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GENERAL INTRODUCTION 

 

1. Scope of This Thesis 

This thesis is mainly concerned with the study of intermolecular hydrogen bonding 

interactions, crystallization behavior and crystal structures of poly(3-hydroxybutyrate) 

[PHB] and blends. These three aspects are closely interrelated in determining the final 

physical and mechanical properties of a polymer. Thus, they have been gaining much 

attention for a long time as very important research themes in polymer science. Moreover, 

controlling the crystallinity of such semicrystalline PHB is also crucial in order to fit the 

best condition for practical applications. One of the most simple and economic approaches 

to modify the properties of a polymer is blending. In this thesis, PHB was blended with 

two biodegradable polymers, chitin and poly(L-lactic acid) PLLA, to control the 

crystallinity of PHB. Several measurements were used in this thesis are differential 

scanning calorimetry (DSC), infrared spectroscopy (IR), and wide-angle X-ray diffraction 

(WAXD). Two surface sensitive techniques were specially employed to investigate the 

crystallization and crystal structure of PHB ultrathin films, i.e. infrared-reflection 

absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD).  

The novelty and originality of this thesis can be described as follows: 

1. The existence of intermolecular hydrogen bondings between PHB and chitin in their 
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blends was revealed through the intensive analysis of various ratios of blends with the 

temperature dependence of IR spectroscopy combined with the results obtained from 

DSC and WAXD measurements. We systematically analyzed the IR spectra of PHB 

including the intensity change, full width at half maximum (FWHM), and wavenumber 

shift of C＝O bands with composition and temperature dependences. Similarly, the 

change of amide I and II bands of chitin is also discussed as well. The effect of 

intermolecular hydrogen bonding formation on crystallization and crystal structure of 

PHB also carefully discussed by monitoring the change of DSC and WAXD profiles of 

PHB. 

2. Through the measurement and analysis of temperature-dependent IRRAS and GIXD, 

we proposed two different ordered of crystalline structures in PHB ultrathin films: less 

ordered and highly ordered structure. The existence of less ordered structure was 

obviously recognized in the intermediate state which generally difficult to find in bulk 

PHB. The transformation from intermediate state to highly ordered state was 

meticulously examined from the integrated intensity change of their corresponding IR 

bands as a function of temperature. Moreover, the nucleation site, growth and preferred 

orientation of crystallites PHB were elucidated from temperature-dependent of 

2D-GIXD profiles. 

3. The effect of a small addition of PLLA on the crystallization of PHB ultrathin films is 
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interpreted through investigating of various molecular weight of PLLA and two 

different film thicknesses using surface sensitive IRRAS and GIXD measurements. The 

results exposed that the inhibition of crystallization of PHB by PLLA strongly depends 

on the molecular weight of PLLA and thickness confinement. The crystallization 

behavior of PHB in the PHB/PLLA ultrathin films behaves relatively inverse from the 

PHB/PLLA bulk. The present of a very confined environment by reducing the film 

thickness seems to enhance the miscibility of PHB and PLLA in the blends. Apart from 

the molecular weight of PLLA and thickness confinement dependences, phase 

separation due to the presence of free surface effect, entanglement of PHB and 

aggregation of small molecules of PLLA are also found to be important factors that 

influence the ability of a small amount of PLLAs in inhibiting the crystallization of 

PHB. 

2. Introduction of PHB, Chitin and PLLA 

2.1 PHB 

In recent years, biodegradable polymers have been gaining considerable attention 

along with increasing global concern over the harmful effects of plastic derived from 

petroleum in the environment. Biodegradable polymers can degraded naturally in the 

environment into water and carbon dioxide, thus, they are ideal alternative for replacing 

petrochemical based-plastics. One of the most studied biodegradable polymer is 
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poly(3-hydroxybutyrate) [PHB] that belong to polyhydroxyalkanoates (PHAs) class 

polyester. PHAs is produced from various bacteria in the storage granules as carbon and 

energy.
1-5

 On the other hand, PHAs is very potential to use in the wide-range applications 

because of their advantageous characteristics, such as biodegradable, biocompatible, 

insoluble in water and impermeable to oxygen, nontoxic, piezoelectric, thermoplastic 

and/or elastomeric.
6-8

 

PHB was firstly isolated and characterized from Bacillus megaterium bacteria by 

Maurice Lemoigne in 1925
9
, however, its commercial production scale had wait until the 

early of 1960s.
1  

The chemical structure of PHB is shown in Figure 1a. PHB is a 

semicrystalline polymer where the crystalline molecules are arranged in an orthorhombic 

structure. Yokouchi et al.
10

 and Marchessault et al.
11

 reported that the orthorhombic has 

two-left handed helices along the antiparallel orientation in accordance with the 

P212121-D
4
2 space group. The crystal lattice parameters are determined with a = 5.76 Å, b 

= 13.20 Å and c = 5.96 Å (fiber axis).
10-12

 Figure 2 is depicted the crystal structure of PHB 

reproduced from Ref. 10.  

In the PHB crystalline, there was found weak hydrogen bonds between methyl and 

carbonyl groups (CH3···O=C).
 
The formation of CH3···O=C hydrogen bond was firstly 

proposed by Sato et al.
13

 on the basis of IR spectra study of an antisymmetric C−H 

stretching band at anomalously high frequency position. This finding was further 
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reinforced by WAXD study and chemical quantum analysis.
14-16

 Recently, Tashiro et al.
17

 

reinvestigated the existence of this hydrogen bonding in the PHB α-form crystal through 

the advance X-ray approach. It was reported that the abnormally short distance of methyl 

group to the oxygen atom of C=O group lead the formation of CH3···O=C hydrogen bond. 

The shortest H∙∙∙O distance exhibits in the C−H···O＝C hydrogen bonds is found to be 

2.62 Ǻ which shorter than the expected value of normal van der Waals distance (see Figure 

3). Moreover, the direction of these C–H···O＝C hydrogen bonds is proposed to be almost 

parallel to the direction of the chain folding along the a-axis. Therefore, the presence of 

these hydrogen bonds may responsible for stabilizing the chain folding in the lamellae 

structure of PHB. Figure 4 displays the model of lamella structure with intermolecular 

hydrogen bond interactions of PHB crystal proposed by Sato et al. 

PHB has physical and mechanical properties similar to those of commercial plastics of 

isotactic polypropylene (iPP),
18,19

 as tabulated in Table 1. However, PHB is rigid, brittle 

and thermally unstable due to highly crystallinity and narrow processability temperature 

that caused difficulty in the conventional processing.
20-22

 In order to modify those 

unfavorable properties and improve the physical and mechanical properties, 

copolymerization and blending approaches often used to obtain the desired properties of 

PHB. The unit and composition of  comonomer greatly affect the physical and 

biodegradability properties of PHB-copolymers.
23-25

 Several PHB copolymers that have 
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been developed are poly(hydroxybutyrate-co-hydroxyvalerate) [P(HB-co-HV)],
26-31

 

poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)]
32-36

 and 

poly(hydroxybutyrate-co-hydroxypropionate) [P(HB-co-HP)].
37-39

  

On the other hand, blending technique is more convenient and low cost for creating 

new materials by combining two or more polymers. The important characteristic in 

polymer blends is miscibility. According to thermodinamical behavior and compatibility 

between two polymers, miscible blend refers to a single phase system (homogeneous 

phase) which is equivalent with polymer-polymer solution (mix on a molecular level), 

whereas, immiscible blend refers to separate phase (inhomogenous system) that do not mix 

on a molecular level.
40 

PHB was reported to be miscible by blending with poly(vinyl 

acetate) (PVAc),
41-43

 poly(vinyl alcohol) (PVA),
44-47

 poly(ethylene oxide) (PEO),
48-51 

cellulose acetate butyrate (CAB),
52-55

 poly(epichlorohydrin) (PECH),
56-59

 and 

poly(ethylene glycol) (PEG).
60

 PHB formed immiscible systems by blending with 

polylactic acid (PLA),
61-65

 poly(methylene oxide) (PMO),
66 

poly(butylene succinate) 

(PBS)
67

 and polycaprolactone (PCL).
68 

 

2.2 Chitin 

Chitin is the second most abundant polysaccharide in the nature after cellulose that 

widely exists in the nature as arthropod exoskeletons (especially shrimps and crabs), 
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insects and the internal shells of cephalopods. It is also a biodegradable and biocompatible 

polymer with excellent absorbability and non-toxicity. The chemical structure of chitin is 

similar with cellulose, except a NHCOCH3 group replaces the hydroxyl group, as displays 

in Figure 5a. Moreover, the infrared spectra of chitin and cellulose is also similar since 

their chains conformation are same.
69,70

 

Chitin naturally exhibits three crystalline allomorphs as -, - and -chitin. The most 

abundant and stable one is -chitin which packed in the orthorhombic space group P212121 

with a = 0.474, b = 1.032 and c = 1.886 nm.
71

 The -chitin has excessive intramolecular 

and intermolecular hydrogen bonds that causes difficulty to dissolve in many solvents, see 

figure 5b.
72

 The -chitin crystal consists of two antiparallel molecules per unit cell where 

its chains arranged in sheets tightly held by a number of intra-sheet hydrogen bonds along 

the a parameter of unit cell dominated by C=O···NH hydrogen bond. The inter-sheet 

hydrogen bonds exist along the b parameter of the unit cell.
73

 Chitin has amide and 

hydroxyl groups which can be expected to form intermolecular hydrogen bonding with 

carbonyl or methyl groups of PHB. Therefore, chitin is beneficial to improve the properties 

of PHB. Chitin and its derivatives has been reported in a wide variety of biomedical 

applications, such as tissue engineering,
74 

suture,
75 

wound dressing,
76

 drug delivery,
77 

wastewater treatment,
78,79

 cosmetics and pharmaceutical fields,
80

 agriculture and food 

processing.
81 
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2.3 PLA 

Poly(lactic acid) [PLA] is a biodegradable aliphatic polyester that can be produce from 

renewable resources, such as starch (from corn and potatoes) and sugar (from sugar cane 

and beets).
82-84

 It can be readily broken down through a simple hydrolysis reaction into 

water and carbon dioxide. PLA has excellent mechanical properties which is comparable or 

even superior than those of petroleum-based polymers, especially the biocompatibility, 

high strength, high elasticity modulus, thermoplastic, molding capability, and 

printability.
84-88

 However, PLA is rigid, brittle, and thermally unstable because it deforms 

at temperatures in excess of its glass transition temperature.
88

 Therefore, several 

modification methods are often applied to improve those drawbacks aim to suit the 

application purpose, including blending,
89-91

 copolymerization
92,93 

and using 

plasticizers.
94-96

 In addition, the change of molecular weight, crystallinity, chain orientation, 

and stereochemistry of PLA will also greatly affects the physical and mechanical properties 

of PLA.
88,97,98

  

Depending on the stereochemistry and thermal history, PLA can be either 

semicrystalline or amorphous. PLA has two optically active seteroisomers, L (+)-LA and 

D(−)-LA (see Figure 6), but it also can exist as a racemic mixture, DL. The arrangement of 

the stereochemical L- and D-lactic acid structures can control almost all the properties of 

PLA. It has been reported that these two pure PLA stereoisomers, poly(L-lactic acid) 
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[PLLA] and poly(D-lactic acid) [PDLA] are semicrystalline, whereas the racemic 

poly(DL-lactic acid) [PDLLA] is amorphous.
99,100

 The highly crystalline PLA can be 

obtained by the addition of low D or L content (< 2 %), while the presence of relatively 

high D or L content (> 20%) yields the amorphous one.
101,102 

The semicrystalline PLLA has three polymorphism forms, α, β, and γ depending on the 

method of preparation. The α-form is the most common type which can be prepared by 

melt or cold crystallization. Its crystals are packed into an orthorhombic P212121 space 

group with a = 10.66 Ǻ, b = 6.16 Ǻ and c = 28.88 Ǻ containing two antiparallel chains in 

103 helix conformation.
103

 The β-form can be obtained at a high draw ratio and high 

drawing temperature. The β-form crystal is considered to have a frustrated structure 

packing of three 31 helices in a trigonal unit cell with a = b = 10.52 Ǻ and c = 8.8 Ǻ, space 

group P32.
104 

The third type, γ-form was produced by epitaxial crystallization on 

hexamethylbenzene substrate, containing two antiparallel helices which packed in an 

orthorhombic unit cell of parameters a = 9.95 Ǻ, b = 6.25 Ǻ= and c = 8.8 Ǻ.
105 

In the practical application, PLA has been widely used for a long time in biomedical 

field due to its excellent bioresorbability and biocompatibility in the human body, such as 

suture and orthopaedic fixation.
106-111

 Since the PLA production cost can be reduced and 

the technique to improve the properties of PLA is also developed tremendously, PLA has 

been considered as a promising alternative material to substitute petroleum-based material. 
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Currently, PLA has been commercially used in many applications, as packaging 

material,
112,113

 fiber/textile,
114,115

 coating,
116

 drug delivery,
117

 and foamed article.
118,119

 

 

3. Polymer Thin and Ultrathin Films 

Recently, polymer thin and ultrathin films have attracted increasing interest in both 

research and application points of view. The confinement effect from the surface and 

interface in polymer thin and ultrathin films greatly affected their physical properties, 

which is considerably differ compare to their bulk form. Therefore, investigation of 

polymer films under spatial confined environment will certainly provide a new insight in 

the field of polymer science. On the other hand, the preferred characteristic of current 

devices that is lighter, smaller, and thinner, also contributed to the increase of polymer thin 

and ultrathin films technology. 

The term of thin films is commonly used to refer to the films having a thickness of up 

to 1000 nm, however, sometimes it also used to address the ultrathin films. In order to 

distinguish the use of these terms, Ma et al.
120

 roughly classified the films thickness into 

three categories: The first category includes the films with thicker than several hundred 

nanometers (usually labeled as thin films). The second category includes the films with the 

thickness close to the polymer coil size but less than 100 nm (termed as ultrathin films). 

