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Abstract

The distribution of deaths by cause provides crucial information for public health

planning, response, and evaluation. About 60% of deaths globally are not registered

or given a cause which limits our ability to understand the epidemiology of affected

populations. Verbal autopsy (VA) surveys are increasingly used in such settings

to collect information on the signs, symptoms, and medical history of people who

have recently died. This article develops a novel Bayesian method for estimation of

population distributions of deaths by cause using verbal autopsy data. The proposed

approach is based on a multivariate probit model where associations among items

in questionnaires are flexibly induced by latent factors. We measure strength of

conditional dependence of symptoms with causes. Using the Population Health Metrics

Research Consortium labeled data that include both VA and medically certified causes

of death, we assess performance of the proposed method. Further, we propose a method

to estimate important questionnaire items that are highly associated with causes of

death. This framework provides insights that will simplify future data collection.

Key words: Bayesian latent model; Cause of death; Conditional dependence; Multivari-

ate data; Verbal autopsies; Survey data.

1 Introduction

Data on cause of death are essential to understand the epidemiology of a population, to

design and implement efficient Public Health interventions, and to measure their effects

(e.g. Ruzicka and Lopez, 1990; Mathers et al., 2005; Soleman et al., 2006; Bloomberg and

Bishop, 2015). Understanding progress in controlling an infection disease, for example,

requires monitoring changes in the cause of death distribution in populations over time. The

“gold-standard” for assigning cause of death relies on physical autopsies with pathological

∗Correspondence contact tylermc@uw.edu
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reports, backed by a comprehensive registration system. In low-resource settings, however,

most deaths happen outside of hospitals and are often not recorded by a civil registration

and vital statistics systems (Mikkelsen et al., 2015). In such settings, understanding the

mortality burden of a specific cause, and trends in cause-specific mortality over time, is

extremely challenging (e.g. AbouZahr et al., 2007; Boerma and Stansfield, 2007; Hill et al.,

2007; Mahapatra et al., 2007; Setel et al., 2007; Phillips et al., 2014; de Savigny et al., 2017;

Phillips et al., 2015).

Scaling up to a full-coverage civil registration system presents massive financial and

logistical challenges, meaning that survey-based data are and will continue to be vital for

understanding cause of death distributions (Horton, 2007; AbouZahr et al., 2007; Jha, 2014).

These survey-based data, known as a verbal autopsies (VAs), consist of interviews with a

family member or other individual familiar with the death. The respondent answers a

questionnaire about the signs, symptoms, demographic characteristics and health history

of the deceased. Deaths are typically identified using community informants or using a

partial surveillance system. VA surveys are widely conducted (Lopez, 1998; Yang et al.,

2005; Maher et al., 2010; Sankoh and Byass, 2012) and the World Health Organization

(WHO) releases a the standardized VA questionnaire (Baiden et al., 2007; World Health

Organization, 2012, 2017; Nichols et al., 2018) to facilitate comparison across areas.

VA surveys are substantially more cost effective than performing in-person autopsies.

Unlike a physical autopsy, however, VA surveys require an additional step to assign a cause of

death from the collected symptoms. Many methods have been proposed to estimate causes

from VA interview data. In some settings, trained clinicians review VAs and assess a cause

of death (Lozano et al., 2011). This approach can be effective in some circumstances, but

is time-consuming and requires that trained clinicians (many of whom would otherwise be

seeing patients) be available. An alternative approach is to use an algorithmic or statistical

method to assign causes of death. Several such methods have been proposed and evaluated

in the statistics and public health literatures (see for example Murray et al., 2007; King

and Lu, 2008; James et al., 2011; King et al., 2010; Murray et al., 2011; Byass et al., 2012;

Serina et al., 2015; Miasnikof et al., 2015; McCormick et al., 2016).

For the most part, these methods rely on a critical assumption: independence across
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symptoms conditional on a given cause. This assumption disregards critical information

about constellations or clusters of symptoms that are typical of a given cause and thus

particularly informative when assigning causes. The only method currently available that

uses information about dependence between symptoms is work by King and Lu (King and

Lu, 2008; King et al., 2010). The King and Lu method regresses the cause of death on

randomly sampled sets of symptoms from a training dataset. This process is an attempt to

represent the space of all possible symptom combinations. However since there are typically

one to two hundred symptoms, exploring all possible combinations is a daunting task, or

practically impossible.

