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Large Deviations for Regenerative Processes

CHIYONOBU Taizo* and SOTOMURA Shinya**

Abstract

In this paper, a large deviation principle for the long time behavior of certain
regenerative processes is proved. The renewal theorem plays a crucial role in
the proof.

1 Introduction

Let (Q, F,P) be a probability space and &;,&,... be the non-negative independent
identically distributed (i.i.d.) random variables on Q with the same probability law u
on R, =[0, ©0).In the present paper we assume that

o0
(A) Supp(u)# {0} and / et u(dt) < oo for some ¢ > 0 and € > 0.
0

Under this assumption, the &’s are integrable. Let 7,,71,... be the renewal times,
defined by Ty =0, and Ty = Tj-; + & for k> 1. We let N, = inf{k : T} > t}, the number of
renewals in [0, f]. We are interested in the long time asymptotic behavior of the
‘residual waiting time' R, = Tw, — ¢. It is known (c.f. Chapter 3 of Durrett [1] and
Chapter 4 of Bremaud [2]) that for all x > 0,

PR>x) = i(x, o))
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ast — 0o, Here, ji(ds)= Elljp (s)ds is a probability measure on R, where F (s) = p([s, o0))
and z, = E[&]= fooosy(ds) = o F (s)ds. In other words, the probability law of R,
converges weakly to # in the space M;(R,) of probability measures in R,
endowed with the weak topology. This result indicates the ergodic theorem for the

empirical measure

1 t
Lt = —/ 5de8.
t Jo

of {R,, t = 0}. Namely, the law of L, converges to  ;; weakly as t+ — oo in the space
of probability measures on M;(RR,). The purpose of the present paper is to show the
large deviation principle for {L,, t>0.} -

Forany v e Mi(R,) for which z, = Jr + W([s, 00))ds < oo, we denote by 3 another

probability measure on R, given by (ds) =”([—SZ;'SDd5‘ Let My(R,) = {$; v e Mi(R,)}
and let

NRy) = {#€ Mi(Ry); vis absolutely continuous with respect to p
and log % € L*(v)}.

Our main result is as follows.
Theorem 1. Let A = A(d) € R be given by the formula

/R+ exp (/Ot @(s)ds — At) u(dt) =1

forany ¢ e Cy(R, = R)andletIon M(R,) be defined by

rm)= s [ otmian - \@)}.

#€Cs(R+)

Then I is a convex rate function on M;y(R,) for which the following holds:
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1.
1 dv . - o :
—-/ log —(t)dv(t) if m =7 for some U € N(Ry)
Zy Ry d,u
I(m) =
00 otherwise

2. I(m) =0 ifand only if m = j;.
3. The large deviation for empirical measure of {R;} holds with the rate function I,
namely, for any open set G in M(R,),

lim sup = log P(Ly € G) > —inf{I(v), v € G}

t—o0 t

and for any closed set F in M(R)),
liminf % log P(L; € F) < —int{I(), v € F}.

Let us give some remarks. The large deviation principle for the empirical
distribution of the i.i.d. random variables and Markov processes (both in discrete as
well as continuous time) with some mixing condition is well-established, see for
example, Deuschel & Stroock [3]. If there are regeneration points, or the renewal times
of the process, then the states between these regeneration points constitute independent
random variables with the same distribution, and thus it seems likely that the long time
empirical measure of the process satisfies the large deviation property as the one of
i.i.d. random variables does. However, this result shows that the rate function for the

regenerative processes is different from the one of the i.i.d. case.

In terms of the method adopted in this paper, we make good use of the renewal
equation and the renewal theorem to examine the large deviation principle. This
strategy has yet to be fully exploited, and should be further investigated for other
applications.

The paper is organized as follows. In section 2 we state two results on the renewal
theory without proofs. The first one is the direct conclusion of the so-called renewal
theorem, and the second one is the corollary of it. We apply both statements in the
following sections. In section 3, by using the first result of section 2, we establish the
variational formula for the logarithmic moment generating function of the law of Rt.
Using this, as usual, we define the rate function / as the Legendre transform of the
moment generating function, and obtain the first part of our Theorem. In section 4, we
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prove the upper bound. To show the exponential tightness, we use the same argument
based on the renewal theorem as in section 3. In section 5, we prove the lower bound,
completing the proof of the theorem. Again, we apply the result from the renewal
theorem.