The third category designed for the films with thickness below the polymer coil size that 
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approaching a quasi-two-dimensional state (the so-called monolayer).
121

 Those confined 

films with restricted geometries can be considered to be the quasi two-dimensional (2D) 

system with one-dimensional (1D) confinement normal to the substrate. Along 1D 

confinement on the substrate, the lamellae have preferential orientation that can be either 

edge-on lamellae with the chain axis parallel to the substrate or flat-on lamellae with the 

chain axis normal to the substrate. Figure 7 shows the illustration of edge-on and flat-on 

lamellae. The free surface is generally dominated by edge-on lamellae that form at low 

temperature,
122,123

 whereas the flat-on lamellae predominantly form at the interface at high 

temperature.
124,125

 In thin films, edge-on lamellae are usually observed as the free surface 

effect is predominant. Further decreasing the film thickness, both edge-on and flat-on 

lamellae can be found in ultrathin films. In monolayer films, a typical diffusion-limited 

crystal usually grow because the interface effect plays major role to control the growth of 

the crystal, so flat-on lamellae is more favorable.
120-122, 126-128

 Actually, many factors can 

control the lamellae orientation in the thin films, however, the thickness of the films, 

crystallization temperature, and surface chemistry of the substrate are the most important 

factors.
121

 

As mentioned above, except for the lamellae orientation, the confinement and 

surface/interface effects can affect almost all the physical properties of polymer thin and 

ultrathin films, such as crystallization behavior,
126,129

 degree of crystallinity,
130,131
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mobility,
132,133

 glass transition temperature (Tg),
134,135

 morphology and phase 

behavior,
136-138

 etc. The crystallinity and the kinetic of crystallization of semicrystalline 

polymers were found to decrease in thin and ultrathin films. It seems the main reason is 

that the polymer chains hardly to fold in thermodynamically stable nucleus or the lamellae 

thickness is close to the films thickness, associated with a possible slowdown of the 

diffusion of polymer chains in the melt of thin films.
139 

For example, the crystallinity of 

poly(di-n-hexylsilane) is decreased when the film thickness is less than 50 nm, in fact, the 

crystallization is almost inhibited when the thickness below 15 nm as the critical 

dimensions of nuclei is difficult to develop with decreasing the film thickness.
130,131

 The 

mobility of polymer chains in the thin and ultrathin films may be differ at its surface and 

interface. The mobility of polymer chains is usually increased near the free surface region, 

especially for the lower molecular weight polymers, but no obvious change is observed for 

higher molecular weight polymers.
140,141 

In contrast, the mobility of polymer chains at 

interface become limited due to the existence of interactions between polymer and solid 

substrate. The difference mobility of polymer chains at surface and interface is also closely 

related with the shifting of the Tg in thin and ultrathin films.
142,143 

Recent measurements have been developed to study the behaviors of polymer thin and 

ultrathin films. Among them, IR still to be a powerful tool to extract the information about 

molecular conformation and intermolecular interaction in the polymer thin and ultrathin 
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films. IR has several measurement techniques that are adjusted to the kinds of samples. For 

investigation of polymer thin and ultrathin films, IRRAS is the most suitable technique to 

characterize solid sample with nanometer scale. IRRAS is a surface sensitive technique 

where the electric field vector of light undergoes a phase change with the magnitude of 

each depends on the polarization of incident light.
144

 Upon the reflection on the metal 

substrate, the electric vector of the light polarized parallel to the plane of incidence 

(p-polarized light) gives the signals of up to 90 degrees, whereas, the electric field of the 

light polarized perpendicular to the plane of incidence (s-polarized light) shift of 180 

degrees which is negligible at all angle of incidence/theta (). The IRRAS reflection on 

metal substrate is illustrated in Figure 8. In short, this mechanism is known as the surface 

selection rule of IRRAS: vibration modes having transition dipole perpendicular to the 

surface substrate will appear with enhanced intensity. Therefore, IRRAS is very useful to 

observe the conformation and orientation of molecules on the surface of polymer thin and 

ultrathin films.  

In many experiments, IR technique is often combined with XRD technique to 

investigate the structural properties of materials. Similar with IRRAS, one of GIXD 

techniques with surface sensitive that suitable for investigation of polymer thin and 

ultrathin films is called GIXD. GIXD uses a very small angle of incidence that reflects the 

crystalline near the surface region. Using the GIXD technique, the crystalline structure 



14 

 

along normal and parallel to the substrate can be obtained by measuring both in-plane and 

out-of plane geometries. Moreover, the depth of X-ray penetration into the film can be 

control by varying the angle of incidence around the critical angle for total reflection 

(c).
145,146 

Therefore, the specific crystalline information along out-of plane and in-plane 

directions within different depth can be observed. 

The study of PHB thin and ultrathin films has been conducted using the combination 

of IRRAS and GIXD techniques. It has been found that the (020) reflection along out-of 

plane direction is strongly observed using GIXD measurement. The appearance of 

out-of-plane (020) reflection indicated that the edge-on lamellae with b-axis normal to the 

substrate surface is the preferred lamellae orientation of PHB crystallites in thin and 

ultrathin films.
147,148

 The formation of edge-on lamellae corresponds to the dominant of 

free surface effect with lower nucleation barrier. Furthermore, increasing the annealing 

temperature caused the buried interface effect increased, as a result, the lamellar 

orientation changed from b-axis normal to substrate surface to the c-axis normal to the 

substrate surface (flat-on lamellae).
147

 Furthermore, the crystallization of PHB is inhibited 

when the film thickness decreased to tens of nanometer close to the polymer-substrate 

interface.
149

 The weak intermolecular C−H···O＝C hydrogen bonds still observed at 3009 

cm
-1

 in IRRAS spectra of PHB thin films along the a-axis.
150  

In chapter 2, we investigated the crystallization and crystal structure of PHB ultrathin 
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films (thickness ~52 nm) using the combination of IRRAS and GIXD. The important 

finding in this present study is the evident presence of intermediate state observed in the 

melt crystallization process and the crystals transformation from intermediate state into 

highly-ordered state with the assistance of thermal energy. Intermediate state is specially 

appeared at 1731 cm
-1 

in IR frequency. It is usually difficult to detect in bulk PHB because 

it only appears in the early stage and diminish after the crystallization is finished.
151-153

 In 

chapter 3, the effect of a small amount of PLLA on the crystallization behavior of PHB 

ultrathin film is investigated using the various molecular weights of PLLA. In this study, 

we described the correlation between the film thickness and the molecular weights of 

PLLA from the crystallization of PHB point of view. 

  

4. Outline of each chapter 

This thesis consists of three chapters. The outline of each chapter will be described as 

follows. 

Chapter 1 described the effect of intermolecular hydrogen-bonding interactions 

formed between PHB and chitin in the blends on the crystallization behavior and 

crystalline structure of PHB. The PHB/chitin blends were studied as a function of 

composition and temperature by DSC, WAXD, and IR. We observed the significant 

changes of the blends with PHB content ≤ 50 % wt from the composition dependent of 
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DSC curves, WAXD patterns and IR spectra. The temperature-dependent spectral 

variations in the C＝O stretching were further analyzed by calculating the intensity 

changes, full width at half maximum (FWHM) and wavenumber shift. It is found that a 

new band appeared at around 17101714 cm
-1

 which is known as the hydrogen bonded C

＝O band in many polymer blends. Therefore, the appearance of this band clearly reveals 

the formation of the intermolecular hydrogen bondings in the PHB/chitin blends. We 

proposed that the intermolecular interactions formed between C＝O groups of PHB and 

the O−H and N−H groups of chitin (C＝O∙∙∙H−O and C＝O∙∙∙H−N) in the amorphous 

phase. The formation of these intermolecular hydrogen bondings is crucially responsible 

for decreasing the crystallinity of PHB in the blends. However, we found that the 

crystalline structure of PHB is not much affected by the addition of chitin. 

In Chapter 2, the crystallization behavior and crystalline structure of PHB were 

investigated as ultrathin films (thickness 52 nm) using two surface sensitive techniques, 

IRRAS and GIXD through heating and melt-cooling processes. Two kinds of crystalline 

structures of PHB were observed at 1722 and 1731 cm
-1

 from the analysis of IRRAS 

spectra that correspond to the C=O stretching of highly-ordered and intermediate states, 

respectively. Increasing temperature caused the crystals in the intermediate state acquire 

sufficient thermal energy to overcome the energy barrier, as a result, the transformation 

from the intermediate state into the highly-ordered state occurred. The weak intermolecular 
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hydrogen bonds of PHB still exist in such ultrathin films along a-axis. Furthermore, the 

2D-GIXD results show that the intermediate state was dominant in edge-on-lamellae 

configuration where the crystallographic b-axis is normal to the film surface. Meanwhile, 

the highly-ordered state was predominant in flat-on lamellae configuration where the 

b-axis is parallel to the film surface. Moreover, from a very shallow angle of incidence 

measurement which only penetrates 8 nm deep from the surface reveals that the crystals 

in the surface region strongly tended to align in an edge-on lamellae configuration. 

Chapter 3 reported the effect of a small amount of PLLA on the crystallization 

behavior of PHB ultrathin films studied by IRRAS and GIXD. In this study, the correlation 

between molecular weight of PLLA and the film thickness was investigated using PLLA 

having molecular weight ranging from 300,000710 g mol
−1 

and two different film 

thicknesses, i.e. 30 and 13 nm. The PHB/PLLA ratio is fixed at 80/20 (w/w) for all blends. 

The crystallization of PHB has shown a strong dependency on the molecular weight of 

PLLA and film thickness. In the 30-nm-thick samples, the crystallization of PHB is 

significantly reduced in the blends with molecular weight PLLAs ranging from Mw 23,000 

to 13,100 g mol
-1

, however, the higher (Mw ≥ 50,000 g mol
-1

) and lower (Mw ≤ 6,900 g 

mol
-1

) molecular weight PLLAs do not significantly affect the crystallization. In contrast, 

in the 13-nm-thick films, the crystallization of PHB is remarkably inhibited in the blends 

having PLLAs Mw ≥ 6,900 g mol
-1

. IRRAS showed that for the 30-nm-thick samples, a 
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small addition of PLLA (Mw ≥ 13,100 g mol
−1

) altered the crystalline structure of PHB 

only in the highly ordered state. However, such PLLAs greatly affect the PHB crystals in 

both intermediate and highly ordered states in the films with the thickness of 13 nm. Both 

GIXD and IRRAS results revealed some consistency that the lower molecular weights of 

PLLA (Mw ≤ 3,600 g mol
−1

) only slightly affect the crystallinity and crystalline structure of 

PHB. Furthermore, several factors such as the presence of free surface and interface effects, 

entanglement of PLLA chains and molecular size of PLLA must seriously be taken into 

account to comprehend the complex crystallization behavior of PHB in the PHB/PLLA 

ultrathin films, apart from the molecular weight and thickness dependences. 
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Table 1. Comparison of physical properties of PHB and iPP 

Properties PHB iPP 

Melting temperature, 
°
C 175 170 

Glass transition temperature, 
°
C 4 -10 

Crystallinity (%) 60 50 

Young modulus (GPa) 3.5 1.7 

Tensile strength, MPa 40 38 

Elongation to break (%) 5 400 

Density, g/cm
3
 1.250 0.905 

UV resistance good bad 

Solvent resistance bad good 
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Figure 1. (a) Chemical structures of PHB and (b) accumulated PHAs in bacteria. 

Figure 2. Crystal structure of PHB with a = 5.76 Å, b = 13.20 Å and c = 5.96 Å 

(fiber axis). Reproduced from Ref. 10 
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Figure 3. Intermolecular distance of PHB between O atom of C=O and H atom of 

CH3 groups calculated at room temperature, reproduced from Ref. 17. 

Figure 4. Intermolecular distance of PHB between O atom of C=O and H atom of CH3 

groups calculated at room temperature, reproduced from Ref. 15. 

5.3 nm 
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Figure 5. (a) Chemical structure of chitin, (b) diagram of the hydrogen bonding 

structure in the ac projection for -chitin (reproduces from reference 72). 

 

(a) 
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Figure 6. Two seteroisomers of lactic acid. 

L (+)-LA D (−)-LA 

x 

Figure 7. Illustration of (a) edge-on lamella and (b) flat-on lamellae. x and y 

indicated the two dimensional directions, while l indicated the lamellar 

thickness. 
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Figure 8. General schemes of IRRAS reflection on metal substrate 

Figure 9. General schemes of (a) out-of plane and (b) in-plane GIXD measurements 
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Intermolecular Hydrogen Bondings in the Poly(3-hydroxybutyrate) and Chitin 

Blends: Their Effects on the Crystallization Behavior and Crystal Structure of 

Poly(3-hydroxybutyrate) 
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ABSTRACT 

Crystallization behavior and intermolecular hydrogen-bonding interactions of 

poly(3-hydroxybutyrate) (PHB)/chitin blends on as-solution cast films were studied as a 

function of composition and temperature by differential scanning calorimetry (DSC), 

wide-angle X-ray diffraction (WAXD) and infrared (IR) spectroscopy. The significant 

changes were observed in the DSC curves, WAXD patterns and IR spectra of the blends 

with PHB ≤ 50 wt %. We found that the crystallinity of PHB decreases in the blends, 

however, its crystal structure is not much affected by blending with chitin. The appearance 

of a new band at around 1710  1714 cm
-1

 clearly reveals the formation of intermolecular 

hydrogen bondings between the C=O groups of PHB and the OH and NH groups of 

chitin (C=O···H−O and C=O···H−N). It is very likely that these intermolecular 

C=O···H−N and C=O···H−O hydrogen bondings occur in the amorphous phase because of 

the reduction in the chain mobility in the blends with increasing chitin content, even above 

the melting temperature of PHB. The C=O···H−N and C=O···H−O hydrogen bondings are 

formed upon the cleavage of weak C=O···H3C hydrogen bondings of PHB. Thus, the 

formation of the C=O···H−N and C=O···H−O hydrogen bondings is accompanied by the 

decrease in the crystallinity of PHB in the blends. 
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1. INTRODUCTION 

Polyhydroxyalkanoates (PHAs) are bacterially synthesized polyesters that have 

attained great interest as promising biodegradable and biocompatible polymers for 

wide-range applications, such as biomedical, agricultural, packaging, pharmaceutical and 

paint industries.
1-3

 Poly(3-hydroxybutyrate) or PHB (Figure 1a) is one of the most studied 

PHAs because its physical and mechanical properties are similar to those of commercial 

plastic derived from petrochemical, such as isotactic poly(propylene).
4-6 

However, as a 

bacterially synthesized product, PHB has high-ordered stereoregularity that makes it highly 

crystalline and yields a narrow temperature window for processability. In addition, the 

secondary crystallization on the storage at ambient temperature
7
 and the pre-existing crack 

within the spherulites result in the brittleness of PHB.
8,9

 Therefore, these problems have 

decreased the potential applications of PHB. 

Blending technique is one of the most convenient and more economical methods for 

making new materials based on the combination of two or more polymers to achieve the 

desired properties. Hence, PHB has been reported to be blended with various polymers, 

such as poly(vinyl acetate),
10,11

 poly(l-lactic acid),
12,13

 poly(ethylene oxide),
14

 cellulose 

esters
15 

and poly(vinyl alcohol).
16-18 

Our group has reported a series of studies on PHB, including its copolymers and 

blends from the structure, thermal and crystallization behavior points of view by 
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combination of various experimental techniques, such as infrared, near infrared, Raman 

and terahertz spectroscopy, X-ray diffraction (Wide-angle X-ray diffraction; WAXD and 

Small-angle scattering; SAXS), two-dimensional correlation spectroscopy and quantum 

chemical calculations.
12,13,16-32

 One of the most important features in our findings is the 

existence of weak intramolecular interactions CH···OC hydrogen bonding between the 

CH3 group of one helical structure and the CO group of the other helical structure of 

PHB.
19-23

 Furthermore, we reported the formation of intermolecular hydrogen-bonding 

interactions in the PHB blends. In the PHB/poly(4-vinylphenol) (PVPh) blends,
17

 the 

intermolecular hydrogen bonds are formed between C=O groups of PHB and OH groups of 

PVPh. The exchange between intermolecular and intramolecular hydrogen bonds are found 

in those blends with PVPh content higher than the critical composition of 50 wt %. In the 

PHB/cellulose acetate butyrate (CAB) blends,
27

 the weak intermolecular hydrogen bonds 

between the OH groups in CAB and the C=O groups in the amorphous part of PHB (O–

H···OC) are formed in the blends with the high CAB content. These intermolecular 

interactions in the PHB/CAB blends highly depend on temperature and affect the 

crystallization kinetic of PHB in the blends.
28

 Accordingly, the presence of these hydrogen 

bondings in the general polymer blends plays significant effects on the crystallinity, 

thermal properties, solubility and miscibility of the polymer blends.
33,34

 

In the continuity of our interest, we broaden our investigation to a study of blend 
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systems of PHB and chitin (Figure 1b). Despite the studies on PHB/chitin blends are rare, 

chitin was chosen as a blend partner because it is the second most abundant polysaccharide 

in the nature after cellulose, which also has biodegradable and biocompatible 

properties.
35,36

 Therefore, it is a highly potential blending source for large scale application 

in the future. On the other hand, chitin has hydroxyl and amide functional groups that may 

promote the formation of intermolecular hydrogen bondings with carbonyl groups of PHB. 

