

peak. (c, d) Raman spectra with parallel (0°) and perpendicular (90°) 

polarization of the center (#1), flat-on (#2), edge-on (#3), and out-layer 

ringless (#4) regions in the PBA32 shown in (a). 
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Figure 3-5. Optical micrographs of in situ time-resolved crystallization of 

PBA32 (the scale bar is 50 μm for all micrographs). 
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Figure 3-6. Time-dependent growth rate in crystallization of PBA32 

corresponding to Figure 5. 
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Figure 3-7. (a) Optical micrographs of PBA28, PBA30–33, and PBA35. (b) Raman 

imaging of C-peak position for the same area in (a). (c) Averaged C-peak 

position in the center region (R1), the region between the center and out-

layer of the spherulite (R2), and the out-layer region (R3) for PBA30–33, 

and in the center region (R1) and another region (R2) for PBA28 and 

PBA35. (d) Average band spacing change for PBA31–33. 
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Figure 3-8. Schematic diagram of hierarchy structure consisting of twisting lamellae 

in the ring-banded region and polymorphic crystal distribution within a 

ring-banded PBA spherulite with a ringless out-layer. 
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Appendix 2 

 

A2-1. Chemical Structure of Poly(butylene adipate) 

 

 

 

 

 

 

 

Figure A2-1. Chemical structure of poly(butylene adipate) (PBA). 
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A2-2. Scattering Geometries for Polarized Raman Measurements 

 

    Raman imaging measurements in present study was under backscattering mode. In Porto 

notation, Z and Z̅ refers to the direction of incident and scattering light, respectively. The Z̅ 

implies that the scattered light is rotated 180° with respect to Z. The X (or Y) in the parentheses 

describes the polarization of the incident light and the XY means no analyzer in the scattered beam 

path.1 

 

 

 

 

Figure A2-2. Schematic diagram of the scattering geometries used for polarized Raman 

measurements. 

 

 

 

 

 

 

 

 

 

1. Dieing, T.; Hollricher, O.; Toporski, J., Eds. Confocal Raman Microscopy; Springer: Heidelberg, Dordrecht, 

London, New York, 2011.   
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A2-3. Examples of Curve-Fitting Results for PBA32 

 

 

 

 

 

 

Figure A2-3. (a) Raman image developed by the peak position of the C-peak that obtained by 

curve fitting for PBA32. (b–d) examples of curve-fitting results for select point-1, 

2 and 3 in (a). 

 

 

 

 

 

 

  



- 129 - 

 

A2-4. Band Spacing for PBA31–33 

 

Since the ring-banded pattern within PBA spherulite is caused by the lamellar twisting, 

therefor the molecular chains orientation about the substrate plane is different between the adjacent 

rings. The different molecular chains orientation will induce the Raman intensity change, because 

the angle between the incidence Raman laser and the polarizability of the chemical bond will 

variance with the molecular chains orientation. 

   Therefore, peak area change of the C-peak along the radial direction of the spherulite was used 

to calculate the band spacing in present study. 

 

 

 

Figure A2-4. Peak area change of the C-peak for PBA31–33 along the radial direction of the 

spherulite. 
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A2-5. Raman images by peak area of α-form, β-form peak, C-peak and v(C=O) peak of 

PBA32 

 

 

Figure A2-5. Raman images by peak area of α-form, β-form peak, C-peak and v(C=O) peak of 

PBA32 
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