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Preface

The perfectly matchable subgraph polytope of a graph is a (0,1)-polytope associated with
the vertex sets of matchings in the graph. In this thesis, we study algebraic properties
(compressedness, Gorensteinness) of the toric rings of perfectly matchable subgraph poly-
topes based on [25]. In particular, we give a complete characterization of a graph whose
perfectly matchable subgraph polytope is compressed.

The present thesis is organized as follows. In Chapter 1, we recall the definition
of Gröbner basis based on [5]. Next we then confirm the basic terms of graph theory
throughout [7] in Chapter 2. Moreover, in Chapter 3, we study convex polytopes from
[14, 15]. We check the main theorem of present thesis in Chapter 4. In Chapter 5, we
introduce relationships between PG and other polytopes. In Chapter 6, in order to prove
the main theorems, we examine inequalities which are facet-inducing for PG. In Chapter
7, we give a proof for Theorem 4.6. In Chapter 8, we give a proof for Theorems 4.7 and
4.8. Finally we write source codes for computing polytopes we studied and challenges
for the future as appendix.

1



2



Acknowledgment

Without the support of many people and advice from my supervisor Professor Hidefumi
Ohsugi, I could not have completed this work.
I wish to express deep appreciation to my supervisor Professor Hidefumi Ohsugi for his
helpful advice and constant encouragement through this study.
Also, I would like to express my gratitude to Professor Akiyoshi Tsuchiya.

3



4



Contents

Preface 1

Acknowledgment 3
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Chapter 1

Gröbner basis

At first, we recall a basic definitions of commutative algebra based on [5].

1.1 Polynomials
We start by definition of monomials.

Definition 1.1. A monomials in x1, . . . ,xn is a product of the form

xα1
1 · xα2

2 · · ·xαn
n ,

where all of the exponents α1, . . .αn are nonnegative integers. The total degree of this
monomial is the sum α1 + · · ·+αn.

We can simplify the notation for monomials as follows: let α = (α1, . . . ,αn) be an
n-tuple of nonnegative integers. Then we set

xα = xα1
1 · xα2

2 · · ·xαn
n .

When α = (0, . . . ,0), note that xα = 1. We also let |α| = α1 + · · ·+αn denote the total
degree of the monomial xα .

Definition 1.2. A polynomial f in x1, . . . ,xn with coefficients in a field K is a finite linear
combination (with coefficients in K) of monomials. We will write a polynomial f in the
form

f = ∑
α

aαxα ,aα ∈ K,

where the sum is over a finite number of n-tuples α = (α1, . . . ,αn). The set of all polyno-
mials in x1, . . . ,xn with coefficients in K is denoted K[x1, . . . ,xn] .

When dealing with polynomial in a small number of variables, we will usually dis-
pense with subscripts. Thus, polynomials in one, two and three variables lie in K[x],K[x,y],
and K[x,y,z], respectively. For example,

f = 3x2y2z+
11
13

y2z3 −100x2yz+
2
3

y
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is a polynomial in Q[x,y,z]. We will usually use the letters f ,g,h, p,q,r to refer to poly-
nomials.

We will use the following terminology in dealing with polynomials.

Definition 1.3. Let f = ∑α aαxα be the polynomial in K[x1, . . . ,xn] .

(i) We call aα the coefficient of the monomial xα .

(ii) If aα ̸= 0, then we call aαxα a term of f .

(iii) The total degree of f ̸= 0, denoted deg( f ), is the maximum |α| such that the coef-
ficient aα is nonzero. The total degree of the zero polynomial is undefined.

For example, the polynomial f = 3x2y2z+ 11
13y2z3 −100x2yz+ 2

3y has four terms and
total degree five.

1.2 Ideals
We next define the basic algebraic objects.

Definition 1.4. A subset I ⊆ K[x1, . . . ,xn] is an ideal if it satisfies:

(i) 0 ∈ I,

(ii) If f ,g ∈ I, then f +g ∈ I,

(iii) If f ∈ I and h ∈ K[x1, . . . ,xn], then h f ∈ I.

The first natural example of an ideal is the ideal generated by a finite number of
polynomials.

Definition 1.5. Let f1, . . . , fs be polynomials in K[x1, . . . ,xn]. Then we set

⟨ f1, . . . , fs⟩=
{ s

∑
i=1

hi fi : h1, . . .hs ∈ K[x1, . . . ,xn]

}
It is known that ⟨ f1, . . . , fs⟩ is an ideal.

Lemma 1.6. If f1, . . . , fs ∈ K[x1, . . . ,xn] , then ⟨ f1, . . . , fs⟩ is an ideal of K[x1, . . . ,xn]. We
will call ⟨ f1, . . . , fs⟩ the ideal generated by f1, . . . , fs.

We say that an ideal I is finitely generated if there exist f1, . . . , fs ∈ K[x1, . . . ,xn] such
that I = ⟨ f1, . . . , fs⟩, and we say that f1, . . . , fs, are a bases of I. Note that a given ideal
may have many different bases. In this chapter, we will study one can choose an especially
useful type of basis, called a Gröbner basis.
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1.3 Polynomials of one variable
In this section, we will discuss polynomials of one variable and study the division algo-
rithm.

We begin by discussing the division algorithm for polynomials in K[x]. At first, we
should define a leading term of a polynomial in one variable.

Definition 1.7. Given a nonzero polynomial f ∈ K[x], let

f = c0xm + c1xm−1 + · · ·+ cm,

where ci ∈ K and c0 ̸= 0 [thus, m = deg( f )]. Then we say that c0xm is the leading term of
f , written LT( f ) = c0xm.

For example, if f = 5x2 −7x+10, then LT( f ) = 5x2. Notice also that if f and g are
nonzero polynomials, then

deg( f )≤ deg(g)⇐⇒ LT( f ) divides LT(g).

We can now describe the division algorithm.

Proposition 1.8. (The Division Algorithm) Let K be a field and let g be a nonzero poly-
nomial in K[x]. Then every f ∈ K[x] can be written as

f = qg+ r,

where q,r ∈ K[x], and either r = 0 or deg(r)< deg(g). Furthermore, q and r are unique,
and there is an algorithm for finding q and r.

A useful corollary of the division algorithm concerns the number of roots of a poly-
nomial in one variable.

Corollary 1.9. If K is a field and f ∈ K[x] is a nonzero polynomial, then f has at most
deg( f ) roots in K.

By Proposition 1.8, we can determine the structure of all ideals of K[x].

Corollary 1.10. If K is a field, then every ideal K[x] can be written as ⟨ f ⟩ for some
f ∈ K[x]. Furthermore, f is unique up to multiplication by a nonzero constant in K.

Next, we define the greatest common divisor of polynomials.