Our work presents a novel approach to incorporating dependence between symptoms

in coding cause of death from VA surveys. In our approach, we capture dependence be-

tween symptoms using a small number of latent factors. This approach avoids the need to

evaluate all possible symptom combinations as in the King and Lu framework. We build a

multivariate probit model for symptoms conditional on a cause. Binary-scale outcomes can

be interpreted as a manifestation of underlying continuous variables. A factor model on

these conditional variables provides a sparse covariance structure between symptoms. Our

method also accommodates missing data that commonly arise in VA surveys, because for ex-

ample, family members may not remember all details about sign/symptoms of the deceased.

The proposed approach can incorporate both individual-specific and design-based missing

values by summing them out from the probit model with a missing-at-random assumption.

We fit the model using an efficient Markov chain Monte Carlo (MCMC) algorithm we de-

velop for posterior computation. Further, we utilize our framework to better understand the

importance of each measure in the questionnaire. To do this, we quantify the association

between each symptom with each cause given all other predictors, using conditional mutual

information to measure association. Our measures can be used to simplify and shorten

future VA surveys, decreasing both the burden on respondents and the cost.

The rest of the paper is organized as follows. The remainder of this section describes

labeled VA data from the Population Health Metrics Research Consortium that we will

use in our analysis. Section 2 proposes a novel approach for estimation of population

distributions of causes of death. Section 3 develops an efficient MCMC algorithm for the
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proposed method. Section 4 assesses the performance of the proposed approach in various

scenarios and measures strength of conditional dependence of questionnaire items in the

gold-standard dataset. Section 5 concludes the article.

1.1 PHMRC VA survey

The Population Health Metrics Research Consortium (PHMRC) collected VA data at six

study sites in four countries: Andhra Pradesh, India (AP); Bohol, Philippines (Bohol);

Dar es Salaam, Tanzania (Dar); Mexico City, Mexico (Mexico); Pemba Island, Tanzania

(Pemba); and Uttar Pradesh, India (UP). In each study site, VAs were collected for adults,

children and neonates in hospital and clinical environments. Causes were assigned based on

diagnostic criteria including laboratory, pathology and medical imaging findings (Murray

et al., 2011). VA interviews were conducted with a relative of the deceased by interview-

ers who were blinded to the cause of death assigned in the hospital. The VA questionnaire

items cover symptoms of illnesses, demographic characteristics, diagnoses of chronic illnesses

by health service providers, possible risk factors such as tobacco-use and other potentially

contributing characteristics. In typical settings where VA surveys are implemented, it is

not possible to obtain a large fraction of deaths with physician codes. The PHMRC data

are, therefore, a “gold-standard” dataset for training VA methods to be applied in situa-

tions where physician coding is not possible. PHMRC (2013) distributes the data and the

codebook to the public.

Figure 1 shows histograms of 34 causes of death for adults in the six study sites, indicat-

ing that distributions of the causes vary considerably among the sites. The VA questionnaire

consists of binary, count and categorical items. As is the standard for analyzing VA data,

we pre-process the mixed-scale questions into a combination of binary variables, and assume

that all items are dichotomous using the same steps as described in McCormick et al. (2016),

leading to the data set with 7,841 individuals and 175 items. Also, there are abundant miss-

ing values in the data because respondents do not remember all details about symptoms of

the deceased. Figure 2 shows boxplots of frequencies of answering yes and missing rates for

the binary questions. The medians are small but we observe several outliers in both cases,

indicating that some questions are missing in nearly all of the cases.
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Figure 1: Histograms of causes of death for the PHMRC study sites.

Since the PHMRC data contain medically-certified causes, we can explore the magnitude

of the dependence between symptoms for a given medically-certified cause. We compute

Cramér’s V that measures strength of associations between two variables, taking a value

from 0 (no association) to 1 (complete association). Figure 3 shows the result for all pairs

of symptoms for the deaths caused by AIDS and Stroke. We conducted chi-squared test

using the R function cramersV in the lsr package (Navarro, 2015; R Core Team, 2016),

and the hypothesis of independence was rejected with 5% significance level for more than

1,000 pairs of the symptoms. Unlike nearly all previously available methods, our proposed

method will utilize these correlations to improve cause assignment accuracy.