The intermolecular interaction, such as C=O···H−O and C=O···H−N hydrogen bonds, is 

an essential factor to reduce the crystallinity of PHB which further will improve the 

physical properties of PHB.
16,17,27,28

 Therefore, the blending of PHB with chitin is expected 

to fabricate a good biodegradable and biocompatible polymer with more wide-range 

applications.  

Previously, Lee et al.
37

 reported that chitin can improve the mechanical properties of 

PVA with specific molecular interactions between C=O and OH. In related on another 

study on PHB blending systems, Ikejima et al.
38

 studied thermal properties and 

crystallization behavior of PHB in the blends with chitin and chitosan. They reported that 

the crystallization of PHB was suppressed by blending with chitin and chitosan and 

suggested the formation of hydrogen bonds between carbonyl groups of PHB and amide 

NH groups of chitin from the results of 
13

C NMR spectra. However, their suggestion was 

based only on evidences from the 
13

C NMR study and not supported by other experimental 
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results. So far, the investigation of intermolecular hydrogen bondings in the PHB/chitin 

blends has not been fully explored yet. 

The present study has aimed to investigate the intermolecular interactions and 

crystallization behavior of the PHB/chitin blends with the blend ratio of 100/0, 90/10, 

80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, 10/90 and 0/100 by combination of 

various techniques: differential scanning calorimetry (DSC), wide-angle X-ray diffraction 

(WAXD) and infrared (IR) spectroscopy. In this paper, our discussion focuses mainly on 

the following points: (1) the corroboration of the intermolecular hydrogen-bonding 

interactions in the PHB/chitin blends, particularly studies from IR spectra of the blends 

through the assignments in the regions of amide I, amide II and C=O stretching; (2) the 

evidences for the existence of these intermolecular hydrogen bondings in the amorphous 

phase; (3) the effects of intermolecular hydrogen bondings on the crystal structure and 

crystallization behavior of PHB in the PHB/chitin blends. The present study shows that the 

crystallinity of PHB decreases in the blends with chitin, particularly in the blends with 

PHB  50 wt % along with the formation of intermolecular C=O···H−N and C=O···H−O 

hydrogen bonds between PHB and chitin. Furthermore, these intermolecular hydrogen 

bonds were found to occur in the amorphous phase. The intermolecular interaction in the 

PHB/chitin blends is stronger than those in the PHB/CAB and PHB/PVPh. 
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2. EXPERIMENTAL SECTION 

2-1. Materials and Sample Preparation 

The bacterially synthesized PHB and chitin were purchased from Aldrich Japan Co. 

and Tokyo Chemical Industry Co., respectively, and were used without further purification. 

Samples of PHB/chitin blends were prepared by dissolving PHB and chitin in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) with prescribed weight percentage. The films 

were prepared by casting the solution of blend samples on a perfluoroalkoxy (PFA) petri 

dish followed by evaporation at room temperature and continued by drying in a vacuum 

oven at 60
°
C for 12h.  

2-2. Differential Scanning Calorimetry (DSC) 

DSC measurements were performed with a Perkin-Elmer Pyris6 under nitrogen purge 

and a pure indium was used for calibration of the calorimeter. The DSC thermograms of 

PHB/chitin blends were measured over a temperature range of -40 to 200
°
C at heating and 

cooling rate of 10
°
C/min. The melting temperature and the heat of fusion of PHB were 

obtained from the first heating process. The samples were firstly melted at 190
°
C and 

maintained for one minute, then followed by cooling to -40
°
C. 

The degree of crystallinity (Xc) of each blend was calculated from the enthalpy 

normalized to the actual weight fraction according to:  

𝑋𝑐 =
∆𝐻𝑚

∆𝐻°
𝑃𝐻𝐵

x  x 100  
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in which ΔHm is the measured enthalpy in each blend, ΔH°PHB is the enthalpy of the neat 

100% PHB crystals (146 J g
-1

) [39,40] and  is the weight fraction (see also Table 1). 

2-3. Wide-angle X-ray Diffraction (WAXD) 

WAXD profiles of the blend films were measured at room temperature by using 

ULTIMA IV (Rigaku Co., Akishima, Japan) X-ray diffractometer equipped with a 

scintillation detector in the scattering range of 2θ = 10
°
 – 30

°
. The X-ray beam of Cu Kα 

(wavelength 1.5406 Å) was employed at generator power of 40kV and 40 mA. 

2-4. IR Spectroscopy 

IR spectra of the blend films were measured by a Thermo Nicolet 6700 equipped with 

a liquid nitrogen cooled system and a mercury cadmium telluride (MCT) detector. The 

spectra were measured with 256 scans at a 2 cm
-1

 resolution in the region of 4000 to 650 

cm
-1

. The film samples were sandwiched by two KBr substrates, which were connected to 

a thermocouple to measure the precise temperature of film samples. The temperature was 

controlled by a temperature controller unit (CHINO, Model SU). The films were step 

wisely heated and cooled at a rate of 2°/min and maintained for three minutes before the 

measurement. 
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3. RESULTS AND DISCUSSION 

3-1. Differential Scanning Calorimetry (DSC) 

Figure 2a shows DSC thermogram of PHB/chitin blends with various compositions in 

the first heating process. PHB shows double endotherm peaks, i.e. a small peak appears 

because of the partial melting of imperfect crystals while a larger peak is caused by the 

melting of more perfect crystals and the recrystallized crystals during the heating process.
27

 

In contrast, chitin does not show any endotherm peak during the heating process as in the 

cases of previous studies of chitin blends.
37,38

 Chitin most likely exists as the amorphous 

phase, and therefore, chitin does not show its thermal activity in DSC. The intensity of 

melting peaks of PHB decreases with increasing chitin contents in the blends, however the 

melting temperature (Tm) changes a little. A clear endotherm peak cannot be observed for 

the blends with PHB 50 wt % and eventually disappears when the PHB content becomes 

less than 40 wt %, signifying that the crystallinity of PHB substantially decreases by 

blending with chitin. However, it is noted that chitin does not much affect the Tm of the 

PHB crystals in the blend samples. 

Figure 2b shows DSC thermograms obtained during the cooling process to investigate 

the effect of chitin matrix on the crystallization of PHB. It can be clearly seen that the 

intensity of the crystallization peak of PHB in the blends decreases with increasing chitin 

content, also indicating that the crystallizability of PHB decreases in the blends. Another 
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important point in Figure 2b is that the depression in the crystallization temperature (Tc) is 

higher than that of Tm. The increment of Tc in the blends with the chitin up to 10 wt % is 

caused by the nucleation effect of chitin. It clearly indicates that in the small loadings 

chitin act as a nucleating agent that promotes the rapid growth of the PHB crystals.
8,9,41

 As 

a result, the temperature when PHB begins to crystallize is earlier in those blends. 

However, in the blends with higher chitin contents, the certain chitin chains interfere the 

crystallizability of PHB by forming intermolecular interactions and hinder the growth of 

the PHB crystal. Therefore, plot of Tc in Figure 2c is gradually decreased. The thermal 

characteristics of blends are summarized in Table 1. 

The most important factor in the reduction of crystallinity is due to the formation of 

intermolecular interactions between PHB and chitin during the crystallization process, 

which would be caused by reduced mobility of PHB molecules peculiar in PHB/chitin 

blends. The intermolecular interactions which play a crucial role for reducing the 

crystallinity of PHB has also been observed in other blends, such as PHB/CAB blend
27

 and 

PHB/chitosan blend.
38,42

 

 

3-2. Wide-Angle X-ray Diffraction (WAXD) 

Figure 3 shows X-ray diffraction patterns of PHB/chitin blends with various 

compositions collected at room temperature. PHB shows several sharp diffraction peaks in 
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the WAXD patterns, while chitin presents a simple broad diffraction peak (110) located 

around 2 = 19.6°. It is important to highlight that chitin as a cast film from HFIP solution 

has crystalline volume fraction about 10%.
43

 It gives us another evidence that chitin cast 

film reasonably exists in the amorphous phase.  

The intensity of PHB diffraction peaks decreases gradually with increasing chitin 

content in the blends and eventually the peaks disappear for the blends with PHB ≤ 30 

wt %. The diffraction peak position of PHB in the blends is almost the same as that of PHB, 

indicating that chitin little affects the crystalline structure of PHB. The WAXD results in 

Figure 3 indicate a similar trend as the DSC results that the significant changes are 

observed in the blends with PHB ≤ 50 wt %.  Even though chitin suppresses the 

crystallinity of PHB, the WAXD results suggest that the crystalline structure of PHB does 

not change significantly by blending with chitin. It is noted that although DSC could not 

observe the melting peak for the blend with PHB 40 wt %, the crystalline diffraction due to 

(020) planes still appears in its WAXD pattern. This occurrence may be ascribed to the 

different sensitivity of the DSC and WAXD measurement techniques. 

Figure 3 also suggests that the formation of intermolecular interactions between PHB 

and chitin occur in the amorphous phase. If the intermolecular interactions do not occur, 

the diffraction of crystalline peaks of PHB should be observed together with the diffraction 

of chitin.
42

 However, with increasing chitin content in the blends only broad peak (consider 
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as a dominant amorphous phase)
27

 is observed, indicating that the crystallizability of PHB 

is suppressed to impend a complete amorphous state because of the presence of strong 

interactions.
44

  

The difference in the crystallization of the blends can be explained in terms of chain 

mobility. It is known that the adequate chain mobility towards the growth front is one of 

the major (kinetic control) factors in the crystallization of semicrystalline polymers. For 

example, in binary crystalline and amorphous blends, the amorphous chains reduce the 

mobility of the crystalline polymer chains to the growth front. As a result, the 

crystallization rate will be reduced with the increase of the amorphous component in the 

blends. However, if sufficient time is given to crystallize and there are no any interactions 

between the two blend components, then the crystallizable polymer chain should be able to 

crystallize. In another case, if the amorphous and crystalline polymer components are 

capable to form intermolecular interactions, the crystallizability of the crystalline polymer 

component should drastically drop with composition. The crystallizable chain mobility is 

almost quiescent (even the crystallization time is sufficient) due to intermolecular 

interactions. Therefore, the mobility of the crystallizable amorphous component is 

inadequate to reach the growth front and rearrange into the crystal lattice. For example, in 

the PHB/starch blends, the crystallinity and melting points of PHB are not altered by starch 

compositions, even up to 50 %. It indicates that the mobility of PHB chains is not affected 
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by the starch component due to hindrance. On the other hand, in the present study, the 

crystallinity of PHB drastically reduced with chitin composition as seen in the DSC and 

WAXD results. Furthermore, the present discussion suggests that the intermolecular 

interactions between PHB and chitin must be stronger than the PHB and starch blend 

system.
45,46

 The detailed explanation and evidence of intermolecular hydrogen bond 

interactions will be discussed based on IR measurements in the following section. 

 

3-3. Composition–Dependent IR Spectra 

3-3-1. C=O stretching, Amide I and Amide II Region.
 

Figure 4a shows normalized IR spectra in the 1800-1500 cm
-1

 region and their second 

derivatives of PHB/chitin blends with various compositions collected at room temperature. 

All the IR spectra were normalized by dividing all the absorbance values by the highest 

absorbance value in one spectrum. The region of 1770-1680 cm
-1

 contains strong 

absorption bands due to the C=O stretching modes of PHB. A band at 1723 cm
-1

 is 

assigned to the C=O stretching mode of PHB in the crystalline phase and a broad band 

centered at 1747 cm
-1

 arises from the C=O stretching mode of PHB in the amorphous 

phase.
19-23

 As aforementioned, a weak intramolecular hydrogen bonding between the C=O 

and CH3 groups exists in the crystalline PHB. Therefore, the bands at 1723 and 1747 cm
-1

,
 

hereinafter, are referred to intra C=O and free C=O of PHB, respectively.
16,27
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As seen from Figure 4a, the intensity of intra C=O band decreases with decreasing the 

PHB content in the blends while that of free C=O band becomes predominant. The 

significant change of intra C=O occurs in the blend with PHB 50 wt % and the band 

eventually disappears with PHB ≤ 40 wt %, indicating that PHB remains in the amorphous 

phase in these blends. However, note that the position of intra C=O band in the blends is 

almost the same as that of neat PHB. These results confirm the similar position of Tm of 

PHB in the DSC and peak diffraction of PHB in the WAXD results described above. On 

the other hand, the position of free C=O band at 1747 cm
-1

 of neat PHB shifts by 7 cm
-1

 to 

a lower frequency with increasing chitin content in the blends (see the second derivative 

spectra). This indicates the existence of intermolecular hydrogen bondings between PHB 

and chitin in the amorphous phase. The detail of this evidence will be discussed later in the 

temperature-dependent IR spectra section.  

The second derivatives spectra of the blends with PHB ≤ 50 wt % shown in the inset 

of Figure 4b indicate that a weak shoulder band starts to appear at around 1707 cm
-1

 in the 

blend with PHB 50 wt % and appears more obviously in the blends with PHB 40, 30 and 

20 wt % at around 1710-1714 cm
-1

. Neither the neat PHB spectrum nor the neat chitin 

spectrum exhibits this band. Therefore, this new band maybe ascribed to the C=O 

stretching of PHB with an intermolecular hydrogen bonding with the OH and NH groups 

of chitin (hereinafter defined as inter C=O). This assignment is reasonable because the 
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intensity of inter C=O band increases with increasing chitin content in the blends 

reciprocal to the predominant of free C=O and diminish of intra C=O. The similar 

characteristics have been discussed for the PHB/PVPh blends with PVPh ≥ 70 wt % in 

previous studies [16-18]. In addition, it is known that the hydrogen bonded C=O bands in 

many polymer blends which contain carbonyl groups appear around this frequency.
47,48

 

In Figure 4a, there are three bands in the region of 1690-1500 cm
-1 

originated from 

chitin. Note that PHB does not show any absorption band in this region. In the chitin 

spectrum, this region consists mainly of amide I and amide II bands. Amide I band splits 

into two bands at 1661 and 1625 cm
-1

; the splitting of amide I band is known as a special 

characteristic of -chitin and has been interpreted as the existence of two types of 

hydrogen bonds formed by amide groups.
49,50

 The C=O groups of amide groups being 

engaged in the intermolecular C=O···HN hydrogen bonds give rise to an Amide I band at 

1661 cm
-1

, while, a band at 1625 cm
-1 

arises from an Amide I mode of amide groups which 

have double hydrogen bonds, intermolecular C=O···HN hydrogen bond (defined as inter 

C=O chitin) and intramolecular C=O···HO hydrogen bond (defined as intra C=O 

chitin).
51-54

 Another band at 1555 cm
-1

 is attributed to an Amide II mode.
37,50

 Note that the 

relative intensity of the 1625 cm
-1

 band is weaker compared with that of 1661 cm
-1

 as 

depicted in Figure 4b. 
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3-3-2. CH Stretching Region of PHB 

Figure 5 exhibits composition-dependent IR spectra in the 3020-2900 cm
-1

 region and 

their second derivatives for the PHB/chitin blends at room temperature. A band at 3009 

cm
-1

 has been assigned to the C–H stretching mode of the weak hydrogen bond between 

the C=O group and the CH3 group in the crystal lamella of PHB.
19-23

 The peak at 3009 cm
-1

 

decreases with increasing chitin content in the blends and entirely disappears when PHB ≤ 

50 wt %, indicating that the crystal lamella of PHB is disrupted. Therefore, the formation 

of PHB crystals is getting difficult in these blend samples, when the chitin content 

decreases. However, the position of this band does not change with decreasing the chitin 

content compared with that of neat PHB. This result gives further evidence that the 

crystalline structure of PHB does not change by blending with chitin. The detail 

assignment of IR bands is tabulated in Table 2. 