Definition 1.11. A greatest common divisor of polynomials f ,g ∈ K[x] is a polynoial h
such that:

(i) h divides f and g.

(ii) If p is another polynomial which divides f and g, then p divides h. When h has
these properties, we write h = gcd( f ,g).
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Here are the main properties of gcd’s.

Proposition 1.12. Let f ,g ∈ K[x]. Then:

(i) gcd( f ,g) exists and is unique up to multiplication by a nonzero constant in K.

(ii) gcd( f ,g) is a generator of the ideal ⟨ f ,g⟩.

(iii) There is an algorithm for finding gcd( f ,g).

Definition 1.13. A greatest common divisor of polynomials f1, . . . , fs ∈ K[x] is a polyno-
mial h such that:

(i) h divides f1, . . . , fs.

(ii) If p is another polynomial which divides f1, . . . , fs then p divides h.

When h has these properties, we write h = gcd( f1, . . . , fs).

Here are main properties of these gcd’s.

Proposition 1.14. Let f1, . . . , fs ∈ K[x], where s ≥ 2. Then:

(i) gcd( f1, . . . , fs) exists and is unique up to multiplication by a nonzero constant in K.

(ii) gcd( f1, . . . , fs) is a generator of the ideal ⟨ f1, . . . , fs⟩.

(iii) If s ≥ 3, then gcd( f1, . . . , fs) = gcd( f1,gcd( f2, . . . , fs)).

(iv) There is an algorithm for finding gcd( f1, . . . , fs).

1.4 Ordering on the monomials in K[x1, . . . ,xn]

In this section, we will study how to order the terms of a polynomial.

Definition 1.15. A monomial ordering > on K[x1, . . . ,xn] is a relation > on Zn
≥0, or equiv-

alently, a relation on the set of monomials xα , α ∈ Zn
≥0, satisfying:

(i) > is a total (or linear) ordering on Zn
≥0

(ii) If α > β and γ ∈ Zn
≥0, then α + γ > β + γ

(iii) > is a well-ordering on Zn
≥0 . This means that every nonempty subset of Zn

≥0 has
a smallest element under >. In other words, if A ⊆ Zn

≥0 is nonempty, then there is
α ∈ A such that β > α for every β ̸= α in A.

Given a monomial ordering >, we say that α ≥ β when either α > β or α = β . The
following lemma will help us understand what the well-ordering condition of part (iii) of
the definition means.
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Lemma 1.16. An order relation > on Zn
≥0 is a well-ordering if and only if every strictly

decreasing sequence in Zn
≥0.

α(1)> α(2)> α(3)> · · ·

eventually terminates.

Our first example of an ordering on n-tuples will be lexicographic order (or lex order,
for short).

Definition 1.17. (Lexicographic order). Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) be in
Zn
≥0. We say α >lex β if the leftmost nonzero entry of the vector difference α −β ∈ Zn

is positive. We will write xα >lex xβ if α >lex β .

(1,0, . . . ,1)>lex (0,1,0, . . . ,0)>lex · · ·>lex (0, . . . ,0,1).

so x1 >lex x2 >lex · · ·>lex xn.
The lexicographic order satisfies the three conditions of Definition 1.15.

Proposition 1.18. The lex ordering in Zn
≥0 is a monomial ordering.

Next, we define the graded lexicographic order (or grlex order).

Definition 1.19. (Graded Lex Order). Let α,β ∈ Zn
≥0. We say α >grlex β if

|α|=
n

∑
i=1

αi > |β |=
n

∑
i=1

βi, or |α|= |β | and α >lex β .

The grlex ordering satisfies three conditions of Definition 1.15.
Another order on monomials is the graded reverse lexicographical order (or grevlex

order).

Definition 1.20. (Graded Reverse Lex Order). Let α,β ∈ Zn
≥0. We say α >grevlex β if

|α|=
n

∑
i=1

αi > |β |=
n

∑
i=1

βi, or |α|= |β | and the rightmost nonzero entry of α −β ∈ Zn is negative

The grevlex ordering satisfies three conditions of Definition 1.15.

1.5 Monomial ideals and Dickson’s lemma
To start, we define monomial ideal in K[x1, . . . ,xn].

Definition 1.21. An ideal I ⊆K[x1, . . . ,xn] is a monomial ideal if there is a subset A⊆Zn
≥0

(possibly infinite) such that I consists of all polynomials which are finite sums of the form
∑α∈A hαxα , where hα ∈ K[x1, . . . ,xn]. In this case, we write I = ⟨xα : α ∈ A⟩.

11



We first need to characterize all monomials that lie in a given monomial ideal.

Lemma 1.22. Let I = ⟨xα : α ∈ A⟩ be a monomial ideal. Then a monomial ideal xβ lies
in I if and only if xβ is divisible by xα for some α ∈ A.

Let us next show that whether a given polynomial f lies in a monomial ideal can be
determined by looking at the monomials of f .

Lemma 1.23. Let I be a monomial ideal, and let f ∈ K[x1, . . . ,xn]. Then the following
are equivalent:

(i) f ∈ I.

(ii) Every term of f lies in I.

(iii) f is a k-linear combination of the monomials in I.

We have the following corollary from above lemma.

Corollary 1.24. Two monomial ideals are the same if and only if they contain the same
monomials.

The main result of this section is that all monomial ideals of K[x1, . . . ,xn] are finitely
generated.

Proposition 1.25. (Dickson’s Lemma) Let I = ⟨xα : α ∈ A⟩ ⊆K[x1, . . . ,xn] be a monomi-
als ideal. Then I can can be written in the form I = ⟨xα(1), . . . ,xα(s)⟩, where α(1), . . . ,α(s)∈
A. In particular, I has a finite basis.

By using Dickson’s Lemma, we obtain the following important fact about monomial
ordering in K[x1, . . . ,xn].

Corollary 1.26. Let > be a relation on Zn
≥0 satisfying:

(i) > is a total ordering on Zn
≥0.

(ii) If α > β and γ ∈ Zn
≥0, then α + γ > β + γ .

Then > is well-ordering if and only if α ≥ 0 for all α ∈ Zn
≥0.

1.6 The Hilbert basis theorem and Gröbner basis
In this section, we define the Gröbner basis. At first, we define ideal of leading terms,
namely initial ideal, as follows.

Definition 1.27. Let I ⊆ K[x1, . . . ,xn] be an ideal other than {0}, and fix a monomial
ordering on K[x1, . . . ,xn]. Then:

12



(i) We denote by LT(I) the set of leading terms of nonzero elements of I. Thus,

LT(I) = {cxα : there exists f ∈ I \{0} with LT( f ) = cxα}.

(ii) We denote by ⟨LT(I)⟩ the ideal generated by the elements of LT(I).