2 Bayesian factor model for VA data

In this section we present our model formulation. First we present the modeling framework,

and then we discuss how we can compute conditional mutual information as a means of

assessing the importance of symptoms.
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Figure 3: Cramér’s V among symptoms for AIDS (left) and Stroke (right).
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2.1 Bayesian approach

We propose a novel Bayesian framework for assessing cause of death using VA surveys.

Let yi ∈ {1, . . . , C} be the cause responsible for ith person’s death with i = 1, . . . , n,

and xi = (xi1, . . . , xip)
′ be the response to questions j = 1, . . . , p with xij ∈ {0, 1}. One

approach would be to directly build a conditional probability π(yi |xi) relying on standard

parametric models such as multinomial probit/logit regressions. However as discussed in

the previous section, modeling these conditional probabilities directly is unappealing since

we would need to impute a substantial fraction of symptoms (see Figure 2). Further, we

would need to impute these symptoms using very little information from the data, meaning

that the choice of imputation method could be influential in our cause of death assignment.

Instead, we will express the conditional distribution, π(yi |xi), using Bayes’ rule, a choice

that facilitates directly integrating over the missing data. To see this, take first

π(yi |xi) =
π(xi | yi)π(yi)∑C

c=1 π(xi | yi = c)π(yi = c)
.

In this framework we can incorporate missing values easily by integrating them out from

π(xi | yi). Let xobsi and xmisi denote the observed and missing items for the ith person with

xi = (xobsi , xmisi ). Assuming symptoms are missing at random, we utilize the distribution

of the cause given the observed items,

π(yi |xobsi ) ∝ π(xobsi | yi)π(yi), where π(xobsi | yi) =

∫
π(xi | yi)dxmisi .

Therefore if we can calculate the integral analytically, we can evaluate the conditional

probabilities of the cause on the observed information without imputing missing data.

Since we are using a Bayes’ rule representation, there are two pieces of the model that

we need to specify, (i) the unconditional distribution of individual causes, π(yi), and (ii)

the conditional distribution of observed symptoms given an individual has a particular

cause, π(xi | yi). Beginning with the prior distribution for causes, we assume a Dirichlet

distribution,

{π(yi = 1), . . . , π(yi = C)} ∼ Dirichlet(a1, . . . , aC)
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where a1, . . . , aC are concentration parameters. Since cause patterns differ substantially

across geographic areas and time, we assume we have little prior information about the

distribution of causes. We therefore assume a1 = · · · = aC = 1, leading to a uniform prior

with π(yi = c) ∝ 1 for c = 1, . . . , C.

The second piece, π(xi | yi), requires modeling a set of high-dimensional binary symp-

toms given each cause. As described previously, nearly all existing methods for assigning

cause of death from verbal autopsies make a conditional independence assumption across

symptoms (Byass et al., 2012; Miasnikof et al., 2015; McCormick et al., 2016),

π(xi | yi) =

p∏
j=1

π(xij | yi).

This assumption facilitates computation but disregards substantial and potentially infor-

mative information about the relationships between symptoms, as Figure 3 shows.

To flexibly capture dependence, we develop a conditional distribution based on the

multivariate probit model. In our framework, each binary outcome is a manifestation of an

underlying continuous variable. Let zi = (zi1, . . . , zip)
′ ∈ Rp be the latent variable for ith

person, inducing the symptoms via an indicator function. We assume a multivariate normal

distribution conditional on a cause, zi | yi ∼ N(µyi ,Σyi) with mean µyi = (µyi1, . . . , µyip)
′

and covariance Σyi . There are p(p+ 1)/2 parameters in the covariance.

Even for moderately large p, estimating this many parameters will be challenging, par-

ticularly since we expect that each dataset will contain only a few deaths by each cause.