2 Renewal Theorem

We first review the well-known renewal theorem, since it plays the crucial role in
the proof of the main theorem. Let F be a probability distribution function and /4 be a
given function. Let H be the solution of the renewal equation. Then, we have the
following so-called renewal theorem(c.f. Chapter 3 of Durrett[1]).

Proposition 1. If u is non-arithmetic and h is directly Riemann integrable, then, for
the solution H of the following renewal equation

H(t) = h(t) + /0 H(t — s)u(ds),

we have

1) —— | " h(s)ds

m

ast — ©o,

Here, we remark that if 4(t) > 0 is decreasing with #(0) < co and [, h(t)dt < oo,
then 4 is directly integrable. As a corollary of this theorem, we obtain another version
of the renewal theorem, which we will use later.

Proposition 2. Suppose that u is non-arithmetic, h(t) converges to a constant h as t
— 0 and h(t)—h is directly integrable. Then, for the solution H of the following
renewal equation

H(t) = h(t) + /0 H(t — s)u(ds),

we have
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H()

h
il AL
1 2y

ast —> OO,

3 Rate Function

By the assumption (A), for any ¢ € Co(R, = R), there is a A = A($) € R
given by the formula

(1) /I;Jr exp (/Ot o(s)ds — At) p(dt) =1.

For this we have the following.
Proposition 3. For any ¢€ Cy(R, — R), we have
1 t
- Jim 7 10g Bfexp( [ 0(Ru)dw] = X(®),
where A(9) is efined by (1).
Proof. Due to (1), for any ¢ € Cx(R,—R), exp ( fg @(s)ds — )\t) u(dt) is a probability

measure on IR, , which we will denote by uy (df). By Proposition 1, for the solution H of the

renewal equation

H(t) = h(t) + /Ot H(t— s)exp (/08 d(u)du — As) w(ds),
we have

1 oo
3) " - /0 h(s)ds.

Here, z, is the mean with respect to uy (d¥), or

25— /0 ~ sexp ( /0 " () s — As) u(ds).
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Since R, = u for all u < ¢t = &, we see that

E [exp( /0 t $(Ru)du)|
@ = Blea([ s®amt<a]+ [ Blol [ orami = s]uia)

~ (| o FO+ [ Elewo [ s(mle = o] uias)

where F(s) = u([s, o)), and we also observe that

Blow( [ strala~s| = ool [ swanBlen( [ srmie =5

t—s

— exp( /0 " (u)d) Eexp( | 8(Radw)| |

‘ t
by the regenerative nature of R, Hence, we see that U(f) = E[exp( / qS(Ru)du)]
0

satisfies the relation
t _ t s
®) Ut) = exp( | ou)e) F(1) + JRAGEE | otwyuuas

Now we take the A = A(¢) which satisfies (1) and multiply both sides of (5) by ™ to

obtain
t _ t s
e MU(t) = exp(/ d(u)du — M) F(t) + / e MYt — s) exp(/ d(u)du — As)p(ds).
0 0 0
Hence from, we see that

e N —->i Ooex ’ u)du — As)F(s)ds
©) U)o [ el [ otwiu—r0)F(s)ds,

where the RHS of (6) exists under our assumption (A). This implies our assertion. O

Now let I be a functional on M;(R,) defined by
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) tm)= s { [ semian -0}

$eCh(R4)

We propose the following, which constitutes the first part of the main theorem.

Proposition 4. I is a convex rate function and

I(5) = zi /R log Z—:(t)dz/(t),

for v € N(Ry) and I(m) = oo for any m € M1(R4) \ N (R,).