Since ⟨LT(I)⟩ is a monomial ideal, we can apply the result of previous section. In
particular, ⟨LT(I)⟩ is generated by finitely many leading terms.

Proposition 1.28. Let I ⊆ K[x1, . . . ,xn] be an ideal different from {0}.

(i) ⟨LT(I)⟩ is a monomial ideal.

(ii) There are g1, . . . ,gt ∈ I such that ⟨LT(g1), . . . ,LT(gt)⟩.

By using Proposition 1.28 and the division algorithm, we have following proposition.

Proposition 1.29. (Hilbert Basis Theorem). Every ideal I ⊆ K[x1, . . . ,xn] has a finite
generating set. In other words, I = ⟨g1, . . . ,gt⟩ for some g1, . . . ,gt ∈ I.

We are now in a position to define Gröbner basis.

Definition 1.30. Fix a monomial order on the polynomial ring K[x1, . . . ,xn]. A finite
subset G = {g1, . . . ,gt} of an ideal I ⊆ K[x1, . . . ,xn] different from {0} is said to be a
Gröbner basis (or standard basis) if

⟨LT(g1), . . . ,LT(gt)⟩= ⟨LT(I)⟩.

Using the convention that ⟨ /0⟩= {0}, we define the empty set /0 to be the Gröbner basis of
the zero ideal {0}.

Equivalently, but more informally, a set {g1, . . . ,gt} ⊆ I is a Gröbner basis of I if and
only if the leading term of any element of I is divisible by one of the LT(gi).

Corollary 1.31. Fix a monomial order. Then every ideal I ⊆ K[x1, . . . ,xn] has a Gröbner
basis. Furthermore, any Gröbner basis for an ideal I is a basis of I.
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Chapter 2

Graph theory

In this chapter, we study about graph theory based on [7].

2.1 Basic terms of graphs
A graph is pair G = (V,E) of sets such that E ⊆ [V ]2; thus, the elements of E are 2-
element subsets of V . To avoid notational ambiguities, we shall always assume tacitly
that V ∪E = /0. The elements of V are the vertices of the graph G, the elements of E are
its edges. The usual way to picture a graph is by drawing a dot for each vertex and joining
two of these dots by a line if the corresponding two vertices from an edge. Just how these
dots and lines are drawn is considered irrelevant: all that matters is the information of
which pairs of vertices from an edge and which do not.

A graph with vertex set V is said to be a graph on V . The vertex set of a graph G is
referred to as V (G), its edge set as E(G).

Two or more edges connecting same two vertices are called multiple edges. An edge
connecting one vertex is loop. Simple graph is a graph which has no loops or multiple
edges. Throughout this thesis, all graphs are assumed to be finite and simple.

Two vertices x,y of G are adjacent, or neighbours, if {x,y} is an edge of G. Two edges
e ̸= f are adjacent if they have an end in common. The degree deg(v) of a vertex v is the
number of neighbours of v. A vertex of degree 0 is isolated.

We set G∪G′ := (V ∪V ′,E∪E ′) and G∩G′ := (V ∩V ′,E∩E ′). If V ′ ⊆V and E ′ ⊆ E,
then G′ is a subgraph of G.

Definition 2.1. For S ⊂ V , the induced subgraph G[S] of G is a subgraph of G on the
vertex set S whose edge set is {{i, j} ∈ E : i, j ∈ S}.

Example 2.2. Let G be a graph on V = {1, . . . ,5} and edge set E is

{{1,2},{2,3},{3,4},{4,5},{1,5},{1,3}}.

We can obtain many graphs as a subgraph of G. Suppose that S = {1,3,4,5}. Then, an
induced subgraph G[S] is uniquely decided.
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graph

1

2

3 4

5

one of subgraph

1

3 4

5

induced subgraph
G[1,3,4,5]

1

3 4

5

A vertex v of a connected graph G is called a cut vertex if the graph obtained by
the removal of v from G is disconnected. Given a graph G, a block of G is a maximal
connected subgraph of G without cut vertices.

2.2 Classes of graphs
A path is a non-empty graph P = (V,E) of the form

V = {x0,x1, . . . ,xk} E = {{x0,x1},{x1,x2}, . . . ,{xk−1,xk}},

where the xi are all distinct. The vertices x0 and xk are linked by P and are called its ends;
the vertices x0,x1 . . . ,xk are the inner vertices of P. The number of edges of a path is its
length, and the path of length k is denoted by Pk. A graph G is called connected if it any
two of its vertices are linked by a path in G.

For n ≥ 3, if V (P) = {x0,x1, . . . ,xn−1} is a vertex set of path P and x0 and xn−1 are
ends of P, then the graph C := P+{x0,xn−1} is called a cycle. As with paths, the length
of a cycle of its edges; the cycle of length n is called a n-cycle and denoted by Cn. An
edge which joins two vertices of a cycle but is not itself an edge of the cycle of that cycle
is a chord of its cycle.

P3 C5

A connected graph which has at most one cycle is called a pseudotree.
A graph G is called k-partite if the vertex set of G can be partitioned into k different

independent sets V1, . . . ,Vk. When k = 2, it is called a bipartite graph. Clearly, a bipartite
graph cannot contain an odd cycle, a cycle of odd length. In fact, the bipartite graphs are
characterized by this property.
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Proposition 2.3. A graph G is bipartite if and only if it contains no odd cycle, a cycle of
odd length.

V1

V2

G = (V1 ∪V2,E)

A complete k-partite graph denoted by K|V1|,...,|Vk| is a k-partite graph with a partition
V1 ∪·· ·∪Vk of its vertex set such that {s, t} is an edge of G for any s ∈Vi, any t ∈Vj, and
any 1 ≤ i < j ≤ k. A complete n-partite graph all of whose independent sets Vi have only
one vertex is called a complete graph, and denoted by Kn. A clique is a subset C ⊂V such
that the induced subgraph G[C] of G is a complete graph.

K4K2,3

A vertex coloring of a graph G = (V,E) is a map c : V → S such that c(v) ̸= c(w)
whenever v and w are adjacent. The elements of set S are called the available colours.
The smallest integer k such that G has a k-colouring is the chromatic number of G. It is
denoted by χ(G). A graph G with χ(G) = k is called k-chromatic; if χ(G) ≤ k, we call
G k-colourable.The greatest integer r such that Kr is a subgraph of G is the clique number
ω(G) of G. A graph is called perfect if every induced subgraph H of G has chromatic
number χ(G) = ω(G).

The line graph L(G) of G = (V,E) is a graph on the vertex set E with the edge set
{{e,e′} : e,e′ ∈ E,e∩ e′ ̸= /0}.