Further, since our goal is predicting cause of death for a new sample of deaths, we pre-

fer a sparse model to minimize issues with generalization arising from overfitting. Rather

than estimating all elements in the covariance matrix, we introduce a K-dimensional factor

ηi = (ηi1, . . . , ηiK)′ with K � p, and propose the following sparse factor model,

xij = 1(zij > 0), j = 1, . . . , p,

zi = µyi + Λyiηi + εi, ηi ∼ N(0, IK), εi ∼ N(0, Ip), (1)

where 1(·) is an indicator function and Λy = {λyjk} is a p × K loading matrix with y =

1, . . . , C, j = 1, . . . , p and k = 1, . . . ,K. Dependence is induced in zi by integrating out
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the factor ηi in (1), leading to the normal distribution with the cause-dependent mean and

covariance,

zi | yi ∼ N(µyi ,ΛyiΛ
′
yi + Ip),

where the number of parameters in the covariance reduces from p(p + 1)/2 to Kp. For

the prior distribution of the mean and factor loadings, we use Cauchy distributions, a

standard shrinkage prior with high density around zero and heavy tails, reducing effects of

redundant elements but capturing important signals. Based on the convolution expression

of the Cauchy distribution, we assume

µyj ∼ N(0, τ−1j ), τj ∼ Ga(0.5, 0.5),

λyjk ∼ N(0, φ−1j ), φj ∼ Ga(0.5, 0.5),

where Ga(a, b) denotes the Gamma distribution with mean a/b. The latent variables τj and

φj are shared among the causes and factors for reduction of parameters in the model.

2.2 Measuring strength of conditional associations

We now present a method to ascertain the information that each symptom provides in

addition to other symptoms already in the model. We present the association metric in this

section and then, in the following section, describe how the measure can be incorporated

into our posterior sampling algorithm.

VA surveys collect information via questionnaires with many items regarding demo-

graphic background, health history and disease symptoms. It can be time-consuming and

costly to ask redundant questions with little information for prediction of causes of death.

Further, the VA interview requires that a family member or other person close to the dece-

dent recall a potentially painful and traumatic time. Consequently, asking questions that

do not inform cause of death classification prolongs this potentially negative experience for

the respondent with no benefits to public health and potential cost implications for the

survey as a whole.

As a measure of strength of conditional dependence, we compute conditional mutual
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information, a quantity defined in the information theory literature. Let ζj denote the con-

ditional mutual information for the jth predictor. Conditional mutual information quantifies

the change in the distribution of π(y |x) associated with adding the j predictor, conditional

on all other predictors being added already. Large values for conditional mutual informa-

tion indicate strong associations of the jth item with the response. Conditional mutual

information is non-negative and equals zero if and only if the information in the jth item

is redundant conditional on other predictors (Wyner, 1978; Joe, 1989; Cover and Thomas,

2006). Formally, ζj can be defined by the expectation of the Kullback-Leibler divergence

between π(y |x) and π(y |x−j) with x−j = (x1, . . . , xj−1, xj+1, . . . , xp)
′,

ζj = E [KL{π(y |x), π(y |x−j)}] =
C∑
y=1

∑
x∈X

π(y, x) log
π(y |x)

π(y |x−j)
,

where X = {0, 1}p. Based on the Bayes’ theorem, this can be expressed as

ζj =
C∑
y=1

∑
x∈X

π(y, x) log
π(x | y)π(x−j)

π(x−j | y)π(x)
.

It is computationally intractable to evaluate the summation over the space X for large p.

As a solution we apply the Monte Carlo approximation using observations (Kunihama and

Dunson, 2016). Recall that the standard Monte Carlo approximation in this setting would

be

ζj =

C∑
y=1

∑
x∈X

π(y, x) log
π(x | y)π(x−j)

π(x−j | y)π(x)
≈ 1

R

R∑
r=1

log
π(xr | yr)π(xr,−j)

π(xr,−j | yr)π(xr)
,

where {(yr, xr), r = 1, . . . , R} is the random sample from the proposed model π(yi, xi).

This approach would still be computationally burdensome, as it would require sampling R

observations from the proposed model and evaluating the above expression at each step of
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the sampler. If the proposed model approximates the true one well, then

ζj =
C∑
y=1

∑
x∈X

π(y, x) log
π(x | y)π(x−j)

π(x−j | y)π(x)
≈

C∑
y=1

∑
x∈X

π0(y, x) log
π(x | y)π(x−j)

π(x−j | y)π(x)
,

≈ 1

n

n∑
i=1

log
π(xi | yi)π(xi,−j)

π(xi,−j | yi)π(xi)
, (2)

where {(yi, xi), i = 1, . . . , n} is the random sample from the true π0(y, x), that is, the

observations. Under the assumption that the true model is close to the proposed model,

using the observations means that we can avoid generating the large Monte Carlo sample

{(yr, xr), r = 1, . . . , R} at each MCMC iteration.