 

3-4. Temperature-Dependent IR Spectra 

3-4-1. C=O stretching Region 

  Figure 6 shows temperature-dependent IR spectra in the 1780-1670 cm
-1

 

region of PHB/chitin blends with PHB: (a) 100, (b) 70, (c) 50 and (d) 30 wt % and 

their second derivatives measured during the heating process, respectively. It can be 

seen that the intensity of intra C=O at 1723 cm
-1

 decreases with temperature, while 



54 

 

the intensity of free C=O increases. However, plots of the normalized peak at 1723 

cm
-1

 versus temperature in Figure 7a show that PHB crystals in the blends have 

similar melting behavior to the crystals in neat PHB. PHB crystals show the 

continuous-melting up to the Tm then decrease sharply above the Tm. This result 

further suggests that the PHB crystals are excluded from the chitin chains. 

 To discuss quantitatively about the confinement effect in the blends, the 

normalized full-width at half-maximum (FWHM) of the free C=O band of PHB 

versus temperature is plotted in Figure 7b. The FWHM calculation for the 

deconvoluted C=O amorphous band that are separated from the intra- and inter 

C=O bands was carried out by GRAMS software. The FWHM of the amorphous 

band reflects the degree of conformational distribution in the amorphous phase and 

the thermal mobility of the molecular chains. Generally, at room temperature, the 

chains of semicrystalline polymer in the amorphous region are constrained because 

they are packed in between the crystalline (lamellae structure) regions. As a result, 

the chain mobility at the Tg is almost quiescent and the thermal motion of polymer 

chains is hindered below the Tm during the heating process. It can be seen from 

Figure 7b that in the vicinity of the Tm, the FWHM of the free C=O band at 1747 

cm
-1

 of PHB sharply increases, indicating that the mobility of the amorphous chains 
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increase significantly due to the melting of the crystals then followed by the marked 

reduction in the confinement.  

  In the case of blend samples, if there were no intermolecular interactions 

between PHB and chitin chains in the amorphous region, we could expect a similar 

abrupt change in the FWHM of the free C=O band during the heating process. 

However, as can be seen in Figure 7b, the FWHM of the free C=O band is reduced 

with the increase in the chitin content, implying the increase in the strong 

confinement in the amorphous region. Such strong confinement is probably due to 

the formation of intermolecular hydrogen-bonds between PHB and chitin molecules. 

Therefore, in the blend with PHB 50 wt %, the mobility of PHB chains in the 

amorphous phase is slightly increased with temperature, which shows a sharp 

contrast to the neat PHB where a drastic increase in mobility is suggested especially 

above 130C. Note that the linear increment of each plot may be due to the thermal 

expansion during the heating process. 

Figure 6c-d also shows the appearance of inter C=O band at around 1710 cm
-1

 in the 

spectra of the blends with PHB 50 and 30 wt % with temperature. Among these IR spectra, 

the spectrum of the blend with PHB 30 wt % shows a clear existence of this band at 1711 

cm
-1

 (see the insert of Figure 6d). The appearance of inter C=O at around 1710 cm
-1

 

suggests that the C=O groups of PHB are hydrogen bonded with the NH or OH groups of 
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chitin.  

Figure 7c plots the wavenumber of the inter C=O band versus temperature for the 

blends with PHB: 40, 30 and 20 wt %. During the heating process, the inter C=O band 

gradually shifts to a higher wavenumber up to the Tm of PHB and further shows a distinct 

shift above the Tm of PHB, especially for the blend with PHB 40 wt %. Moreover, the inter 

C=O band shifts to a higher wavenumber with the increase in the chitin content in the 

blends. These results indicate that the intermolecular hydrogen bonding becomes weak 

with temperature and the increase in chitin content in the blends.  

Compared to our previous studies on PHB blending systems such as PHB/CAB
27

 and 

PHB/PVPh blends,
16

 the results on the present PHB blends show some differences from 

previous ones. For example, in the PHB/CAB blend with the ratio of 50/50, crystalline 

PHB still exists in the amorphous matrix. During the heating process, the crystallinity of 

PHB is increased and followed by melting of the PHB crystals.
27

 In the PHB/PVPh blend 

with 30 wt % PVPh, the intermolecular hydrogen bonds C=O···HO of PHB−PVPh are 

dissociated during the heating process, and then, PHB forms the weak intramolecular 

hydrogen bondings (CH3···O=C).
16

 In contrast, such exchanging behavior of 

intermolecular to intramolecular interactions in the PHB crystals was not observed in the 

present study for all the blends studied during the heating process. Although the 

intermolecular hydrogen bondings (C=O···H−O and C=O···H−N) of PHB-chitin become 
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weak with temperature, however, they are not dissociated during the heating to form 

intramolecular interactions (CH3···O=C) of PHB. Therefore, there is no increasing 

crystallinity of PHB in the blends and melting of PHB crystals in the blends with chitin  

50 wt %. This strongly suggests that the intermolecular interactions in the PHB/chitin 

blends are significantly stronger than the intermolecular interactions in the PHB/CAB and 

PHB/PVPh blends.
16,17,27

 

3-4-2. Amide I and Amide II Region 

Figure 8 displays temperature-dependent IR spectra in the 1700-1500 cm
-1 

region of 

chitin and the blends with PHB 30 and 50 wt % (bottom) and their second derivatives 

spectra (up). In the chitin spectrum (Figure 8a), the intensity of amide I band at 1625 cm
-1

 

shows a significant decrease with temperature, while, another peak of amide I band at 1661 

cm
-1

 changes a little with temperature. These results suggest that the inter C=O chitin is 

strong and almost stable with temperature. In contrast, the intra C=O chitin is weak with 

temperature. Therefore, the peak at 1625 cm
-1

 gradually decreases with temperature. This 

result agrees with the conclusion by Kameda et al.
52 

that the C=O···HO hydrogen bond is 

weaker than the C=O···HN hydrogen bond. The similar tendency of those two bands is 

also found for in the blends with PHB 30 and 50 wt % (Figure 8b and c).  

Based on all the above results, we propose the structure change and the formation of  

intermolecular interactions in the PHB/chitin blends in Figure 9. In the blends with PHB 
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content  50 wt %, the C=O groups in the amorphous chain of PHB form the 

intermolecular hydrogen bondings with OH and NH groups of chitin (C=O···HN and 

C=O···HO) and small crystalline lamella of PHB may still exist. With increasing 

temperature, the crystalline lamella transforms into amorphous chain and associates with 

chitin to form intermolecular hydrogen bondings. The intermolecular hydrogen bondings 

are not exchanging to intramolecular C=O···H3C of PHB with temperature. Above the Tm 

of PHB, these intermolecular hydrogen bondings still exist, even though they become 

weak. 

 

4. CONCLUSION 

 In the present study, we have explored the crystallization behavior of PHB in the 

PHB/chitin blends in relation with intermolecular hydrogen bondings by using DSC, 

WAXD and IR spectroscopy. The crystallinity of PHB is reduced by blending with 

chitin, especially the crystallinity in the blends with PHB  50 wt %. However, the 

crystalline peaks at 1723 and 3009 cm
-1

 of PHB in the blends appear almost at the 

same positions as those of neat PHB, implying that the crystal structure of PHB is 

changed little by the presence of chitin molecules. The reduction of crystallinity of 

PHB is probably due to the formation of intermolecular hydrogen bondings between 
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the C=O groups of PHB and the NH and OH groups of chitin (C=O···HN and 

C=O···HO) in the amorphous region of the blends (Figure 9). 

In the C=O stretching region of blends with PHB ≤ 50 weight %, the intra C=O band 

at 1723 cm
-1

 is diminished, the free C=O band at 1747 cm
-1

 becomes dominant, and a new 

band assigned to the inter C=O appears at around 1710 cm
-1

. The presence of this new 

band highly depends on the blend composition. These results clearly reveal the existence of 

intermolecular hydrogen bondings between PHB and chitin molecular chains. The fact that 

the intermolecular hydrogen bondings occur in the amorphous phase, is further confirmed 

by the plot of FWHM of free C=O at 1740 cm
-1

 of PHB in the blends in Figure 8b. With 

temperature, these intermolecular hydrogen bondings become weak, however, they are not 

dissociated even up to the Tm of PHB to form intramolecular hydrogen bonds (CH3···O=C) 

of PHB. Therefore, PHB cannot form crystals in the blends with PHB  50 wt %. This 

result suggests the presence of strong intermolecular hydrogen bondings in the PHB and 

chitin blends and it has been indicated that the intermolecular C=O···HN and C=O···HO in 

the PHB/chitin blends are significantly stronger than those of PHB/PVPh and PHB/CAB 

blends. 
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Table 1: Thermal properties of PHB/chitin blends obtained from DSC 

measurements 

PHB/chitin 

(wt % / wt %) 
Tm (°C) Tc (°C)  ΔHf  (J g

-1
) Xc (%) 

100/0 

90/10 

80/20 

70/30 

60/40 

50/50 

40/60 

30/70 

20/80 

10/90 

0/100 

169.1 

168.9 

168.7 

167.3 

166.8 

150.9 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

66.2 

69.4 

65.0 

60.7 

58.0 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

113 

73 

61 

26 

20 

16 

 

 

 

 

 

77 

56 

52 

25 

23 

22 

 

 

 

 

 

n.d. = not detected 
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Table 2: Band assignments of IR spectra of PHB/chitin blends 

No. 
Wavenumber 

(cm
-1

) 
Assignments Components 

1 

2 

 

 

3 

 

4 

5 

6 

7 

1555 

1625 

 

 

1661 

 

1710 - 1714 

1723 

1740 - 1747 

3009 

Amide II 

Amide I, C=O with double hydrogen bonds: 

inter C=O chitin, C=O···HN and 

intra C=O chitin, C=O···HO 

Amide I, C=O with single hydrogen bond: 

inter C=O chitin, C=O···HN 

inter C=O, C=O···HO and C=O···HN  

intra C=O 

free C=O 

intra C−H, C=O···H−C 

chitin 

chitin 

 

 

chitin 

 

PHB−chitin 

PHB crystalline 

PHB amorphous 

PHB crystalline 
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Figure 1. Chemical structures of (a) poly(3-hydroxybutyrate) (PHB) and (b) chitin. 

(c) 

(a) (b) 

Figure 2. DSC thermograms of PHB/chitin blends with different blend ratios at a rate of 

10°C/min in the (a) heating process and (b) cooling process (the peaks have been 

normalized relative to the mass of the sample) and (c) Plot of Tm and Tc for the blends 

versus the composition of PHB in the blends. 
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Figure 3. X-ray diffraction profiles of PHB/chitin blends with different ratios collected 

at room temperature. 

(b) 
(a) 

Figure 4. IR spectra in the 1800-1500 cm
-1

 region of (a) PHB/chitin blends with 

different ratios collected at room temperature (bottom) and their second derivatives 

(up), (b) the enlargement of the second derivative spectra of the PHB/chitin blends 

with PHB ≤ 50 wt %. 
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Figure 5. IR spectra in the 3020-2900 cm
-1

 region of PHB/chitin blends with different 

ratios collected at room temperature (bottom) and their second derivatives (up). 
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(b)  (a) 

(c)  (d) 

Figure 6. Temperature-dependent IR spectra (bottom) and their second derivatives (top) 

in the C=O stretching band region of PHB wt %: (a) 100, (b) 70, (c) 50 and (d) 30. 
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Figure 7.  (a) Plots of the normalized peak height at 1723 cm
-1

 versus temperature, (b) 

plots of the full width at half maximum (FWHM) of free C=O band at 1747 cm
-1

 of PHB 

versus temperature, and (c) plots of wavenumber shift of inter C=O band versus temperature 

for blends with PHB: 40, 30 and 20 wt % (all during heating process). 
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Figure 8. Temperature-dependent IR spectra (bottom) and their second derivatives (top) 

in the 1700-1500 cm
-1

 region of (a) chitin, (b) PHB 30 wt % and (c) PHB 50 wt %. 
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Figure 9. Sketch of the structure changes for PHB (up) and PHB/chitin blends with PHB 

 50 wt % (below) and the formation of intermolecular PHB-chitin hydrogen bonds in 

the amorphous phase. 
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Evolution of Intermediate and Highly-ordered Crystalline States Under 

Spatial Confinement in Poly(3-hydroxybutyrate) Ultrathin Films 
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ABSTRACT  

The crystallization behavior and crystalline structures of poly(3-hydroxybutyrate) 

(PHB) ultrathin films (~52 nm) under spatial confinement were investigated using infrared 

reflection-absorption spectroscopy (IRRAS) and two-dimensional grazing incidence X-ray 

diffraction (2D-GIXD). Intermediate and highly-ordered crystalline states were observed 

during heating and melt-cooling of these films. In the ultrathin films, the intermediate state 

was noticeably stable at lower temperatures, whereas the highly-ordered state was more 

stable at higher temperatures. A transformation from the intermediate state into the 

highly-ordered state occurred as the temperature increased, as the crystals in the 

intermediate state acquire sufficient thermal energy to overcome the energy barrier. 

2D-GIXD results show that the intermediate state was dominant in edge-on-lamellae 

configuration where the crystallographic b-axis is normal to the film surface. Meanwhile, 

the highly-ordered state was predominant in flat-on lamellae configuration where the 

b-axis is parallel to the film surface. In the surface region, crystals strongly tended to align 

in an edge-on lamellae configuration. 

 

 

 

 



76 

 

1. INTRODUCTION 

Ultrathin films of polymeric materials have become more and more desirable for use 

in a variety of current devices as criteria demand become lighter, thinner and smaller. 

Applications for such films include coatings, selective membranes, electronic sensors, 

solar cells, packaging, and biomedical materials.
1–4

 The thickness of films < 100 nm 

(so-called ultrathin film) is comparable to the average polymer coil size and considered as 

a typical one-dimensional confinement system.
5–7

 As such, their physical properties 

including morphology,
8,9

 glass transition temperature (Tg),
10–12

 mobility
13,14

 and 

crystallization behavior
15–18

 are appreciably different from those of the bulk material. In 

such thin films, the effects from surface/interface and confinement effects can be dominant 

factors for influencing the nucleation and preferred alignment of crystals during the 

crystallization process.  

The terms “edge-on lamellae” and “flat-on lamellae” are often used for specific crystal 

orientations to indicate that the chain axis is parallel or normal to the surface substrate, 

respectively.
5
 For example, dynamic Monte Carlo simulations of polymer thin films with 

thicknesses comparable to the polymer coil size show dominant edge-on lamellae 

formation on slippery walls and flat-on lamellae dominance on sticky walls, particularly at 

high temperatures.
6
 Edge-on lamellae have also been observed in a high-density 

polyethylene (HDPE) film at a thickness < 100 nm.
19

 Generally, it can be assumed that 
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dominant edge-on lamellae are formed at low temperatures in surface regions, while 

flat-on lamellae are mainly formed at high temperatures in substrate-interface regions.
20,21

 

On the other hand, oriented ultrathin films can be induced through recrystallization on 

oriented substrates, such as carbon-coated polyethylene.
22–23

 Hence, understanding the 

crystallization and crystal structure under confined geometries is very crucial in the field of 

polymer science and nanotechnology engineering. 