1

2

3 4

5
6

7

8

G

12

23

34

45

15 56
67

68

L(G)

17



2.3 Special subsets of vertex set
A finite subset S ⊂ V is called stable in G if none of the edges of G is a subset of S. In
particular, the empty set /0 is stable.

Example 2.4. Let G be a cycle of length 5. The graph G has 11 stable sets.

1

2

3 4

5 /0,{1},{2},{3},{4},{5}
{1,3},{1,4},{2,4},{2,5},{3,5}

A k-matching of G is a set of k pairwise non-adjacent edges of G. If a matching M
includes all vertices of G, then M is called a perfect matching. We say that S ⊂V induces
a perfectly matchable subgraph of G if the induced subgraph G[S] of G on the vertex set
S has a perfect matching. Let W (G) be the set of all such subsets of V , and adopt the
convention that /0 ∈ W (G), i.e., that the empty subgraph is perfectly matchable. Given a
subset S ⊂V , let ρ(S) = ∑i∈S ei ∈ Rn, where ei is the ith unit vector in Rn. In particular,
ρ( /0) is the zero vector.

Example 2.5. Let G be a cycle of length 5. Then the graph G has 11 sets induce perfectly
matchable subgraph.

1

2

3 4

5 /0,{1,2},{1,3},{2,3},{3,4},{4,5},{1,5},
{1,2,3,4},{1,2,4,5},{2,3,4,5},{1,2,3,5}

In this thesis, we study lattice polytope arising from subsets induce perfectly match-
able subgraph.
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Chapter 3

Convex polytopes

In this chapter, we study convex polytopes based on [14].

3.1 Convex Polytopes and Simplicial Complexes
Let Rn be a N-dimensional Euclid space

Rn = {x = (x1, . . . ,xn) : xi ∈ R for i = 1,2, . . . ,n}.

with the standard topology.
A subset A ⊆ Rn is convex if for each x,y ∈ A, the line segment joining x and y is

contained in A.
For every non-empty subset X in Rn there exists a unique convex set CONV(X) with

X ⊆ CONV(X) such that if X ⊆ A ⊆ CONV(X) and A is convex then A = CONV(X). We
say that CONV(X) is the convex hull of X .

Definition 3.1. By a convex polytope P in Rn we mean the convex hull of a finite set of
points in Rn.

The d-ball Bd in Rn, d ≤ n is defined to be

Bd =

{
(x1,x2, . . . ,xn) ∈ Rn :

x2
1 + x2

2 + · · ·+ x2
d ≤ 1

xd+1 = · · ·= xN = 0

}
.

Let A and B be subsets in Rn. We write A ≃homeo B if A is homeomorphic to B, that is,
there exists a bijection φ : A → B such that both φ and φ−1 are continuous with respect to
the standard topology on Rn.

The dimension, dimP , of a convex polytope P ⊂ Rn is the positive integer d with
the property P ≃homeo Bd .

A hyperplane in Rn is a subset H ⊂ Rn of the form

H =

{
(x1,x2, . . . ,xn) ∈ Rn :

n

∑
i=1

aixi = b
}
,
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where each ai,b ∈ R with (a1,a2, . . . ,an) ̸= (0,0, . . . ,0). Every hyperplane H ⊂ Rn de-
termines the following two closed half-space in Rn:

H (+) =

{
(x1,x2, . . . ,xn) ∈ Rn :

n

∑
i=1

aixi ≥ b
}
,

H (−) =

{
(x1,x2, . . . ,xn) ∈ Rn :

n

∑
i=1

aixi ≤ b
}
,

Note that H (+)∩H (−) = H .
Let P ⊂ Rn be a convex polytope of dimension d. A hyperplane H ⊂ Rn is called a

supporting hyperplane of P if the following are satisfied:

(i) P ⊂ H (+) or P ⊂ H (−);

(ii) P ∩H ̸= /0.

Definition 3.2. A face of P is a subset of P of the form P ∩H , where H is a sup-
porting hyperplane of P .

Proposition 3.3. A convex polytope P ⊂ Rn has only a finite number of faces, and each
face is a convex polytope in Rn.

A face F of a convex polytope P ⊂ Rn is called an i-face of P if dimF = i. Here
dimF is the dimension of F as a convex polytope. A point x of P is called a vertex of
P if {x} is a 0-face of P is called an edge of P . Also, when dimP = d, we say that a
(d −1)-face of P is a facet of P .

Example 3.4. A 3-dimensional cube has 6 facets.

Proposition 3.5. Let V be the set of vertices of P . Then

(i) P = CONV(V );

(ii) If F is a face of P then F = CONV(V ∩F ), thus vertex set of F is equal to
V ∩F

The boundary of a convex polytope P ⊂ Rn (in the usual topological sense, i.e., in
the relative topology on P from the standard topology on Rn) is denoted by ∂P .

The (d-1)-sphere Sd−1 in Rn, d ≤ n, is defined to be
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Sd−1 =

{
(x1,x2, . . . ,xn) ∈ Rn :

x2
1 + x2

2 + · · ·+ x2
d = 1

xd+1 = · · ·= xN = 0

}
.

If P ⊂Rn is a convex polytope of dimension d, then δP ≃homeo Sd−1, since P ≃homeo
Bd .

Definition 3.6. A polyhedral complex in Rn is a finite set Γ of convex polytopes in Rn

such that

(i) if P ∈ Γ, then each face of P is in Γ;

(ii) if P,Q ∈ Γ, then P ∩Q is a face of P and of Q.

A d-simplex in RN is a convex polytope P ⊂Rn of dimension d such that the number
of P is just d +1.

0-simplex 1-simplex 2-simplex 3-simplex

Definition 3.7. A simplicial complex △ is a polyhedral complex such that every face σ

is a simplex.

Definition 3.8. Let Γ be a polyhedral complex in Rn of dimension d − 1. We write
fi = fi(Γ) for the number of i-faces of Γ(i = 0,1, . . . ,d −1). The vector

f (Γ) := ( f0, f1, . . . , fd−1),

is called the f -vectors of Γ.

Note that if Γ and Γ′ have the same combinatorial type, then we have f (Γ) = f (Γ′).
However, the converse is not true.

Definition 3.9. Let Γ be a polyhedral complex of dimension d−1 with f (Γ)= ( f0, f1, . . . , fd−1).
We define the integers hi = hi(Γ), 0 ≤ i ≤ d, by the formula

d

∑
i=0

fi−1(x−1)d−1 =
d

∑
i=0

hixd−i.

Here we set f−1 := 1. We say that the vector h(Γ) := (h0,h1, . . . ,hd) is the h-vector of Γ.