For the proposed model, it is straightforward to evaluate the probability functions in

(2). The π(xi) term, for example, can be computed as a simple summation over causes,

π(xi) =
∑C

y=1 π(xi | y)π(y). If there are many uninformative symptoms (and thus a sum

with multiple terms that are close to log(1)), the approximation may break the non-

negativity constraint on ζj . However for questions highly associated with causes given

the other items, ζj will be far away from zero. Alternatively, the approximation with ob-

servations can be viewed as a comparison of data-fitness between π(y |x) and π(y |x−j).

A positive value indicates that the fitness of data improves by adding the jth item, while

a negative one implies that the additional predictor xj causes a gap between the model

and data. For example, if xj highly correlates with x−j but has no additional information

related to y, then it induces just complexity in π(x | y) for y = 1, . . . , C, leading to the poor

data-fit of π(y |x) ∝ π(x | y)π(y) compared to π(y |x−j).

3 Posterior computation

The posterior density for the model presented in Section 2.1 is not available in closed form.

We instead approximate the posterior density using samples obtained through Markov-chain

Monte Carlo (MCMC). Let mi = (mi1, . . . ,mip)
′ be a vector of indicators denoting missing

values for the ith person such that mij = 1 if xij is missing and mij = 0 if xij is observed

with j = 1, . . . , p. We define notation [mi] such that, for a vector b and a matrix B with

p rows, b[mi] and B[mi] denote the subvector and submatrix consisting of components with

11



mij = 0 for j = 1, . . . , p. Then we propose the following MCMC algorithm.

1. Update µ·j ≡ (µ1j , . . . , µCj)
′ from N(µ∗,Σ∗) for j = 1, . . . , p with

µ∗ = Σ∗aj , Σ∗ = diag
{

(n1 + τj)
−1, . . . , (nC + τj)

−1} ,
where nc =

∑n
i=1 1(yi = c,mi = 0) and aj is the C × 1 vector with the cth element∑n

i=1 1(yi = c,mi = 0)(zij − λ′yij·ηi) where λyij· = (λyij1, . . . , λyijK)′.

2. Update λcj· ≡ (λcj1, . . . , λcjK)′ from N(µλ,Σλ) for c = 1, . . . , C with

µλ = Σλ

∑
i:yi=c

ηi(zij − µyij)

 , Σλ =

∑
i:yi=c

ηiη
′
i + φjIK

−1 .
3. Update ηi from N(µ̃, Σ̃) for i = 1, . . . , n with

µ̃ = Σ̃Λyi[mi](zi − µyi)[mi], Σ̃ =
(

Λ′yi[mi]
Λyi[mi] + IK

)−1
.

4. Update τj for j = 1, . . . , p from

Ga

(
C + 1

2
,

∑C
c=1 µ

2
cj + 1

2

)
.

5. Update φj for j = 1, . . . , p from

Ga

(
CK + 1

2
,

∑C
c=1

∑K
k=1 λ

2
cjk + 1

2

)
.

6. Update zij with mij = 0 for i = 1, . . . , n and j = 1, . . . , p from


N+(µyij + λ′yij·ηi, 1) if xij = 1,

N−(µyij + λ′yij·ηi, 1) if xij = 0,

where N+ and N− denote the truncated normal distributions with support [0,∞) and

(−∞, 0] respectively.
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7. For a person i ∈ S where S is the target data, generate yi with

π(yi = c |xobsi ) =
π(xobsi | yi = c)π(yi = c)∑C
y=1 π(xobsi | yi = y)π(yi = y)

, c = 1, . . . , C,

where π(xobsi | yi = c) =
∫
π(xobsi | η, yi = c)f(η)dη is evaluated using a Monte Carlo

approximation with ηr ∼ N(0, IK) for r = 1, . . . , R,

π(xobsi | yi = c) ≈ 1

R

R∑
r=1

π(xobsi | ηr, yi = c) =
1

R

R∑
r=1

 ∏
j:mij=0

π(xij | ηr, yi = c)

 . (3)

Then, compute the population distribution of causes of death by

(
1

#S

∑
i∈S

1(yi = 1), . . . ,
1

#S

∑
i∈S

1(yi = C)

)

where #S is the number of observations in the target data.