Poly(3-hydroxybutyrate) (PHB) is one of the most comprehensively studied 

biodegradable polymers, with physical properties similar to isotactic polypropylene 

(iPP),
24–26

 and is considered a promising alternative material for a number of different 

applications. Crystalline
 
PHB is orthorhombic with the space group P212121 (a = 5.76 Å, 

b= 13.20 Å, and c = 5.96 Å (fiber axis)).
27

 PHB is known to have unique weak hydrogen 

bonding (C–H∙∙∙O=C) along the a-axis direction between CH3 groups in one helical chain 

and C=O groups in another helical chain.
28–31

 Since the direction of these hydrogen bonds 

is nearly parallel to the lamellae folding direction, this interaction may be responsible for 

stabilizing the lamella crystals.
31

 PHB is also a good candidate for studying polymer 

crystallization from the melt because of the presence of low level heterogeneous nuclei, 

due in turn to its high stereoregularity and crystallinity.
32,33

 Nevertheless, as in the case for 

many other polymeric materials, information about the crystalline structure and the 

crystallization behavior of PHB ultrathin films is still limited. 
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Mori et al.
34

 reported two kinds of crystallites in P(HB-co-HHx) thin films (ca. 82.8 

nm thick) with different b-axis dimensions from the split of the (020) Bragg reflections in 

grazing incidence X-ray diffraction (GIXD). A shorter b-axis arises from densely-folded 

lamellae corresponding to the stable state, while a longer axis indicates loosely-packed 

lamellae corresponding to the metastable state. Recently, Sun et al.
20

 studied the 

crystallization behavior of PHB thin films on Si wafers using GIXD. They observed the 

change of lamellar orientation from the b-axis perpendicular to the surface to the c-axis 

perpendicular to the surface by changing the annealing temperature, due to the influence of 

free surface and buried interface effects, respectively. Furthermore, they reported that the 

melt-crystallization of PHB on poly(vinylphenol) (PVPh) layer was significantly inhibited 

due to the interdiffusion between PHB and PVPh.
35

 Crystallization of PHB also 

significantly decreased after the addition of small amounts of high molecular weight 

poly(L-lactic acid) (PLLA).
36

 A new band appears in the PHB/high molecular weight 

PLLA blends at 1731 cm
–1

, corresponding to the intermediate state band. Unfortunately, 

information about the crystalline structure and behavior in the intermediate state was still 

incomplete in this study. 

The findings by our group related to the intermediate state
37–40

 are important points for 

understanding the crystallization behavior of PHB, although a widely-accepted definition 

of the intermediate state has not yet been established. Our group observed a weak feature at 
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1731 cm
–1

 during the crystallization of bulk PHB from the spectral variation of infrared 

(IR) spectroscopy and two-dimensional correlation spectroscopy (2DCOS) analysis.
 
The 

1731 cm
–1

 band is assigned to an intermediate state of the C=O stretching band that can be 

reconciled with the concepts proposed by Strobl.
41

 

In the present study, we have explored the crystallization behavior and role of the 

intermediate state in the crystallization of PHB ultrathin films, which are expected to differ 

from those of the bulk, using several surface-sensitive techniques including 

infrared-reflection absorption spectroscopy (IRRAS), X-ray reflectivity (XRR), and 

two-dimensional grazing incidence X-ray diffraction (2D-GIXD). In particular, we have 

focused our study on the nucleation sites, growth, preferred orientation, and crystalline 

structure of the intermediate state and those of the highly-ordered crystalline state of PHB 

confined in ultrathin films during heating and melt-cooling processes. Moreover, we have 

meticulously studied the transformation from the intermediate state to the highly-ordered 

state assisted by thermal energy. A unique stable feature of the intermediate state was 

found after the melt-cooling process, which has not been previously observed in bulk PHB. 

In the GIXD study, the crystalline peaks measured in the out-of-plane and in-plane 

geometries with two different angles of incidence are discussed, indicating nucleation sites 

and preferred orientations that are strongly dependent on the films and thermal processes 

involved. To the best of our knowledge, this is the first IRRAS and X-ray study that 
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unambiguously demonstrates the anomalously stable intermediate structure and 

transformation to a highly-ordered structure in PHB ultrathin films. 

 

2. EXPERIMENTAL SECTION 

2-1. Materials and Sample Preparation 

Bacterially synthesized PHB purchased from Aldrich Co., Ltd., was purified by being 

dissolved in hot chloroform, precipitated in methanol and vacuum dried at 60 °C. PHB was 

diluted in chloroform for use in spin coating, at rotating speeds and spin coating times of 

4000 rpm and 45 s, respectively. Flat Au substrates were used for IRRAS, while Si (100) 

wafers were used for GIXD measurements. Prior to measurement, the films were dried and 

annealed under low vacuum at 60 °C for 12 h. The typical thickness of PHB ultrathin films 

was ca. 52 nm. 

2-2. IRRAS Spectroscopy 

Specular reflectance IRRAS spectra were measured using a Thermo Nicolet 6700 

FTIR spectrometer equipped with a MCT detector. A reflection attachment (Spectra-Tech. 

FT80 RAS) with an incident angle of 80° was attached to the spectrometer together with a 

rotatable wire-grid polarizer of KRS5-substrate (ST Japan). The temperature was 

controlled using a temperature controller CHINO (model SU) and the spectra were 

collected at 2 cm
–1

 resolution with 256 scans. The film was heated and cooled at a rate of 
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2 °C/min and maintained at a constant temperature for 3 min prior to each measurement. 

2-3. X-ray Diffraction 

XRR profiles were collected at room temperature using a Rigaku SmartLab with 

CuKα radiation (Rigaku Co.) The thicknesses of the PHB thin films were determined by 

nonlinear least squares fitting of the XRR profiles with software developed in-house 

(Figure 1). The film thickness dependence is almost linear to the concentration, these 

values were confirmed to be reproducible. 2D-GIXD measurements were conducted with a 

multi-axis diffractometer installed at BL03XU of SPring-8, Japan, at a wavelength = 0.1 

nm and critical angle for total reflection θc = 0.094. Out-of-plane and in-plane diffraction 

profiles were simultaneously collected using an image plate detector (R-AXIS IV, Rigaku 

Co.) The angle of incidence was set at 0.114 (1.21θc) and 0.074 (0.79θc) in order to 

obtain information about the crystallites in all regions of the film and in the narrow surface 

region, respectively.  

 

3. RESULTS AND DISCUSSION 

3-1.  Temperature-dependent of IRRAS spectroscopy 

C=O stretching region. Figure 2a shows IRRAS spectra and their second derivatives 

in the C=O stretching region of a PHB ultrathin film (52 nm thickness). Hereinafter, the 

blue curves in all IRRAS spectra indicate spectra measured at room temperature, while red 
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curves indicate spectra collected at an elevated temperature. The spectra in Figure 2a show 

two bands at 1726 and 1750 cm
–1

. The intensity of the 1726 cm
–1

 band gradually decreases 

with temperature, eventually vanishing at 130 C; conversely, the intensity of the 1750 cm
–

1
 band increases with temperature. Although the band positions of these two modes are 

slightly different from the transmission spectra of bulk PHB (1723 and 1740 cm
–1

 for the 

C=O crystalline and amorphous mode, respectively),
42

 we assigned the bands at 1726 and 

1750 cm
–1

 to the C=O stretching crystalline and amorphous modes, respectively.  

The relative intensity of the 1726 cm
–1

 band in the IRRAS spectra is lower than that of 

the corresponding C=O crystalline band at 1723 cm
–1

 in the transmission spectra of bulk 

PHB. IRRAS is sensitive to the configuration of molecules, especially for vibrational 

modes having transition moments perpendicular to the film surface, which become more 

intense.
43,44

 The lower intensity of the 1726 cm−
1
 bands in the IRRAS spectra is likely to 

show that the C=O stretching of PHB in ultrathin films is aligned nearly parallel to the film 

surface, although we cannot unambiguously exclude the possibility of low crystallinity that 

is often observed for ultrathin films.
17,46

 Since many PHB crystallites in ultrathin films 

grow along the b-axis normal to the surface
20,34

 and the C=O bond is known to be 

perpendicular to the c-axis,
27,45

 the C=O stretching should be preferentially oriented along 

the a-axis. The temperature at which the C=O crystalline band completely melts at 130 C 

is much lower than the melting temperature of bulk PHB (~ 172 C). This result indicates 
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that crystallization in confined environments is often inhibited, resulting in decreased 

crystallinity,
18,46–48

 which is in accordance with the fact that the sample consists of many 

small crystallites that often have lower melting points.
18,49

  

Figure 2b presents plots of wavenumbers for the amorphous and crystalline bands 

versus temperature, clearly shows a gradual shift of the C=O crystalline peak position to a 

lower frequency by approximately 4 cm
–1

 during the heating process. This sort of peak 

shift was not previously observed for bulk PHB. According to these observations, the C=O 

crystalline band contains a few different bands originating from the different crystalline 

structures with different IR frequencies. Based on the previous studies of bulk PHB,
37–40

 it 

is likely that the PHB crystalline phase contains two kinds of crystalline structures, those 

being less ordered (imperfect) crystalline structure (presumably as the intermediate state) 

with a higher C=O frequency, and highly-ordered crystalline structure with a lower C=O 

frequency. Furthermore, a noticeable shift of the crystalline band from 1726 cm
–1

 to lower 

frequencies suggests a transformation of the intermediate state into the highly-ordered state 

as the temperature increases. In order to prove the existence of two kinds of crystalline 

structures and quantify their relative contents in the ultrathin films, we decomposed the 

IRRAS spectra shown in Figure 2a by Gaussian fitting into the amorphous, intermediate 

and highly-ordered crystalline fractions (Figures 3a–b), and the integrated intensity of each 

fraction is plotted in Figure 3c. 
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Figure 3a shows that the intermediate state is dominant prior to the heating process. 

During the heating process, the intensity of the intermediate state gradually decreases as 

depicted in Figure 3b–c. Figure 3c reveals that the decrease in the volume fraction of the 

intermediate state and the increase in that of the highly-ordered state occur simultaneously, 

with the most prominent variation present at around 70−100 C. On the other hand, the 

intensity of the amorphous fraction increases only gradually up to 100 C. These results 

indicate that the transformation of less ordered crystals (intermediate state) into 

highly-ordered crystalline structures at higher temperatures, which afford sufficient 

energies to overcome the activated energy needed for recrystallization into highly-ordered 

crystalline structures. 

Figure 4 presents the IRRAS spectra in the C=O stretching region collected during the 

crystallization process terminated at room temperature; three obvious bands are present at 

1750, 1731 and 1722 cm
–1

. Initially, only a broad amorphous band was observed in the 

melt state, whose intensity decreases with decreasing temperature. Simultaneously, the two 

crystalline bands at 1731 and 1722 cm
1
 appear at approximately 80 C, and for both peaks 

the intensity increases with decreasing temperature. However, the intensity of those two 

crystalline bands is much smaller than the C=O crystalline band at 1726 cm
–1

 as shown in 

Figure 2. This indicates that the melt-cooling process changes the direction of the dipole 

moments of C=O crystalline modes away from the surface normal direction. According to 
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previous reports, the 1750 cm
–1

 band corresponds to the C=O stretching amorphous mode, 

while the 1731 and 1722 cm
–1

 bands are the C=O stretching modes of the intermediate 

state and highly-ordered crystalline state, respectively.
37–40

 The intermediate state in the 

PHB ultrathin film behaves quite differently from the intermediate state of bulk PHB. The 

intermediate state band at 1731 cm
–1

 is clearly detected in ultrathin films even after the 

crystallization process is finished, while in bulk PHB the corresponding band only appears 

during the crystallization process at a very small intensity, and is hardly present after the 

crystallization is finished.
37

 Two speculations that can explain such a stable character of 

intermediate state observed in the melt-cooled ultrathin films: (1) Thermodynamically 

stability that the intermediate state acquires with substrate and/or free surface; (2) Slow 

kinetics as a result of the confined effects associated with an enhanced activation energy 

for the transformation to the stable state. To determine which factor is dominant in the 

PHB ultrathin films, the temperature scan rate dependence must be detected, which would 

be one of the measurements to be accomplished in the near future. Such a feature of 

intermediate state of PHB, peculiar to the ultrathin films, could be a factor for explaining 

the reduced crystallinity in the surface region. 

For quantitative discussion, we decomposed the IRRAS spectra shown in Figure 4 

using Gaussian fittings into highly-ordered and intermediate crystalline fractions, 

amorphous and another feature developed at 1737 cm
–1

 which overlaps with the band due 
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to the C=O intermediate state (typical result is depicted in Figure 5). Since the three-peak 

fitting successfully performed for the spectra collected during the heating process (Figures 

2 and 3) had failed for the melt-cooling data, the fourth peak was added to see the proper 

fitting. The fourth peak corresponds to the 1737 cm
-1 

band was previously reported by 

Unger et al. and it was assigned as an amorphous with some structural order.
51-53

 

Hereinafter, the bands at 1737 and 1748 cm
-1

 were assigned as an ordered-amorphous band 

and a disordered amorphous band, respectively.  

In the initial crystallization stage as depicted in Figure 5a, the amorphous phase is 

dominant, while the crystalline phase in the intermediate and highly-ordered states are only 

minor components. When the crystallization at room temperature finished after the 

melt-cooling process, the intensity of amorphous bands at 1748 and 1737 cm
–1

 decreased, 

whereas the 1722 and 1731 cm
–1

 bands became more intense and well-resolved (Figure 5b). 

The thermal behavior of the ordered-amorphous band at 1737 cm
–1

 is in contrast to that of 

the intermediate state band at 1731 cm
-1

; the intensity of 1737 cm
-1

 band decreased while 

the intensity of 1731 cm
-1

 band increased simultaneously, as depicted in Figure 5c. This 

result implies that the crystals in the intermediate state are trapped and quiescent in the 

ordered-amorphous phase of thin films. This is may be another reason why the 

intermediate state is rather stable after crystallization from the melt. 

Figure 5c shows that upon the cooling process at least until 70C, the intensity of 
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intermediate state and both amorphous phases is decreased, whereas the intensity of the 

highly-ordered state band is slightly increased with decreasing temperature. The enhanced 

intensity of the highly-ordered band is in accordance with the behavior of the intermediate 

state band. The decreased intensity of the C=O intermediate state band is related to the 

enhanced intensity of the C=O highly-ordered state band above 70 C. A drastic increase in 

the intermediate state from 70 C to room temperature probably reflects the transformation 

from amorphous state to the intermediate state. 

The C−H stretching region. Figure 6 shows IRRAS spectra of a PHB ultrathin film 

in the C−H stretching region during (a) heating and (b) melt-cooling processes. In the C−H 

stretching region, there is a band arising from a weak intermolecular C−H∙∙∙O=C hydrogen 

bond of the asymmetric CH3 stretching mode, which can be monitored from the unusual 

C−H stretching frequency at 3009 cm
–1

.
28–31

 Note that in Figure 6a, the weak hydrogen 

bonding band is observed as a shoulder band at 3009 cm
–1

. Bands at 2996 and 2967 cm
–1

 

are assigned to the CH3 asymmetric stretching modes, and those at 2934 and 2873 cm
–1

 are 

the CH2 antisymmetric stretching mode and the CH3 symmetric stretching mode, 

respectively.
30,54 

The appearance of the 3009 cm
–1

 band indicates that weak intermolecular 

C−H∙∙∙O=C hydrogen bonding is still present in the PHB ultrathin film along the a-axis. 

Similar to bulk PHB,
42,54

 the 3009 cm
–1

 band becomes weaker as the temperature increases 

and vanishes in the melting state. Presumably, the C−H bond of C−H∙∙∙O=C 
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hydrogen-bonding aligned in the same direction as the C=O bond, which is nearly parallel 

to the substrate surface.   