Note that knowing the f -vector of Γ is equivalent to knowing the h-vector of Γ.
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3.2 Unimodular triangulations
Next, We study triangulations of configuration matrix based on [15]. Let A=(ai j)1≤i≤d,1≤ j≤n
be a d ×n matrix and

a j =


a1 j
a2 j

...
ad j

 ,1 ≤ j ≤ n

the column vectors of A.
Let Z denote the set of integers and write Zd×n for the set of d × n matrices A =

(ai j)1≤i≤d,1≤ j≤n with each ai j ∈ Z.
The inner product of vectors a = [a1,a2, . . . ,ad]

T and b = [b1,b2, . . . ,bd]
T , where T

stands for the transpose, belonging to Rd is defined to be

a ·b =
d

∑
i=1

aibi.

A matrix A = (ai j)1≤i≤d,1≤ j≤n ∈ Zd×n is called a configuration matrix if there exists
c ∈ Rn such that

a j · c = 1,1 ≤ j ≤ n.

We regard configuration matrix A = [a1, . . . ,an] as a set A = {a1, . . . ,an}. Let △ be
a collection of simplices whose vertices belong to a configuration matrix A. Then, △ is
called a covering of A if holds. In addition, if a covering △ of a configuration matrix A is
a simplicial complex, then it is called a triangulation of A.

For a configuration matrix A = [a1, . . . ,an] ∈ Zd×n, let

ZA =
{ n

∑
i=1

ziai : zi ∈ Z
}
∈ Zd.

Let B⊂{a1, . . . ,an} be the vertex set of a maximal simplex σ ∈△ in a covering(triangulation)
of A.

Definition 3.10. The normalized volume of σ ∈ △ is defined by VOL(σ) := [ZA : ZB],
that is, the index of a subgroup ZB in a group ZA.

A covering(triangulation) △ of A is said to be unimodular if the normalized volume
of any maximal simplex in △ is equal to 1.

3.3 Lexicographic triangulations and unimodular config-
urations

We study configuration matrices which are the base cases for an inductive construction of
lexicographic and reverse lexicographic triangulations.
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Proposition 3.11. Let A be a configuration matrix. Suppose that CONV(A) is a simplex
and that A is the vertex set of CONV(A). Then, there exists only one triangulation of A,
and it is the set of all faces of CONV(A).

Next, we study lexicographic triangulations. A triangulation △ of a configuration
matrix A ∈ Zd×n is called a lexicographic triangulation if we have △=△(in<lex(IA)) for
a lexicographic order <lex induced by an ordering xi1 > · · ·> xin of variables. Since toric
ideals are homogeneous ideals, there is no difference between lexicographic orders and
pure lexicographic orders and pure lexicographic orders for such ideals. It is known that
every lexicographic triangulation can be computed recursively, as follows.

Proposition 3.12. For a configuration matrix A ∈ Zd×n, let △lex(A) be a lexicographic
triangulation with respect to lexicographic order <lex induced by an ordering x1 > · · ·>
xn of variables. If a1 ∈ CONV(A\{a1}), then we have

△lex(A) =△lex(A\{a1}).

In addition, if a1 /∈ CONV(A\{a1}), then we have

△lex(A) =△lex(A\{a1})∪△

△

{
CONV({a1}∪B) :

B ⊂ A\{a1}})
CONV(B) ∈△lex(A\{a1})
CONV(B)is visible from a1

}
.

A configuration matrix A is said to be unimodular if all triangulation of A are unimod-
ular. Here ”all triangulations” means all regular triangulations and all nonregular triangu-
lations. However, it will be turn out that it is enough to consider only the lexicographic
triangulations.

Proposition 3.13. For a configuration matrix A ∈ Zd×n, the following conditions are
equivalent.

(i) A is a unimodular configuration matrix.

(ii) Any triangulation of A is unimodular.

(iii) Any lexicographic triangulation of A is unimodular.

(iv) The normalized volume of any maximal simplex all of whose vertices belong to A is
equal to 1.

(v) For an arbitrary f ∈ CA, any monomial appearing in f is squarefree.

If rank(A) = d, then the following is also equivalent to the above.

(vi) All nonzero d ×d minors of A have the same absolute value.
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3.4 Reverse lexicographic triangulations and compressed
triangulations

A triangulation △ of a configuration matrix A ∈Zd×n is called a reverse lexicographic tri-
angulation if △=△(inrev(IA)) with respect to a reverse lexicographic order <rev induced
by the ordering xi1 > · · · > xin of variables. This is sometimes called a ”pulling trian-
gulation” in the literature. As in the case of lexicographic triangulations, every reverse
lexicographic triangulations can be computed recursively.

A configuration matrix A is said to be compressed if, for any ordering xi1 > · · ·> xin of
n variables of K[x], the reverse lexicographic triangulation △(in<rev(IA)) of A with respect
to the reverse lexicographic order <rev induced by this ordering is unimodular.

3.5 Combinatorics on δ -Sequences
A lattice polytope P ⊂Rn is a convex polytope such that any vertex of P belongs to Zn.
Suppose that P ⊂ Rn is an lattice polytope of dimension d and let ∂P be the boundary
of P . Given an integer n > 0, we set

nP := {nα ∈ P}

and define
i(P,n) := #(nP ∩Zn),

i∗(P,n) := #[n(P −∂P)∩Zn].

Then there exist integers δ0,δ1, . . . ,δd such that

1+
∞

∑
n=1

i(P,n)λ n =
δ0 +δ1λ + · · ·+δdλd

(1−λ )d+1 .

We say that
δ (P) := (δ0,δ1, . . . ,δd)

is the δ -vectors of P . It is known that:

(i) δ0 = 1,δ1 = i(P,1)− (d +1) = #(P ∩ZN)− (d +1);

(ii) (Ehrhart’s Law pf Reciprocity)

∞

∑
n=1

i∗(P,n)λ n =
δdλ +δd−1λ 2 + · · ·+δ0λ d+1

(1−λ )d+1 ;

(iii) δd = i∗(P,1) = #[(P −∂P)∩ZN ];

(iv) (Stanley) δ (P)≥ 0 i.e., δi ≥ 0, ∀i;
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(v) When N = d, volume of

P =
δ0 +δ1 + · · ·+δd

d!
.

An arbitrary (not necessary integral) convex polytope P ⊂ Rd is called of standard
type if the following conditions are satisfied:

(i) the dimension of P is equal to d;

(ii) the origin (0,0, . . . ,0) of Rn is contained in the interior P −∂P of P .

A lattice polytope P ⊂ Rn is said to be reflexive if 0 is the unique lattice point in its
interior and the dual polytope

P∗ := {x ∈ Rn : x · y ≤ 1 for any y ∈ P}

is again a lattice polytope. Recall that x · y is the inner product of x and y. Note that each
vertex of P∗ corresponds to a facet of P .