Proof. Since I is the supremum of continuous linear functionals, it is lower
semi-continous and convex. Now fo any M > 0, let a(M) be given by

/ eMiu(dt) <1 - / e~ tu(dt).
[a(M),00) Ry

Then for all ¢ € Cy(R, —R) satisfying the conditon
(#) ¢() € [0, M] forall e R, and ¢(f) = 0 for all £ < a(M),
A = AM¢) given by (1) is non-negative and so

/[Q(M)’oo) exp (/0t¢(8)ds - At) p(dt) <1— /R+ e~tu(dt).

Thus, by (1),

/ eNu(dt) > / e u(dt)
Ry [0,a(DM))

= ,/[g’a(M)) exp (/Ot o(s)ds — )\t> p(de) > /R+ e tu(dt),

which implies A(®) < 1. Therefore, if I(m) < L, then for all ¢ satisfying (¥),
[ stomian < 1m) 29 < 141
Ry

and so m([a(M), o0)) < L—AJ}L This implies that {m € M;(R,); I(m) <L} is compact in
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Mi(R,).
Next, suppose thaty € N(R,).Let 1(t) = ;Z—Z(t), then from (1) we see that for all ¢
€ Cy(R,—R),

/ exp ( / tqﬁ(s)ds - A(d))t) b(t) tv(dt) =1
R, 0
and so by Jensen’s inequality, we get
£
L ([ oeas = x@p - togue ) wian <o
Rt \JO

or

/I;Jr (/Ot ¢(8)ds> v(dt) — </R+ tv(dt)) A(p) < -[R+ log ¥ (t)v(dt).

Noting that z, < oo, by the integration by parts, we obtain

B ([t 00))dt — 2\ (¢) < / log (¢)v(dt)

Ry R+

and so by dividing by z,,

B()(dt) — (@) < — / log (t)w(dt).
Ry Zv JRy

v

Taking the supremum over ¢, we see that

1) < — / log (t)v(dt).

v JRy
It remains to show that if I(m) < ©o, then m = ¥ for some v € N(R,) and I(v) >

1
Py /R +10g w(Hw(dr).
In the case there is ¢ € Cy(R, —R) such that

¢ dv
/0 (s)ds = log (0
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forall re R, we see that

/1R+ exp (/Ot ¢(8)ds> p(dt) = /R+ w(dt) = 1

and so AM¢)=0. Hence

1) > [ ontdr) = - / " p(t)u([t,00))dt
R4 v JO

_ 1 tqs(s)ds v(dt) = - wlog@(t)'/(dt)-
zv Jry \Jo Zv Jo dp

By the standard truncation argument we can draw the same conclusion on the other

cases, and thus the proposition follows. O

4 Proof of Upper Bounds

In this section we prove the upper large deviation bounds for R;. First, we prepare
two lemmas.

Lemma 1. Let F be a compact set in Mi(R,). Then

limsup%bgP(Lt € F)<—inf{I(v), v € F}.

t—00

Proof. Let ¢ = inf{l (v), v € F}. For arbitrary ¢ >0 and each v € F, we can choose
a ¢, € Cy(R,) so that [, ¢()W(df) — M¢y) > £ —&. Next, for each v € F, we choose
an open neighborhood B, of vin M;(R,) so that

dpdm — | ¢udv
Ry Ry

sup
meB,

< e,

N
Since F'is compact, we can choose vy,... , vy € F'sothat FF C U B,;. Clearly,
i=1

1 1
limsup = log P(L; € F') < limsup n logsup P(R; € B,,).
t—oo i

t—00 t
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Butforv € F,

P(R,eB,) < E {exp (/t qb,,(Rs)ds) , R € By] "+ sup exp(—t ¢dpdm)
0 1

meB, [O,t

< 8 fow ([ dutas)] - e (-s0000) +£-20),

and thus, by (2),
hmsup log P(Lie F) < =0+ 2e.
t—00
As ¢ is arbitrary, this implies our assertion. O

Lemma 2. For each M > 0, there exists a compact set C(M) in My(R,) such that

hmsup—logP(Lt € C(M)%) < M,

where C(M)°¢ = M1(R4) \ C(M).

Proof. By the assumption (A), we can pick a ¢ € C(R, = R) such that
* ¢>0and ¢ is non-decreasing on R, .
* {xeR,; &x)<M}iscompactin R, for each M>0.
* There is a A = A(¢) for which (1) holds.