Figure 6b depicts the C−H stretching region of a PHB ultrathin film during the 

melt-cooling process. Six crystalline bands are present at 3007, 2994, 2976, 2931, 2872 

and 2854 cm
–1

 after the crystallization process. Compared to the corresponding bands in 

Figure 5a, the positions of these bands are shifted by 2 cm
–1

 to lower wavenumbers. Since 

this shift is almost the same magnitude as the resolution of our IRRAS spectroscopy, it is 

difficult to determine whether the strength of the C−H∙∙∙O=C hydrogen bonding is altered 

or not. However, it is reasonable for us to assume that the strength of the hydrogen bonds is 

altered during the crystallization, since we know that the strength can vary with 

temperature and may be different between the intermediate state and the highly-ordered 

state. The shift of the C−H stretching band from 2878 to 2872 cm
–1

 generally indicates the 

transition from disordered to ordered conformations during crystallization.
37

 Another 

interesting feature in Figure 6b is that the 3007 cm
–1

 band becomes more prominent via the 

melt-cooling process compared with the heating process. This result indicates that the 

number of oriented hydrogen bonds nearly perpendicular to the film surface increases 

during the thermal process as well as in the highly-ordered and the intermediate states. 
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3-2.  Temperature-dependent 2D-GIXD 

Figure 7 shows 2D-GIXD images of a PHB ultrathin film with thickness ca. 52 nm 

collected at (a) 30 C, (b) 120 C and (c) 30 C after cooling. Because the angle of 

incidence of the X-ray beam was set at 0.114 (corresponding to 1.21 times of the critical 

angle for total reflection, θc), the X-ray can fully penetrate the entire region of the film, 

giving structural information on crystallites in all the regions of the film. In Figure 7a, the 

(020) Bragg reflection observed in the out-of-plane direction (the vertical direction in 

Figure 7) is dominant, while the (020) Bragg reflection observed in the in-plane direction 

(the horizontal direction in Figure 7) is relatively weak, indicating that for almost all 

crystallites in the film, the b-axis is perpendicular (a and c-axis are parallel) to the film 

surface. Moreover, the weak (020) Bragg reflection observed in the in-plane direction 

indicates that crystallites in which the b-axis direction is parallel to the film surface are 

minor components in the film. Hereafter, we refer to the crystallites having (020) Bragg 

reflections in the out-of-plane direction and in the in-plane lamellae as “edge-on lamellae” 

and “flat-on lamellae”, as in Ref. 34.  

Crystallinity in the films increases with increasing temperature, since other weak 

Bragg reflections, i.e. (040), (031), (021) and (111) Bragg reflections are observed to 

increase with temperature (Figure 7b). The 2D-GIXD image after cooling from 120 to 30 

C (Figure 7c) is very similar to the one collected before the thermal process (Figure 7a). 
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In order to analyze the edge-on lamellae and flat-on lamellae in more detail, diffraction 

profiles of the (020) Bragg reflections are constructed from the 2D-GIXD images (Figures 

8 and 9). In comparison with the previous GIXD study on P(HB-co-HHx) thin films using 

a conventional scintillation detector,
34

 the present 2D-GIXD results can reveal novel 

aspects of the intermediate and highly-ordered states.  

Figure 8a shows the one-dimensional (1D) profiles of (020) Bragg reflection along the 

out-of-plane direction, representing the temperature evolution of edge-on lamellae in the 

film. The (020) peak profile, which is quite broad before the heating process, becomes 

narrower as the temperature increases. However, after being cooled from 120 C, we 

obtained a broader profile at 30 C, similar to the initial profile. As the temperature 

increases, the peak position shifts from a 2θ value of 8.7 to a higher 2θ value; both are 

shown by the two vertical dotted lines in Figure 8a. Figure 8b shows an example of the 

profile of a (020) Bragg reflection fitted by the sum of two Gaussians, demonstrating the 

reconstruction by two (020) reflections appearing at around 2θ= 8.8 and 9.0. The (020) 

reflection at lower 2θ (hereinafter called (020)L) is believed to arise from the crystallites in 

the intermediate state, since it was initially dominant but decreased with temperature 

(Figure 8c). Meanwhile, the (020) reflection at higher 2θ (hereinafter called (020)H) is 

attributed to the highly-ordered structure of the thermodynamically favorable state. 

Figure 8c unambiguously indicates the thermal-energy-assisted transformation of the 
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intermediate state, since the volume of each state is proportional to the intensity of (020)L 

and (020)H. It is interesting to see the recovery of the (020)L reflection after cooling (the 

blue curve in Figure 8a), presumably related to the stability of the intermediate state in 

ultrathin films observed in the present IRRAS data.  

Figure 9a shows the 1D-profiles of (020) Bragg reflection along the in-plane direction, 

representing the temperature evolution of flat-on lamellae in the film. Since the intensity of 

the (020) reflection observed in the in-plane direction is about half that of the out-of-plane 

direction, PHB crystallites in ultrathin films are largely formed as edge-on lamellae. 

Interestingly, the flat-on lamellae also exhibit the two types of crystallites whose peak 

positions are shown by the two vertical dotted lines in Figure 9a. Figure 9b depicts the 

fitted profile of the (020) reflection along the in-plane direction, in which the (020)L and 

(020)H reflections are centered at around 2θ = 8.59 and 8.79, respectively. To the best of 

our knowledge, this is the first study on two types of PHB crystallites of flat-on lamellae in 

thin films. It is worth highlighting here that in flat-on lamellae, the stable state was already 

dominant in pristine film at 30 C (Figure 9b) and showed a slight increase with 

temperature (Figure 9c), in sharp contrast to the behavior of the edge-on-stable state 

lamellae shown in Figure 8. Furthermore, we must acknowledge that the stable character of 

the intermediate state in flat-on lamellae (which gives the (020)L intensity in Figure 9c), 

especially below 50 C, shows a striking contrast with that of the intermediate state in 
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edge-on lamellae shown in Figure 8c, where the monotonous decrease (020)L is seen with 

increasing temperature. Figure 9c shows that the intensity of (020)H gradually increases 

with temperature, presumably indicating that a small number of flat-on-intermediate 

crystallites have sufficient energy to transform into flat-on-highly-ordered crystallites, 

although the (020)L reflection steadily decreases above 50 C. Such remarkable decrease in 

the (020)L intensity above 50 C may indicate continuous melting of flat-on-intermediate 

state lamellae in the films.  

Since the different thermal behavior of the (020) reflections along the out-of-plane 

and in-plane directions is expected to reflect the distribution of edge-on lamellae and 

flat-on lamellae in the thin films, we collected 2D-GIXD images at a very shallow 

incidence angle of 0.074 (0.079θc) which only affords the Bragg reflection from 

crystallites in the surface region approximately 8 nm deep from the film surface (Figure 

10). In Figure 10a, we can see a strong (020) reflection in the out-of-plane direction and a 

very faint (020) reflection in the in-plane direction. This indicates that the edge-on lamellae 

mainly form in the surface region, while flat-on the lamellae likely grow in the interfacial 

region between the substrate and PHB.  

Figure 11 illustrates selected results obtained from the 2D-GIXD images. At low 

temperatures, the intermediate state of the edge-on lamellae is dominant in the surface 

region, whereas in the interface region the highly-ordered state of flat-on lamellae also 
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form. By increasing the temperature, many edge-on lamellae as well as flat-on lamellae in 

the intermediate state transform into the highly-ordered state. On the other hand, only a 

few edge-on lamellae and flat-on lamellae of the intermediate state could be reduced by 

increasing the temperature, due to the pre-melting of very less-ordered small crystallites. In 

addition, the melting point of such small crystallites is greatly influenced by the size 

distribution of less-ordered nanocrystallites and the heterogeneous environment peculiar to 

ultrathin films, both of which would give rise to the observed continuous melting behavior. 

 

4. CONCLUSION 

The crystallization behavior and crystalline structure of PHB ultrathin films under 

spatial confinement were studied using IRRAS and GIXD. Unique PHB crystals in both 

the intermediate state and the highly ordered crystalline state were observed during the 

heating and melt-cooling processes. The crystals in the intermediate state transform into 

the highly-ordered structures after receiving sufficient thermal energy at high temperatures. 

A remarkably stable intermediate state trapped in the ordered amorphous matrix is 

observed after crystallization from the melt-cooling process. The formation of such an 

intermediate state can be one of the factors responsible for the reduced crystallinity of PHB 

thin films, apart from the thickness confinement effect. 2D-GIXD measurements 

confirmed that in PHB ultrathin films, the major crystals mainly form as edge-on lamellae 
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and a minor portion form as flat-on lamellae. Regardless of the lamellae type, the 

crystalline consists of both the intermediate state and the highly-ordered state. 

Edge-on-intermediate state lamellae transform into edge-on-highly-ordered state lamellae 

as temperature increases, which agrees with the IRRAS results. For flat-on lamellae, the 

highly-ordered state is dominant even in pristine films, whereas the intermediate state is 

dominant for edge-on lamellae. In the surface region, the edge-on lamellae formation is 

more favorable. 
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Figure 1. Typical X-ray reflectivity of PHB ultrathin film deposited on Si wafer. 

Figure 2. (a) IRRAS spectra (bottom) and their second derivatives (up) in the CO 

stretching region of PHB ultrathin film collected during the heating process. (b) 

Shift plot of C=O crystalline and amorphous modes. 

(a) 
(b) 
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Figure 3. IRRAS spectra shown in Figure 2b fitted by sum of three Gaussians at (a) 25C and (b) 116.5C. (c) 

Plots of integrated intensity of amorphous, intermediate and highly-ordered states, each of which is normalized 

by the sum of integrated intensity of each fraction. 

(a) (b) (c) 
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Figure 4. IRRAS spectra (bottom) and their second derivatives (up) in the CO 

stretching region of PHB ultrathin film collected during the melt-cooling process. 
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Figure 5. IRRAS spectra shown in Figure 4 fitted by sum of four Gaussians at (a) 80C and (b) 25C. (c) Plots of 

integrated intensity of amorphous, intermediate and highly-ordered crystalline states, each of which is normalized 

by the sum of integrated intensity of each fraction. 

 

(b) (a) 
(c) 
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Figure 6. IRRAS spectra (bottom) and their second derivatives (up) in the C−H 

stretching region of PHB ultrathin film collected during (a) heating process and (b) 

melt-cooling process.  

(a) (b) 

Figure 7. 2D-GIXD images of PHB ultrathin film collected at (a) 30C, (b) 120C and (c) after 

cooled down to 30C, with the index of each reflection. The angle of incidence of X-ray beam is 

set at 0.114 (=1.21θc). 
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Figure 8. (a) Temperature dependence of “out-of-plane” (020) Bragg reflection profiles (from edge-on 

lamellae) constructed from the data shown in Figure 7. The vertical dotted lines indicate the peak 

positions of two (020) Bragg reflections. (b) Diffraction profile of out-of-plane (020) Bragg reflection 

at 30C fitted by sum of two Gaussians, and (c) Plot of the fitted integrated intensity of intermediate 

and highly-ordered states, each of which is normalized by the sum of the overall integrated intensity.  

(c) (b) (a) 
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Figure 9. (a) Temperature dependence of “in-plane” (020) Bragg reflection profiles (from flat-on lamellae) 

shown constructed from the data shown in Figure 7. The vertical dotted lines indicate the peak positions of 

two (020) Bragg reflections. (b) Diffraction profile of in-plane (020) Bragg reflection at 30C fitted by sum 

of two Gaussians. (c) Plots of fitted integrated intensity of intermediate and highly-ordered states, each of 

which is normalized by the sum of the overall integrated intensity. 

(a) (b) (c) 
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Figure 11. Illustration of the transformation of PHB crystallites from the intermediate 

state to highly-ordered state assisted by thermal energy in which their major locations are 

taken into account: blue bricks represent intermediate state and orange bricks represent 

highly-ordered state. 

Figure 10. 2D-GIXD images of PHB ultrathin film collected at (a) 30C, (b) 120C and 

(c) after cooled down to 30C with the index of each reflection. A very small angle of 

incidence of X-ray beam at 0.074 (=0.079θc) is applied, which affords structural 

information only in the narrow surface region. 
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Chapter 3 

 

Crystallization Behavior of Ultrathin Poly(3-hydroxybutyrate) Films in Blends with a 

Small Amount of Poly(L-lactic Acid): Correlation between Molecular Weight of 

Poly(L-lactic Acid) and Film Thickness 
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ABSTRACT 

The crystallization behavior of poly(3-hydroxybutyrate) [PHB] ultrathin films in the blends 

with a small amount of poly(L-lactic acid)s [PLLAs] with different molecular weights was 

investigated using grazing incidence X-ray diffraction and infrared reflection absorption 

spectroscopy (IRRAS). Ultrathin films of PHB/PLLA with the same blend ratio of 80/20 

(w/w) and two different film thicknesses, i.e. 30 and 13 nm, were prepared using PLLA 

having molecular weight ranging from 300,000710 g mol
−1

 to explore the effects of the 

molecular weight of PLLAs on the crystallization of PHB under different confined 

environments. It was found that for the 30-nm-thick samples, the crystallization of PHB is 

significantly reduced in the blends with molecular weight PLLAs ranging from Mw 23,000 

to 13,100 g mol
-1

, however, the higher (Mw ≥ 50,000 g mol
-1

) and lower (Mw ≤ 6,900 g 

mol
-1

) molecular weight PLLAs do not significantly affect the crystallization. In contrast, 

in the 13-nm-thick films, the crystallization of PHB is remarkably inhibited in the blends 

having PLLAs Mw ≥ 6,900 g mol
-1

. IRRAS showed that for the 30-nm-thick samples, a 

small addition of PLLA (Mw ≥ 13,100 g mol
−1

) altered the crystalline structure of PHB 

only in the highly ordered state. However, such PLLAs greatly affect the PHB crystals in 

both intermediate and highly ordered states in the films with the thickness of 13 nm. These 

results showed that the ability of PLLAs for hindering the crystallization of PHB ultrathin 

films strongly depends on the molecular weight and film thickness. Both GIXD and 
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IRRAS results revealed some consistency that the lower molecular weights of PLLAs (Mw 

≤ 3,600 g mol−1) only slightly affect the crystallinity and crystalline structure of PHB. 
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1. INTRODUCTION 

Polymer blending has been well known as an effective way to create new desired 

physical properties of polymers.
1-3

 Poly(3-hydroxybutyrate) [PHB], a thermoplastic 

polyester produced by bacteria, is a biodegradable and biocompatible polymer, and it is a 

promising alternative material of conventional plastics because its physical properties are 

similar to those of commercial isotactic polypropylene.
4-6

 PHB has often been blended 

with other polymers to reduce its high crystallinity and modify its unfavorable properties, 

such as brittleness, low thermal stability and poor processability.
7−12

 Poly(L-lactic acid) 

[PLLA] is also a biodegradable thermoplastic polyester. It is producible from renewable 

resources and has been used in many applications.
13-17 

Blending of both biodegradable 

polymers should be very beneficial for sustainable and environmental-friendly materials to 

use in a wide range of applications. Therefore, PHB/PLLA blends have been one of the 

popular research topics in polymer blend studies. Their structure, morphology, miscibility 

and crystallization behaviors affecting physical properties have been extensively 

investigated with the aims of potential applications.
11,18-29

  

PHB shows a biphasic separation in the blends with high molecular weight PLLA (Mw 

> 18,000), but it is miscible over the whole composition range of low molecular weight 

PLLA (Mw < 18,000) in the melt.
26-28

 Similarly, high molecular weight PLLA (Mw = 

680,000) was reported to be miscible in the melt with low molecular weight atactic-PHB 
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(Mw = 9,400).
24,25

 Moreover, the miscibility of PHB and PLLA in their blends also greatly 

depends on the concentrations and crystallization dynamics of PLLA and PHB.
11,23 

Most of 

the studies of PHB/PLLA blends has been carried out using bulk samples, while the 

investigations of PHB/PLLA ultrathin blend films have still been very limited.
11,18-29,46

 

In general, the properties of polymers in thin and ultrathin films are considerably 

different from those in the bulk, such as glass transition (Tg),
30-32

 morphology,
33,34

 

mobility,
35,36

 and crystallization,
37-40

 due to the confinement effects as well as the surface 

and interface effects. Preferred orientation of molecular chains is another phenomenon 

peculiar to crystalline polymer thin films, which often brings useful anisotropic 

features.
41-44

 Therefore, investigations of thin and ultrathin polymer films can be very 

important for exploring the specific crystallization phenomena at the surface and interface 

region. 