Proposition 3.14. Suppose that P is an lattice polytope of standard type. Then the δ -
vector, δ = (δ0,δ1, . . . ,δd) of P is symmetric if and only if the lattice polytope P is
reflexive.
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Chapter 4

Main theorems

4.1 Toric rings and toric ideals
Let K[x±1,s] = K[x±1

1 , . . . ,x±1
n ,s] be a Laurent polynomial ring in n+ 1 variables over a

field K. For a lattice point α = (α1, . . . ,αn) ∈ Zn, we define xα = xα1
1 · · ·xαn

n ∈ K[x±1,s].
If P ∩Zn = {a1, . . . ,am}, then the toric ring K[P] of P is the K-subalgebra of K[x±1,s]
generated by the monomials xa1s, . . . ,xams ∈ K[x±1,s]. Furthermore, the toric ideal IP
is the defining ideal of K[P], i.e., the kernel of a surjective ring homomorphism π :
K[y1, . . . ,ym]→ K[P] defined by π(yi) = xais for i = 1,2, . . . ,m. It is known that IP is
generated by homogeneous binomials. See, e.g., [13, 38] for details.

A lattice polytope P is called compressed if the initial ideal of IP is generated by
squarefree monomials with respect to any reverse lexicographic order [39]. It is known
that [38, Corollary 8.9] the initial ideal of IP is generated by squarefree monomials if and
only if the corresponding triangulation of P using only the lattice points in P is uni-
modular. Hence P is compressed if and only if every pulling triangulation of P using
only the lattice points in P is unimodular. Sullivant [39] proved that a lattice polytope
is compressed if and only if it is 2-level, which is important in optimization theory. For
example, the convex polytope of all n×n doubly stochastic matrices, hypersimplices, the
order polytopes of finite posets, edge polytopes of bipartite graphs and complete multi-
partite graphs, and the stable set polytopes of perfect graphs are compressed.

On the other hand, P ⊂ Rn is said to be normal if K[P] is a normal semigroup ring.
It is known that

• P is normal if and only if every vector in kP ∩ LP is a sum of k vectors from
P ∩Zn, where LP is the sublattice of Zn spanned by P ∩Zn;

• P is normal if there exists a monomial order such that the initial ideal of IP is
generated by squarefree monomials. In particular, P is normal if P is compressed.

A lattice polytope P ⊂ Rn has the integer decomposition property (IDP) if every vector
in kP ∩Zn is a sum of k vectors from P ∩Zn. In particular, P is normal if P has IDP.
However, the converse does not hold in general.
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Two lattice polytopes P ⊂ Rn and P ′ ⊂ Rn′ are said to be unimodularly equivalent
if there exists an affine map from the affine span

aff(P) =

{
r

∑
i=1

λiαi : 1 ≤ r ∈ Z,αi ∈ P,λi ∈ R,
r

∑
i=1

λi = 1

}

of P to the affine span aff(P ′) of P ′ that maps Zn ∩ aff(P) bijectively onto Zn′ ∩
aff(P ′) and that maps P to P ′. A lattice polytope P ⊂ Rn of dimension n is called
Gorenstein of index δ if δP = {δa : a ∈ P} is unimodularly equivalent to a reflexive
polytope. In particular, a reflexive polytope is Gorenstein of index 1. Reflexive polytopes
are related to mirror symmetry and studied in many areas of mathematics. They are key
combinatorial tools for constructing topologically mirror-symmetric pairs of Calabi-Yau
varieties, as shown by Batyrev [3]. It is known that a lattice polytope P is Gorenstein if
and only if the Ehrhart ring

K[xαsm : α ∈ mP∩Zn,m ∈ Z≥0]⊂ K[x±1,s]

of P is Gorenstein. On the other hand, the Ehrhart ring of P coincides with the toric
ring of P if and only if P has IDP.

4.2 Perfectly matchable subgraph polytopes
In the present thesis, we study conditions for perfectly matchable subgraph polytopes to
be compressed or Gorenstein. Let G = (V,E) be a graph on the vertex set V = [n] :=
{1,2, . . . ,n} and the edge set E.

Recall that S ⊂V induces a perfectly matchable subgraph of G if the induced subgraph
G[S] of G on the vertex set S has a perfect matching and W (G) be the set of all such
subsets of V .The perfectly matchable subgraph polytope of G, denoted by PG, is the
convex hull of {ρ(S) ∈ Rn : S ∈ W (G)}.

The perfectly matchable subgraph polytope of a graph is defined in [1]. The moti-
vation of their study on perfectly matchable subgraph polytopes is to solve optimization
problems that arise in practice (e.g., a bus driver scheduling problem). In optimization
theory, compressed polytopes are important since semidefinite programming relaxations
are very efficient for compressed polytopes (see, e.g, [11]).

Recently, perfectly matchable subgraphs of graphs appear in the study of h∗-polynomials
of lattice polytopes.

If G is a bipartite graph with a partition V1 ∪V2 = [n], let Ĝ be a connected bipartite
graph on [n+2] whose edge set is E(Ĝ) = E(G)∪{{i,n+1} : i ∈V1}∪{{ j,n+2} : j ∈
V2 ∪{n+1}}. It is known [33, Proposition 3.4] that

IĜ(x) = ∑
S∈W (G)

x|S|,
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where IĜ(x) is the interior polynomial of Ĝ that is introduced by Kálmán [17] as a version
of the Tutte polynomials for hypergraphs. It was shown [18] that the h∗-polynomial of
the edge polytope of a bipartite graph G coincides with the interior polynomial IG(x) of a
hypergraph induced by G. Using these facts, several results on h∗-polynomials of several
important classes of lattice polytopes are obtained [6, 33, 34, 35].

Next, we introduce inequalities for the facets of PG given in [1, 2]. We will see that
these inequalities depend on whether G is bipartite. Let

T = {X ⊂ V : each component of G[X ] has an odd number of vertices}.

For any A ⊂ V , let Γ(A) denote the subset of V \A that consists of vertices adjacent to at
least one vertex in A. For any S ⊂V , let θ(S) be the number of connected components of
the induced subgraph G[S].

Proposition 4.1 ([2]). Let G = (V,E) be a graph. Then PG is a set of vectors x ∈ RV

such that

0 ≤ x(v)≤ 1 for all v ∈V (4.1)
x(S)− x(Γ(S))≤ |S|−θ(S) (4.2)

for all S ∈ T such that every component of G[S] consists of a single vertex or else is a
nonbipartite graph with an odd number of vertices.

A graph G = (V,E) is called critical (or factor-critical) if, for every v ∈V , G\{v} has
a perfect matching. Any critical graph is either a single vertex or a connected nonbipartite
graph with an odd number of vertices.