The whole argument to derive the variational formula (2) still holds for this ¢, and
thus we have

hm ~logE exp / d(R, du = A(¢),
and so for sufficiently large ¢,
¢
8) E[exp(/ d)(Ru)du)] < eMDE,
0

Now set K(M)={x € R_;¢(x) <M*}. If L, (K(M)°)>M ', then
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tls € [0,t); ¢(Rs) > M| > M, and so
1/tqb(Rs)ds > M2 s e 0,4 $(Rs) > M?| = M.
t Jo t
Hence, from (8),
1 t
P(L(K(M) > M™Y) < P (; JRIE M)
0

< B [exp( [ o(Ra)as)] e < 00,
0

1
Hence, if we let C(M )= kﬂO{VEMl(RJr) V(KM +A+k+1)%) < M+/\+k+1}

then C(M) is compact in M;(R,) and so our assertion follows from

1
; ( M+>\+k'+1)
k=0

Proposition 5. For any open set F in M(R,),

lim sup E log P(L; € F) < —inf{I(v), v € F}.
(9) t—o00 t

Proof. Since F C (FNC(M))UC(M)¢, and FNC(M) is compact for each M, by the
preceding two lemmas,

1 .
11§ii1gp —logP(L; € F) < max{ VEFglé(M) I{v), —M}. O

Since M is arbitrary, by letting M — ©0, we get (9).
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5 Proof of Lower Bounds

In this section, we prove the lower large deviation bounds for L, completing the
proof of the main theorem.

Proposition 6. For any open set G in M;(R,),

10) lim sup —IogP(Lt € G) > —inf{I(v), v € G}.

t—00

Proof. It suffices to show that for any ¥ € N(R,) and for any ¢ > 0,

el - .
(11) ht@)érolfg log P(L: € B(0,¢)) > —I(D).

Here, B(7¥, ¢) is an open ball in M;(R,). We denote by P, € M(D([0, /] — R.))
the law of the stochastic process {R;, s € [0, 7])}, whereas let Q;, €¢ My(D([0, 1] —
R,)) be the law of the stochastic process {R;, s € [0, f]} where the residual waiting
time is given by the ii.d. sequence &, k = 1, 2,... with the law v. More precisely,
Ty,T1,... are the renewal times defined by 7p = 0, and Ty = T} + & for k> 1, where the
law of &’s is v. R; is defined by R, = Ty, — t where N, = inf{k : Tx>¢}. Let 4,= {L, &

B(v, )}, then by the ergodic theorem on {R.} noted in the introduction, Q(4,) — 1 as

s . o d
t — oo, Thus, by Jensen s inequality, if we Fz = d;%’
4

1 1
liminf ~ log P(A;) = lim infllogEQt [F; 1 Al Q(Ay) = liminf ~ log E@[F Y| Ay]
t—oo t t—oo t—oo §

(12)

v

1
— liminf = EQ*
htmlnf tE [log Fy|A:] = htmmf O t)/ log F1dQ

= —liminf ! / log F;dQ;.
D([0,t]—-R+

{00

Here, we used the fact that x — xlogx is bounded below by e ™' . Let H(¢) = E%log F}],
By the regenerative nature of the process R;, we see that
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_dv, . Qe
- d/,L (S) dPt—s (03 )7

Fy

on the event {&; = s}for some s < ¢, we see that

H(t) = EQt[ log Fy, & >t +/ EQ*[ log Fy| & = s]v(ds)
[0,1]

= E%[ logF;, £ > 1 +/ log g’i(s)y(ds) + H(t - s)v(ds).
g 0.4

Thus we get another renewal equation. The first term of RHS is bounded by e 'v(&, > 1),
and it goes to 0 as ¢+ — ©0. Hence, applying Proposition 2 , we see that

(13) lim A S /{0 y log Z—V(s)u(ds).

t—oo 1 2y n

By (12) and (13), we see for any 7 € Noo(R4.)

liminf ~ log P(L; € B(3,¢)) > — / log 2 (s)(ds),
oo f 000 A

2y

and this implies our assertion. O
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