For the estimation of strength of conditional dependence in Section 3.2, Step 7 above is

replaced by

7. Update the distribution of causes with the prior Dirichlet(1, . . . , 1) from

{π(yi = 1), . . . , π(yi = C)} ∼ Dirichlet

(
1

n

n∑
i=1

1(yi = 1) + 1, . . . ,
1

n

n∑
i=1

1(yi = C) + 1

)
,

and impute xmisi from π(xmisi | yi, ηi). Then, compute ζj in (2) for j = 1, . . . , p.

4 Results

Using the MCMC algorithm described in the previous section, we fit our model to the

PHMRC VA data. We are particularly interested in the improvement that comes from ex-

plicitly accounting for dependence between symptoms. We evaluate whether incorporating

dependence between symptoms improves prediction of the distribution of deaths by cause

in a target population. As a measure of difference based on L1 distance, we utilize cause

specific mortality fraction (CSMF) accuracy, which takes a value in tne [0,1] interval and is
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defined as

CSMF = 1−
∑C

c=1 |π0(y = c)− π(y = c)|
2{1−min1≤c≤C π0(y = c)}

.

An additional consideration in our evaluation is the ability of the method to generalize

when the cause of death distribution (and possibly the relationship between symptoms and

causes) varies between the training and testing set. This consideration is fundament in the

VA setting since obtaining training data is extremely costly. Therefore in many settings,

we have limited training data from one geographic area, or site, and then apply the method

to predict the distribution of deaths by cause at another site. In evaluating the method,

we first consider a scenario where we have target and training data from two different sites,

then another survey is conducted in the target site and the new information is added to

the training data. To simulate the more realistic generalization test, we divide the PHMRC

data into training, target and additional training sets.

First we assume a case where the target and training sites have the same distribution

of causes. 1,700 persons (around 20% of the total observations) are randomly selected as

data in a target site and the rest are classified as training data. Then the former data

are separated into target and additional training sets. We consider three situations where

the percentage of additional training data is 0%, 5% or 10% of all the training data, while

the target data are fixed. We set R = 200 in (3) and generated 5,000 MCMC samples

after the initial 500 samples were discarded as a burn-in period, and every 10th sample was

saved. We observed that the sample paths were stable, and the sample autocorrelations

dropped smoothly. Illustrative examples of the sample plot and the autocorrelation are in

the supplementary materials. The top in Figure 5 shows CSMF accuracies for the proposed

model with numbers of factors K = 1, . . . , 10 and the conditionally independent Bayesian

model. Because the training and target data have the same distribution of causes, we

observe little difference even if the additional training information is available. Using the

proposed model, as K increases the CSMF accuracy also increases along a convex path to

a maximum of about 0.9, a level far above that of the conditional independent model.

Then we consider more realistic cases where the target and training sites have different

distributions of causes. We study six cases in which each of the PHMRC sites (AP, Bohol,
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Dar, Mexico, Pemba, UP) is treated as a target site and the rest together as training data.

Figures 4 show empirical distributions of causes in the target and training sites with L1

distances. We observe discrepancies between the distributions of deaths by cause for each

pair of training and target sites. The L1 distances for AP and Mexico are relatively small,

and Pemba shows the largest gap. We assume no additional training data for Pemba because

it has a relatively small number of deaths (n = 297).

Figures 5-7 report the boxplots of CSMF accuracies for each site. Unlike the simple case

estimates of the CSMFs improve as additional data are added from the target site. This

suggests that the estimation of population distributions of deaths by cause can be improved

in practice by collecting data in a target site, even if training data are already available

from other areas. In all cases the CSMF accuracies obtained by the proposed model are

as high or higher than the conditional independent model. For Pemba both the proposed

method and the conditional independent model show relatively small CSMF accuracies,

probably because there is a large discrepancy between the distributions of deaths by cause

for the target and training sites. Still, the proposed model works better. The bottom in

Figure 7 indicates averaged CSMF accuracy over all sites except Pemba. The proposed

model produces higher values, and inspite of the fact that the conditional independent

model improves as more information is added from the target sites, the gap between the

two methods actually becomes progressively larger, indicating that the proposed method

improves faster. As a function of K, the proposed model consistently produces a concave

shape with peaks around K = 5.