Previously, we found that PHB ultrathin films (thickness 52 nm) formed two kinds of 

crystalline structures, i.e. highly ordered structure and less ordered structure (the latter has 

been recognized as the intermediate state), which yield IR bands at 1723 and 1731 cm
−1

, 

respectively.
45 

The band at 1731 cm
-1

 due to the intermediate structure appears during the 

melt-crystallization process, which is usually hard to be detected in bulk PHB. Similarly, 

the corresponding band shows up in the miscible PHB/PLLA (Mw PLLA = 13,100 g mol
−1

) 

ultrathin films with similar thicknesses.
46

 In addition, crystallization of PHB was extremely 
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reduced with the addition of ≥ 22 wt % PLLA. This result showed that the addition of 

another component, even by a small amount, can be quite effective to inhibit the 

crystallization of polymer thin films. Since the miscibility of PHB and PLLA depends on 

the molecular weight, varying the molecular weight of PLLA in the PHB/PLLA blends 

would result in different crystallization process of PHB. 

In the present study, we investigate molecular weight dependence of a small amount of 

PLLA on the crystallization of ultrathin PHB films and its correlation with film thickness, 

using a wide-range of molecular weights of PLLAs (300,000710 g mol
−1

). In order to 

achieve the goal, the blend ratio was fixed at 80/20 (w/w). For distinguishing the effect of 

geometrical confinement and molecular weight dependence of PLLA on the crystallization 

of PHB, we prepared blend films with two different thicknesses, i.e., 30 nm and 13 nm. 

Two surface-sensitive techniques were employed to observe the crystallization behavior of 

PHB in the ultrathin blend films: grazing incidence X-ray diffraction (GIXD) and 

infrared-reflection absorption spectroscopy (IRRAS). It has been found in the present study 

that at the 30 nm thickness, the crystallization of PHB is significantly reduced in the blends 

having PLLAs with molecular weight ranging from Mw 23,000 to 13,100 g mol
-1

, however, 

the higher (Mw ≥ 50,000 g mol
-1

) and lower (Mw ≤ 6,900 g mol
-1

) molecular weight PLLAs 

little affect the crystallization of PHB. Interestingly, in the 13-nm-thick films, the 

crystallization of PHB is remarkably inhibited in the blends with PLLAs of Mw ≥ 6,900 g 
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mol
-1

. The measurement of IRRAS revealed that the addition of PLLAs did not alter the 

crystalline structure of PHB in the intermediate state, but altered the crystalline in the 

highly ordered state in the 30-nm-thick films. On the other hand, a small addition of 

PLLAs has greatly affected the crystalline structure in both intermediate and highly 

ordered states for the films with the thickness of 13 nm. Apart from the thickness 

confinement, phase separation due to the presence of free surface effect, entanglement of 

PHB and aggregation of small molecules of PLLA, both of which are strongly molecular 

weight dependent phenomena, also become important factors that influence the ability of a 

small amount of PLLAs in inhibiting the crystallization of PHB. Although a small amount 

of biodegradable PLLA may not be so effective to control the crystallinity of bulk PHB, 

controlling the crystallinity of PHB films using a small addition of another polymer may be 

a great advance for thin film technology that will greatly expand the range of applications 

of PHB. 

 

2. EXPERIMENTAL SECTION 

2-1. Materials and Sample Preparation 

Bacterially synthesized PHB with a weight-averaged molecular weight (Mw) of 

650,000
 
g mol

−1
 purchased from Aldrich Co., Ltd., was dissolved in hot chloroform, 

precipitated in methanol, and vacuum-dried at 60 °C for several days to remove impurities. 
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Eight kinds of PLLAs with different molecular weight were obtained from Polysciences 

Inc. (Mw: 300,000; 100,000; and 50,000
 
g mol

−1
) and Polymer Source Inc. (Mw: 23,000; 

13,100; 6,900; 3,600 and 710 g mol
−1

). Blends of PHB/PLLAs were prepared by 

dissolving PHB and PLLA in hot chloroform with prescribed amount. 

Ultrathin films were deposited on flat-Au and Si (100) substrates for IRRAS and 

GIXD measurements, respectively, by spin-coating technique for 45s. The films were dried 

under low vacuum at 60 °C for 12 h. Annealing was carried out by keeping the films in a 

vacuum dry oven at 120 C for 5 h, and then temperature was slowly cooled down to room 

temperature before the measurement of GIXD. Two types of film thicknesses: 30 ± 3 nm 

and 13 ± 2 nm, were produced by changing the concentration of solutions and rotating 

speeds. 

2-2. Infrared Spectroscopy 

All IRRAS spectra were measured using a Thermo Nicolet 6700 FTIR spectrometer 

equipped with a MCT detector at a 2 cm
−1

 resolution over 256 scans to ensure a high 

signal-to-noise ratio. A reflection attachment (Spectra-Tech. FT80 RAS) with an incident 

angle of 80° was attached to the spectrometer together with a rotatable wire-grid polarizer 

of KRS5-substrate (ST Japan). 

2-3. X-ray Diffraction 

GIXD profiles were collected using a Rigaku Ultima IV X-ray diffractometer 
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(Rigaku Co., Japan) where CuKα ( = 1.542 Ǻ) radiation was generated at 40 kV, 40 mA. 

The system was equipped with a scintillation detector and cross beam optics (CBO) for 

automatic alignment coupled with a thin film attachment. The angle of incidence was set at 

0.19 (corresponding to 1.14θc) for the incident X-ray to fully penetrate the films. GIXD 

profiles were collected at room temperature with scanning speed of 0.3/min and interval 

of 0.1. Film thicknesses were determined from the X-ray reflectivity (XRR) profiles, after 

analyzed with an in-house developed nonlinear curve fitting software. 

 

3. RESULTS AND DISCUSSION 

3-1. Crystallinity and crystallization behavior of PHB studied GIXD. 

Figure 1a shows out-of-plane GIXD profiles collected at room temperature of 

30-nm-thick films of neat PHB and PHB/PLLA blends (80/20) where PHB was blended 

with eight kinds of PLLAs having different molecular weight (Mw = 300,000710 g mol
-1

). 

An obvious Bragg reflection centered at 2θ = 13.6 originates from the crystallites of PHB 

in the films and has been indexed as (020) reflection.
42,47

 Two other weak reflections also 

appear at around 2θ = 16.6 and 20.3 in Figure 1a (1)–(5) that are (200/110) and (203) 

reflections of crystalline PLLA, respectively.
46

 However, several diffraction profiles in 

Figure 1a (6)−(8) do not exhibit any reflections from PLLA, indicating that those PLLAs 

do not crystallize in those films. The molecular weight of those PLLAs (≤ 6,900 g mol
−1

) 
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should be below the critical molecular weight for crystallizable PLLA. Moreover, the 

results displayed in Figure 1a reveal that PHB and several kinds of PLLA (Mw ≥ 13,100 g 

mol
−1

) separately crystallize in those blends. 

The appearance of only (020) reflection of PHB indicates that the b-axis of PHB 

crystallites is almost aligned normal to the film surface (the ac planes are parallel to the 

film surface).
42,45,47

 This alignment also fixed the type of PHB lamellae as the edge-on 

lamellae. The fact that the (020) reflection of PHB appears in all PHB/PLLA blends means 

that the preferred alignment of PHB crystallites in the blends is the same as that of the neat 

PHB. Even though PLLA does not disturb the alignment and lamellae type of PHB in the 

blends, the intensity of (020) reflection of PHB shows a distinct variation as the molecular 

weight of PLLA is varied. The (020) peak, which is sharp, strong and not overlapped with 

other peaks, has often been used to characterize the degree of crystallinity of PHB thin 

films. Since the blend ratio and illuminated area of X-ray beam are fixed in this study, the 

intensity variation of (020) reflection would simply indicates a change in the crystallinity 

of PHB in the blends. Figure 1b shows a plot of the degree of crystallinity of PHB in the 

PHB/PLLA ultrathin blend films as a function of log of the ratio of Mw PHB to that of 

PLLA. The crystallinity of PHB in the blends was calculated by: 

        % 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦 =
I𝑖

I𝑃𝐻𝐵
x 100%, 

where Ii is the integrated intensity of (020) peak in the blends and IPHB is that of neat PHB 
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calculated from GIXD profiles in Figure 1a. As can be seen from Figure 1b, the 

crystallinity of PHB slightly decreases with decreasing molecular weight of PLLA (Mw = 

300,000~50,000 g mol
-1

, hereinafter called higher molecular weight PLLAs) in the blends. 

The dramatic decrease in the crystallinity of PHB occurs in the blends with PLLA Mw = 

23,000~13,100 g mol
–1

 (hereinafter called middle molecular weight PLLAs). Furthermore, 

the plot is increased again in the blends where PLLA of Mw ≤ 6,900 g mol
−1

 (hereinafter 

called lower molecular weight PLLAs). These results clearly reveal that the inhibition of 

crystallization of PHB by the addition of a small amount of PLLA strongly depends on the 

molecular weight of PLLA. It is quite probable that the higher molecular weight of PLLAs 

are also immiscible with PHB even in the thin films and that the origin of the moderate 

decrease in crystallinity in those films might be common in bulk PHB/PLLA blends. The 

lower molecular weight PLLAs slightly altering the crystallization of PHB, demonstrating 

a sharp contrast to the behavior of those in bulk samples in which noticeable change is 

usually observed.
26-28

 Several factors would affect the crystallization behavior of PHB in 

the PHB/PLLA ultrathin blend films. Before we discuss those possible factors, we should 

investigate the effect of thickness confinement by using the thinner (13 nm) PHB/PLLA 

blend films. 

Figure 2 displays out-of-plane GIXD profiles of 13-nm-thick films of neat PHB and 

PHB/PLLA blends (80/20) with various molecular weights of PLLA. PHB is still able to 
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crystallize in the film as the (020) reflection was clearly observed for the neat PHB, 

although the intensity of this (020) peak is much lower than that of the 30-nm-thick film. It 

has widely been accepted that the degree of crystallinity of a polymer often decreases by 

reducing the thickness.
40,48-50

 As shown in the GIXD profiles of (1)–(5) in Figure 2, no 

(020) reflection of PHB is observed in the blends with higher and middle molecular weight 

of PLLAs (Mw ≥ 13,100 g mol
−1

), indicating that the crystallization of PHB ultrathin films 

is fully inhibited by the addition of high and middle molecular weight PLLAs. The (020) 

reflection also shows up in the blends with the lower molecular weight PLLAs as depicted 

in (7) and (8), which may be similar to the results observed in the corresponding films 

depicted in Figure 1a. However, the (020) reflection profile of (6) in Figure 2 is found to be 

very weak if we compare it to that of (6) in Figure 1a. The results shown in Figures 1 and 2 

indicate that the lower molecular weight PLLAs do not significantly affect the 

crystallization of PHB. Reducing the film thickness seems to enhance the ability of higher 

and middle molecular weight PLLAs in inhibiting the crystallization of PHB. 

Furthermore, it is noticed that the higher molecular weight PLLAs still crystallize as 

the (200/110) reflection shows up in Figure 2 (1)–(5). The very weak (200/110) indicates 

that only a tiny fraction of PLLA chains are able to crystallize in those blends. Similar to 

the results in Figure 1a (6)–(8), the lower molecular weight PLLAs in Figure 2 (6)–(8) do 

not exhibit any reflection peaks of PLLA, suggesting that the lower molecular weight of 
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PLLAs do not crystallize irrespective with the thickness confinement. Additionally, 

thermal annealing cannot induce the crystallization of PHB in those blends in the 

13-nm-thick films as shown in Figure 3, indicating the strong inhibition on the 

crystallization of PHB by a small amount of PLLAs in these blend films. 

The crystallization behavior of PHB in the PHB/PLLA ultrathin films shown in 

Figures 1 and 2 demonstrates a striking contrast with the behavior observed in bulk 

PHB/PLLA blends. Furthermore, the results of 30-nm-thick films and those of 13-nm-thick 

films also showed some differences as explained above, indicating a strong dependency of 

the crystallization of PHB in the PHB/PLLA ultrathin blend films on the molecular weight 

of PLLA and the film thickness. Several factors which would explain the results of Figures 

1 and 2 can be summarized below. It would be worth considering those factors to 

understand the complex behavior of the crystallization in the ultrathin PHB/PLLA films: 

1. Phase separation caused by the presence of free surface effect. 

In thin polymer films, a free surface effect on phase separation would possibly be 

more dominant than an effect from the interface between a polymer and a substrate.
36

 The 

presence of free surface can induce the phase separation of two polymers in the blends as 

the mobility of molecular chain is increased.
51 

Phase separation may thus occur between 

PHB and higher molecular weight PLLAs in the 30-nm-thick films. Therefore, PHB and 

higher molecular weight PLLA may crystallize separately from each other. In contrast, 
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reducing the thickness is likely to enhance the interface effect. The mobility of molecules 

would be very restricted in the interface region as the intensive interaction between 

molecules and the substrate. In other words, PHB and PLLA are forced to be miscible in 

ultrathin films where the interface effect would be dominant. 

2. Entanglement of PLLA molecular chains 

It was reported that PLLA has a critical molecular weight for entanglement at around 

16,000 g mol
−1

.
52,53

 The entangled chains of PLLAs would effectively trap PHB molecules 

and do not allow the PHB chains to be crystallized. The PLLA chains with Mw ≥ 13,100 g 

mol
−1

 may be adequate for the entanglement with PHB molecules to inhibit the 

crystallization. On the other hand, the chain length of lower molecular weight PLLAs (Mw 

≤ 3,600 g mol
−1

) are insufficient for the entanglement. Moreover, in the 13-nm-thick films, 

no phase separation would be expected due to the limited mobility. 

3. Size of PLLA molecules 

Since the crystallization of PHB has revealed to have the complex thickness 

dependence, the relationship with the molecular size of PLLA should be considered; the 

molecular size of each PLLA is listed in Table 1. Someone might consider that small PLLA 

molecules (lower molecular weight PLLAs) would hinder the crystallization of PHB 

through interlamellar segregation, because such shorter PLLA molecules are expected to 

easily diffuse into PHB molecules as an effective obstacle for lamellae folding of PHB. 
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However, our GIXD results have proved that such small molecules are ineffective to hinder 

the lamellae folding. Thus, those small molecules of PLLAs most probably aggregate 

during the crystallization process, being unable to affect the crystallization of PHB. 

Similarly, big molecules of high molecular weight PLLAs would also be ineffective to 

reduce the crystallinity PHB if the phase separation (as mentioned in 1) between PHB and 

PLLA would occur. However, molecules, whose size are comparable, or exceed half of the 

thickness of films, may effectively inhibit the crystallization of PHB because the phase 

separation would not be expected owing to the interaction with the substrate. 