Proposition 4.2 ([2]). Let G be a nonbipartite graph. For S ∈ T , the inequality (4.2) is
facet-inducing for PG if and only if S satisfies the following conditions:

(i) every component of G[S] is critical;

(ii) every component of G\ (S∪Γ(S)) is nonbipartite;

(iii) the graph obtained from G[S∪Γ(S)] by deleting all edges with both ends in Γ(S) is
connected.

Remark that, if |S|= 1, then S satisfies conditions (i) and (iii).

Proposition 4.3 ([1]). Let G = (V,E) be a bipartite graph on the vertex set V =V1 ∪V2.
Then PG is a set of vectors x ∈ RV such that

0 ≤ x(v)≤ 1 for all v ∈V, (4.3)
x(S)− x(Γ(S))≤ 0 for all /0 ̸= S ⊂V1, (4.4)

x(V1)− x(V2) = 0. (4.5)

Proposition 4.4 ([1]). Let G = (V1 ∪V2,E) be a connected bipartite graph. Then the
following are true:
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(a) The inequality 0 ≤ x(v) is facet-inducing for PG if and only if v is not a cut vertex.
(Note that every vertex of degree one is not a cut vertex.)

(b) Suppose that G has at least two edges. Then the inequality x(v) ≤ 1 is facet-
inducing for PG if and only if deg(v)≥ 2;

(c) For any /0 ̸= S ⊊V1, the inequality (4.4) is facet-inducing for PG if and only if both
G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))] are connected.

Remark 4.5. Suppose that both G[S∪Γ(S)] and G[(V1 \ S)∪ (V2 \Γ(S))] are connected
for S ⊊V1. Let S′ =V2 \Γ(S). Then we have Γ(S′) =V1 \S. If (4.5) holds, then we have
x(S)− x(Γ(S)) = x(S′)− x(Γ(S′)).

4.3 Main theorems
If G is the disjoint union of graphs G1 and G2, then we have

PG = PG1 ×PG2 := {(x,y) : x ∈ PG1,y ∈ PG2}

since every matching M of G is of the form M = M1 ∪M2 where Mi is a matching of
Gi for each i = 1,2. Hence, PG is compressed if and only if both PG1 and PG2 are
compressed. On the other hand, from [10, Corollary 4.3.3 and Theorem 4.4.9] (cf. [19,
Lemma 2.9]), when both PG1 and PG2 have IDP, PG is Gorenstein of index δ if and
only if both PG1 and PG2 are Gorenstein of index δ . Thus, when we are studying such
properties, we may assume that G is connected.

The first main result of the present thesis is a complete characterization of compressed
perfectly matchable subgraph polytopes.

Theorem 4.6. Let G be a connected graph. Then PG is compressed if and only if all
blocks of G are complete bipartite graphs except for at most one block, which is either K4
or K1,1,n.

In particular, if PG is compressed, then the line graph of G is perfect by Proposi-
tion 6.3.

The second main result of the present thesis is a characterization of Gorenstein per-
fectly matchable subgraph polytopes of bipartite graphs. For any S ⊂ V , let Γ(S) denote
the subset of V \S that consists of vertices adjacent to at least one vertex in S. A graph is
called k-connected if any induced subgraph obtained by removing less than k vertices is
connected. Theorem 4.7 follows from Proposition 5.3, Theorem 7.4 and Corollary 7.6.

Theorem 4.7. Suppose that a connected bipartite graph G = (V1 ∪V2,E) has a vertex
v with deg(v) ≥ 2 such that v is not a cut vertex. Then the following conditions are
equivalent:

(i) K[PG] is Gorenstein;
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(ii) PG is Gorenstein;

(iii) PG is Gorenstein of index 2;

(iv) G has a perfect matching and, for any subset /0 ̸= S ⊊V1 such that G[S∪Γ(S)] and
G[(V1 \S)∪ (V2 \Γ(S))] are connected, we have |S|+1 = |Γ(S)|.

Moreover, if G is 2-connected, then the above conditions are equivalent to

(v) the edge polytope of G is Gorenstein.

The third main result of the present thesis is a complete characterization of Gorenstein
perfectly matchable subgraph polytopes of pseudotrees.

A bidegreed graph is a graph with two different vertex degrees. For example, a path
Pn and a star graph K1,n−1 are bidegreed if n ≥ 3.

Theorem 4.8. Let G be a pseudotree on the vertex set V . Then K[PG] is Gorenstein if
and only if G satisfies one of the following:

(i) G is K1, K2, or a bidegreed tree;

(ii) G =C5;

(iii) G has a triangle C and {
deg(v) ∈ {2,3} if v ∈V (C)

deg(v) ∈ {1,3} otherwise;

(iv) G has an even cycle C, and there exists an integer δ ≥ 2 such that{
deg(v) = δ if v ∈V (C)

deg(v) ∈ {1,δ −1} otherwise.

The relationships between toric rings of perfectly matchable subgraph polytopes and
toric rings of other polytopes play important roles in this thesis. In [1], it was pointed
out that PG is unimodulary equivalent to a base polytope of a transversal matroid if G is
bipartite. Let G be a graph with the edge set E = {e1, . . . ,em}, and let

AG = (ρ(e1), . . . ,ρ(em))

be the matrix associated with the edge polytope Ed(G) of G. It then follows that

PG ∩Zn = {AG x : x ∈ Stab(L(G))∩Zm}, (4.6)

where Stab(L(G)) is the stable set polytope of the line graph of G (definitions are ex-
plained later). From (4.6), it is easy to see that the edge polytope of G is normal if PG
is normal (Corollary 5.6). There are many research on the edge polytopes and the stable
set polytopes from the point of view of not only discrete geometry but also combinatorial
commutative algebra. The study of perfectly matchable subgraph polytopes is expected
to contribute the study of these polytopes.
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Chapter 5

Relationships with toric rings of other
polytopes

In this chapter, we introduce relationships between toric rings of PG and toric rings of
other polytopes, i.e., base polytopes of matroids, stable set polytopes, and edge polytopes.

Let G = (V,E) be a graph. Recall that the perfectly matchable subgraph polytope PG
of G is the convex hull of {ρ(S) ∈ Rn : S ∈ W (G)}, where W (G) is the set of all subsets
of V which induce perfectly matchable subsets of G.

Example 5.1. Let G be a cycle C4 of length 4. Then the set W (G) associated with G is

W (G) = { /0,{1,2},{2,3},{3,4},{1,4},{1,2,3,4}}.
Note that matchings {{1,2},{3,4}} and {{1,4},{2,3}} are associated with the same set
{1,2,3,4}. The perfectly matchable subgraph polytope PG ⊂ R4 of G is the convex hull
of the column vectors of the matrix

0 1 0 0 1 1
0 1 1 0 0 1
0 0 1 1 0 1
0 0 0 1 1 1

 .