Turning now to results for our measure of conditional dependence, we estimate condi-

tional mutual information of each item using the proposed model with K = 5. For this

purpose missing values need to be imputed, but some items show high missing rates as in

Figure 2. To obtain robust results we include only items with a missing rate less than 5%.

Figure 8 displays boxplots of the estimated conditional mutual information. We observe

that several items related to medical history show high conditional dependence, such as 6.

Did decedent have AIDS?, 8. Did decedent have cancer?, 12. Did decedent have diabetes?,

and 14. Did decedent have heart disease? Other factors also indicate relatively strong condi-

tional associations, for example 131. Did decedent have any swelling or lump in the breast?,
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146. Did decedent die within 6 weeks of childbirth?, 159.Did decedent drink alcohol?, and

171. Was the injury or accident self-inflicted? Some items mainly report negative values

probably because they highly correlate with other questions while they add little new infor-

mation about causes, leading to additional model complexity and hence degradation of the

overall fit. For example predictors 55-57, 108-111 and 149-158 are related to cough, loss of

consciousness, and smoking, respectively. These effectively represent the same information,

and hence each is redundant given the other questions.

5 Conclusion

We develop a new Bayesian method to estimate distributions of deaths by cause using

VA data. The new approach flexibly captures complex interactions among questionnaire

items avoiding the restrictive assumption of conditional independence. In the proposed

framework, the strength of conditional dependence of symptoms with the causes can be

measured as conditional mutual information.

One future direction is to incorporate spatial information into the proposed model.

Factors affecting cause of death vary through space depending on geographic characteristics,

so two sites that are close to each other should largely share the same factors affecting cause

of death. Therefore it may be more efficient to estimate distributions of deaths by cause

by weighting more on neighboring areas. In addition the relationship between causes and

questionnaire items may depend on space. Although this article assumes the conditional

distribution of the symptoms given a cause is constant over space, one can extend it to

π(x | y, s) with spatial information s.

Another direction for future work is to generalize the proposed framework for survey

weights. To save cost and time many social surveys employ special data-collection designs

such as stratified sampling that produce a biased sample. To adjust for a gap between

the sample and the population, survey weights are constructed and distributed along with

the data. When faced with data like that, it is necessary to incorporate the weights into

statistical models for prediction.
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Figure 8: Boxplots of estimated conditional mutual information for symptoms 1-60 (above),
61-120 (middle), 120-175 (bottom). Blue color corresponds to P [ζj > 0] > 0.95.
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Supplementary materials for “Bayesian factor models for

probabilistic cause of death assessment with verbal autopsies”

1 MCMC convergence

To investigate posterior convergence, we show illustrative examples of the sample paths
and autocorrelations of the MCMC sample in Section 4. Figures 1-4 report results by
the conditional independent model and the proposed model with K = 2, 4, 6, 8, 10 for the
senario without additional training data.
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Figure 1: Sample paths and autocorrelations for the simple case. CI, K:2, K:4, K:6,
K:8, K:10 represent the conditional independent model and the proposed model with
K = 2, 4, 6, 8, 10.
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Figure 2: Sample paths and autocorrelations for AP (upper half) and Bohol (lower half).
CI, K:2, K:4, K:6, K:8, K:10 represent the conditional independent model and the proposed
model with K = 2, 4, 6, 8, 10.
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Figure 3: Sample paths and autocorrelations for Dar (upper half) and Mexico (lower half).
CI, K:2, K:4, K:6, K:8, K:10 represent the conditional independent model and the proposed
model with K = 2, 4, 6, 8, 10.
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Figure 4: Sample paths and autocorrelations for Pemba (upper half) and UP (lower half).
CI, K:2, K:4, K:6, K:8, K:10 represent the conditional independent model and the proposed
model with K = 2, 4, 6, 8, 10.
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