 According to the three factors discussed above, the inhibition process on the 

crystallization of PHB in the PHB/PLLA ultrathin films can be illustrated in Figure 4. This 

scheme also denotes that the inhibition on the crystallization of PHB by a small amount of 

PLLAs strongly depends on the molecular weight of PLLAs and the film thickness.  

  

3-2. Conformation and crystalline structure of PHB studied by IRRAS. 

In order to explore chain conformation and crystalline structure of PHB in the 

PHB/PLLA ultrathin films on a molecular scale, the IRRAS measurements were conducted 

for the films. Figure 5 shows the IRRAS spectra (bottom panel) and their second 

derivatives (upper panel) in the C=O stretching region of 30-nm-thick films of PHB and 

PHB/PLLA (80/20) blends with various molecular weights of PLLAs. PHB shows two 
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bands at 1726 and 1749 cm
-1

 assigned to crystalline and amorphous C=O stretching modes, 

respectively.
45

 By addition of PLLAs, the intensity of the C=O crystalline band at 1726 

cm
-1

 is significantly reduced in the spectra of the blends where the molecular weight of 

PLLAs ≥ 6,900 g mol
-1

 (see the spectra of the bottom panel of (1)–(6) in Figure 5). These 

results reveal that the presence of PLLA appreciably decreases the crystallization of PHB. 

According to the IRRAS selection rule,
60,61

 the weak absorbance of C=O crystalline band 

of PHB in the IRRAS spectra of the blends indicates that the C=O group is aligned more 

parallel to the substrate’s surface. In the previous studies, the crystalline C=O group of 

PHB in the ultrathin films was also reported to be nearly parallel to a substrate surface 

(along the a-axis).
45,54

  

Further reduction of the molecular weight of PLLA (Mw ≤ 3,600 g mol
-1

) in the blends 

yields the spectra that are more similar to that of the neat PHB as seen from Figure 5 (7)–

(8). This result indicating that these lowest molecular weight PLLAs neither stop the 

crystallization nor change the preferred alignment of PHB crystallites. The result is 

consistent with the result obtained from the GIXD measurements (profiles (7) and (8) in 

Figure 1a and 2). 

Two bands at 1765 and 1778 cm
-1

 in all the blends are ascribed to the amorphous and 

fairly structural defected C=O stretching of PLLA.
23,54

 The intensity of amorphous band at 

1765 cm
−1

 of PLLA also decreases in the blends with decreasing the molecular weight of 
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PLLAs and eventually become very weak as observed for the blend with the lowest 

molecular weight PLLA (see Figure 5 (8)). The appearance of PLLA amorphous band at 

1765 cm
−1

 in Figure 5 (1)–(5) suggests that the long chains are sufficient for the 

entanglements, whereas the short chains of lowest molecular weight PLLAs are unable to 

be entangled as is evidenced by the fact that the amorphous band almost disappears (see 

(7) and (8) of Figure 5). The PLLAs of short chains eventually aggregate in the films as 

described above. Probably those entangled of PLLA chains would trap PHB molecules in 

their blends, causing the delay of crystallization of PHB, whereas the aggregated shorter 

PLLA chains are irrelevant with the crystallization. These results so far have proved that 

the entanglement of PLLA chains would be a key factor responsible for hindering the 

crystallization of PHB in ultrathin films. 

Although the intensity of C=O crystalline band of PHB becomes disrupted in the 

PHB/PLLA blends, no shift or distinct band-splitting at 1726 cm
−1 

was observed in all the 

samples. In the previous study, we revealed the behavior of two crystalline structures with 

different structural orders, i.e. highly-ordered and less-ordered (intermediate) structures, by 

deconvolution of the IRRAS spectra of PHB ultrathin films, where several overlapped 

bands coexist in the C=O stretching region of PHB ultrathin films due to the coexistence of 

the two crystalline structures.
45

 In this study, the C＝O stretching band region of IRRAS 

spectra shown in Figure 5 are decomposed into several component using GRAMS 
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software. 

Figure 6a displays the result of decomposition showing the bands of the highly 

ordered crystalline (1724 cm
−1

), the intermediate state (1731 cm
−1

), two amorphous states 

arising from different conformations of PHB (1739 and 1748 cm cm
−1

), one amorphous 

band of PLLA (1764 cm
−1

) and another one arising from structural defect of PLLA (1778 

cm
−1

).
46

 The integrated intensity of each crystalline structure at 1724 and 1731 cm
−1

 is 

plotted in Figure 6b after normalization by the sum of all fractions in each blend. In 

comparison with the intensity of the corresponding bands of neat PHB, intensity of both 

intermediate (1731 cm
−1

) and highly-ordered crystalline (1724 cm
−1

) bands becomes 

weaker in the blends, suggesting that the presence of PLLAs suppresses the formation of 

PHB crystals in the blends. While the integrated intensity of intermediate state looks 

almost unchanged among the blend samples, the plot of highly ordered crystalline band 

shows a gradual increase in the blends with decreasing molecular weight of PLLA. It 

indicates that the variation in the molecular weight of PLLA does not affect the crystal 

formation of the intermediate state, but the higher molecular weight PLLAs disturb the 

crystal formation of the highly-ordered state.  

Figure 7 exhibits IRRAS spectra (bottom) and their second derivatives (upper) in the 

C=O stretching region of 13-nm-thick film of PHB and PHB/PLLA (80/20) blends with 

various molecular weights of PLLAs. PHB still shows two bands due to the crystalline and 
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amorphous C=O bands at 1726 and 1749 cm
−1

, respectively. However, the intensity of 

1726 cm
-1

 band is lower than that of the 30-nm-thick films. Since a small amount of 

PLLAs (Mw ≥ 13,100 g mol
-1

) greatly suppresses the intensity and alters the band shape of 

C=O crystalline band of PHB as noticeably observed in Figure 7 (1)–(5), we conclude that 

those PLLAs disturbed both crystallinity and crystalline structure of PHB. The higher and 

middle molecular weight PLLAs were able to make the C=O crystalline band of PHB at 

1726 cm
-1

 split into two bands at 1723 and 1731 cm
-1

, which presumably correspond to 

highly ordered and intermediate crystalline structures of PHB, respectively. However, the 

IRRAS results would be inconsistent with the GIXD profiles shown in Figure 2 (1)–(5) in 

which no reflection from PHB crystals is recognized in corresponding blend samples. The 

inconsistency between GIXD and IRRAS may arise from the different sensitivity of these 

techniques in detecting tiny crystallites.
46

 In those samples, PHB crystals are probably too 

small and the amount is also too small to be detected by conventional GIXD. The intensity 

of C=O crystalline bands observed in the blends with lower molecular weight PLLAs is 

found to be rather similar to that of neat PHB at 1726 cm
-1

 (Figure 7 (7) and (8)). It clearly 

indicates that the lower molecular weight PLLAs are unable to alter the crystallization of 

PHB, which is independent from the film thickness. Furthermore, the intensity of 

amorphous band of PLLA at 1765 cm
-1

, which can be used as an indicator of entanglement 

of PLLAs chains, decreased with decreasing the molecular weight of PLLAs, which agrees 
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with the scheme discussed above.  

To explore the crystallization behavior in the intermediate and highly-ordered state, 

the spectra shown in Figure 7 were also decomposed. A typical result is shown in Figure 8a. 

It displays the deconvoluted IRRAS spectra in the C=O stretching region of 13-nm-thick 

film of PHB/PLLA (Mw = 300,000 g mol
−1

), and plots of integrated intensity of the 1724 

cm
−1

 (highly ordered) and 1731 cm
−1

 (intermediate) bands normalized by the sum of the 

integrated intensity in each blend are depicted in Figure 8b. Similar to Figure 6b, the 

intensity of both intermediate and highly-ordered crystalline structures decreases markedly 

after the addition of PLLAs. However, the intensity of the intermediate state (1731 cm
−1

) 

shows a small increase with decreasing molecular weight of PLLA. Furthermore, the 

intensity of highly ordered crystalline state (1724 cm
−1

) greatly reduces at first and 

subsequently increases with decreasing molecular weight of PLLA. These results suggest 

that the molecular weight dependence of PLLA on the crystallization of PHB is greater for 

thinner films.  

In the C−H stretching region, weak intermolecular hydrogen bonding between 

carbonyl and methyl groups (CH3∙∙∙O=C) of PHB was found at anomalously high 

frequency region.
56-59

 The weak hydrogen bonding bands of PHB are still recognized in 

those 30 nm and 13 nm thick films as shown in Figure 9. In the 30 nm thick film, the weak 

hydrogen bonding band appeared at 3011 cm
-1

 as a weak shoulder band, while in the 13 nm 
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thick film, it shifted to 3009 cm
-1

 and the peak become more apparent. This results may 

indicate that the hydrogen bonds in the 13 nm thick film are weaker than the hydrogen 

bonds formed in the 30 nm thick film. However, the slightly higher intensity of 3009 cm
−1

 

bands indicated in Figure 9b would reflect that, in the 13-nm-thick film, the number of 

oriented bonds nearly perpendicular to the film surface seems to be larger than those in the 

30 nm thickness.  

 

4. CONCLUSION 

We have investigated the crystallization behavior of PHB in the PHB/PLLAs ultrathin 

films with thicknesses of 30 and 13 nm as a function of molecular weight of PLLA using 

GIXD and IRRAS measurements. Eight kinds of PLLAs with different molecular weight 

ranging from 300,000 to 710 g mol
−1

 were added to explore the effect of a small amount of 

PLLAs on the crystallization behavior of PHB in their ultrathin films. The PHB/PLLA 

ratio is fixed at 80/20 (w/w) for all blends. The crystallization of PHB has shown a strong 

dependency on the molecular weight of PLLA and film thickness. In the 30-nm-thick films, 

a phase separation occurs between PHB and higher molecular weight PLLAs (Mw ≥ 50,000 

g mol
-1

) in the blends, and therefore, those PLLAs less affect the crystallization of PHB. 

The miscible PHB and PLLAs blends are obtained with the middle molecular weight 

PLLAs (Mw 23,00013,100 g mol
-1

), yielding a dramatic decreases in the crystallinity of 
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PHB. It is quite noteworthy that the crystallization of PHB is fully inhibited in the blends 

with PLLAs with wider-range molecular weights (Mw ≥ 6,900 g mol
−1

) when the film 

thickness is reduced to 13 nm. 

IRRAS results have demonstrated that for the 30-nm-thick films, the addition of a 

small amount of PLLAs significantly suppresses the intensity of the crystalline band of 

PHB at 1726 cm
−1

. However, the PLLAs do not affect the crystalline structures of PHB 

significantly. Furthermore, for the 13-nm-thick films, both the intensity and thus the 

crystalline structures of PHB are remarkably altered by a small amount of PLLA (Mw ≥ 

6,900 g mol
−1

). Both GIXD and IRRAS results show a consistency in that the lower 

molecular weight PLLA (Mw ≤ 3,600 g mol
−1

) does not affect the crystallinity and 

crystalline structures of PHB. Furthermore, several factors such as the presence of free 

surface and interface effects, entanglement of PLLA chains and molecular size of PLLA 

must seriously be taken into account to comprehend the complex crystallization behavior 

of PHB in the PHB/PLLA ultrathin films, apart from the molecular weight and thickness 

dependences. 
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  Table 1. Radius gyration (Rg ) of PHB and PLLA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mw (g mol
-1

) Rg (nm) 2Rg (nm) 

PHB 

650,000  39.04 78.08 

PLLAs   

300,000 29.76 59.52 

100,000 15.85 31.7 

50,000 10.65 21.3 

23,000 6.82 13.64 

13,100 5.57 11.14 

6,900 4.94 9.88 

3,600 3.42 6.84 

710 2.60 5.2 

Mw : molecular weight; Rg: radius of gyration 
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Figure 1. (a) Out-of-plane GIXD profiles of 30-nm-thick films of neat PHB and 

PHB/PLLAs blends (80/20) with different Mw of PLLA: (1) 300,000; (2) 100,000 (3) 

50,000; (4) 23,000; (5) 13,100; (6) 6,900; (7) 3,600; (8) 710 g mol
−1

. (b) Plot of 

crystallinity of PHB in the blends as a function of log (Mw PHB/Mw PLLA). The arrow 

direction shows the decreasing Mw of PLLA in the blends. 

(a) 

(b) 

Figure 2. Out-of-plane GIXD profiles of 13-nm-thick films of neat PHB and 

PHB/PLLAs blends (80/20) with different Mw of PLLA: (1) 300,000; (2) 100,000 (3) 

50,000; (4) 23,000; (5) 13,100; (6) 6,900; (7) 3,600; (8) 710 g mol
−1

. The arrow 

direction shows the decreasing Mw of PLLA in the blends. 
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Figure 3. Out-of-plane GIXD profiles of annealed 13-nm-thick films of neat PHB and 

PHB/PLLA blends (80/20) with different Mw of PLLA: (1) 300,000; (2) 100,000 (3) 

50,000; (4) 23,000; (5) 13,100; (6) 6,900; (7) 3,600; (8) 710 g mol
−1

. 

 

Figure 4. An illustration of the crystallization of PHB in the PHB/PLLA (80/20-w/w) 

ultrathin films (30 and 13-nm-thick films) with different molecular weights of PLLAs. 

Blue and red lines represent PHB and PLLA chains, respectively. 
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Figure 5. IRRAS spectra (bottom) and their second derivatives (upper) in the C=O 

stretching region of 30-nm-thick films of PHB and PHB/PLLAs (80/20) blends where Mw of 

PLLA are: (1) 300,000; (2) 100,000 (3) 50,000; (4) 23,000; (5) 13,100; (6) 6,900; (7) 3,600; 

(8) 710 g mol
−1

. The arrow direction indicates the decreasing Mw of PLLA in the blends. 

Figure 6 (a) Decomposition of an observed IRRAS spectrum in the C＝O stretching region 

of the 30-nm-thick film shown in Figure 5(1) of PHB/PLLA blends with Mw PLLA = 

300,000 g mol
−1

. (b) Plots of integrated intensity of the 1724 cm
−1

 (highly-ordered) and 1731 

cm
−1

 (intermediate) bands normalized by the sum of integrated intensity of all fractions in 

each blend. The arrow direction shows the decreasing Mw of PLLAs in the blends. 

(a) (b) 
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Figure 7. IRRAS spectra (bottom) and their second derivatives (upper) in the C=O 

stretching region of 13-nm-thick films of PHB and PHB/PLLAs (80/20) blends where Mw 

PLLA are: (1) 300,000; (2) 100,000 (3) 50,000; (4) 23,000; (5) 13,100; (6) 6,900; (7) 3,600; 

(8) 710 g mol
−1

. The arrow direction shows the decreasing Mw of PLLA in the blends. 

(a) 

Figure 8. (a) Decomposition of an observed IRRAS spectrum in the C＝O stretching region 

of the 13-nm-thick film shown in Figure 7(1) of PHB/PLLA blends with Mw PLLA = 

300,000 g mol
−1

. (b) Plots of integrated intensity of 1724 cm
−1 

(highly-ordered) and 1731 

cm
−1

 (intermediate) bands normalized by the sum of integrated intensity of all fractions in 

each blend. The arrow direction shows the decreasing Mw of PLLAs in the blends. 

(b) 
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(a) (b) 

Figure 9. IRRAS spectra (bottom) and their second derivatives (upper) in the 

3018-2980 cm
-1

 region of (a) 30-nm and (b)13-nm-thick films of PHB and 

PHB/PLLAs (80/20) blends where Mw PLLA are: (1) 300,000; (2) 100,000 (3) 50,000; 

(4) 23,000; (5) 13,100; (6) 6,900; (7) 3,600; (8) 710 g mol
−1

. The arrow direction 

shows the decreasing Mw of PLLA in the blends. 
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