Then PG is a 3-dimensional polytope which is compressed and Gorenstein.

It is known [1, 2] that, if G is a connected graph on the vertex set {1,2, . . . ,n}, then

dimPG =

{
n−1 if G is bipartite,

n otherwise.

If G = (V,E) is a bipartite graph on the vertex set V = {1,2, . . . ,n}=V1∪V2, then PG is
contained in the hyperplane

{x ∈ Rn : x(V1) = x(V2)},
where x(Vi) denotes the sum ∑ j∈Vi x j for the vector x = (x1, . . . ,xn). If G is the dis-
joint union of graphs G1 and G2, then PG is the product of PG1 and PG2 and hence
dim(PG) = dim(PG1)+dim(PG2). If G has k connected components which are bipar-
tite, then we have dimPG = n− k.
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5.1 Base polytopes of transversal matroids

Suppose that, for B = {B1, . . . ,Bn}, Bi is a subset of [d] and each |Bi| has r elements for
i = 1, . . . ,n. We define I = {B′ ⊂ [d] : B′ ⊂ Bi for some i}

Definition 5.2. If a set B satisfies condition:

For each 1 ≤ i, j ≤ n, there exists y ∈ B j \Bi satisfies (Bi \{x})∪{y} ∈ B for every
x ∈ Bi \B j

we call M = ([d],I ) matroid of rank r on a ground set [d]

Let M be a matroid on a ground set {1,2, . . . ,n} with the set of bases B. The base
polytope B(M) of M is the convex hull of the set {ρ(B) : B ∈ B} ⊂ Rn. In [1], it
was pointed out that PG is unimodularly equivalent to a base polytope of a transversal
matroid if G is bipartite. Since the base polytope of any matroid has IDP [42], we have
the following.

Proposition 5.3. Let G be a connected bipartite graph. Then PG has IDP. In particular,
K[PG] is Gorenstein if and only if PG is Gorenstein.

Note that Gorenstein base polytopes of matroids were studied in [19].

5.2 Edge polytopes

Let G be a graph on the vertex set V = {1,2, . . . ,n} and the edge set E = {e1, . . . ,em}.
The edge polytope Ed(G) of G is the convex hull of the set

{ρ(e1), . . . ,ρ(em)}.

Note that compressed (resp. Gorenstein) edge polytopes were studied in [27, 30]
(resp. [32]). Toric rings of edge polytopes, namely edge rings, are studied intensively.
See, e.g., [13, 41] for details. In particular, the edge ring of a finite connected simple
graph with a q-linear resolution, where q ≥ 3, is a hypersurface [16, 26]. We say that a
graph G satisfies the odd cycle condition if, for any two odd cycles C1 and C2 in the same
connected component of G without common vertices, there exists an edge {i, j} of G such
that i ∈V (C1) and j ∈V (C2).

Proposition 5.4 ([29, 36]). Let G be a graph. Then Ed(G) is normal if and only if G
satisfies the odd cycle condition.
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5.3 Stable set polytopes
Recall that a finite subset S ⊂V is called stable in G if none of the edges of G is a subset
of S. Let S(G) = {S1, . . . ,St} denote the set of all stable sets of G. The stable set polytope
of G is the convex hull of the set {ρ(S1), . . . ,ρ(St)}, denoted by Stab(G).

It is known (e.g., [31]) that Stab(G) is compressed if and only if G is perfect. More-
over, it is known [32, Theorem 1.2 (b)] that, for any perfect graph G, Stab(G) is Goren-
stein if and only if all maximal cliques of G have the same cardinality.

For S ∈ W (G), we have ρ(S) = ρ(ei1)+ · · ·+ρ(eik) ∈ Rn, where {ei1, . . . ,eik} ⊂ E
is a matching of G. Note that {ei1, . . . ,eik} ⊂ E is a matching of G if and only if S′ =
{ei1 , . . . ,eik} ⊂V (L(G)) is stable in L(G). Since ρ(S′) = ei1 + · · ·+ eik ∈ Rm, we have

ρ(S) = AG ρ(S′),

where AG = (ρ(e1), . . . ,ρ(em)) is the vertex-edge incidence matrix of G. Thus

PG ∩Zn = {AG x : x ∈ Stab(L(G))∩Zm}. (5.1)

In addition, we have Ed(G)⊂ PG. In such a case, the following holds in general.

Proposition 5.5. Let P ⊂ P ′ ⊂ Rn be lattice polytopes such that

P ∩Zn = {a1,a2, . . . ,am},
P ′∩Zn = {(a1,a2, . . . ,am) x : x ∈ Q},

where Q ⊂ Zm
≥0. Suppose that there exists w ∈ Rn such that ai ·w = 1 for any 1 ≤ i ≤ m.

Then P is normal if P ′ is normal.

Proof. Let α ∈ kP ∩ LP . Since P ⊂ P ′, α belongs to kP ′ ∩ LP ′ . The normality
of P ′ guarantees that α = α1 + · · ·+αk where αi ∈ P ′ ∩Zn for each i. Then αi =
(a1,a2, . . . ,am)x for some nonnegative integer vector x ∈ Q. Hence each αi is a sum
of vectors from P ∩Zn if x is not zero. Thus we have α = a j1 + · · ·+ a jℓ for some
1 ≤ j1, . . . , jℓ ≤ m. Since there exists w ∈ Rn such that ai ·w = 1 for any 1 ≤ i ≤ m, it
follows that k = w ·α = w · a j1 + · · ·+w · a jℓ = ℓ. Thus α is a sum of k vectors from
P ∩Zn, as desired.

Since ρ(ei) ·w = 1 (1 ≤ i ≤ m) for w = (1/2, . . . ,1/2), we have the following.

Corollary 5.6. Let G be a graph. If PG is normal, then Ed(G) is normal (i.e., G satisfies
the odd cycle condition).

Given a lattice polytope P ⊂Rn, let A=(a1, . . . ,am) where P∩Zn = {a1, . . . ,am}. It
is known [38] that the toric ideal IP of P is generated by binomials ya−yb ∈K[y1, . . . ,ym]
such that A(a−b) = 0 and degya = degyb.

Proposition 5.7. Let G be a pseudotree which has no even cycles. Then the toric ring
K[PG] of PG is isomorphic to the toric ring K[Stab(L(G))] of Stab(L(G)).
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Proof. Let G = (V,E) be a graph on the vertex set V = {1,2, . . . ,n} and the edge set
E = {e1, . . . ,em}. Let AG = (ρ(e1), . . . ,ρ(em)) be the vertex-edge incidence matrix of G
and let BG = (ρ(S1), . . . ,ρ(Sr)) where {S1, . . . ,Sr} is the set of all stable sets of L(G).

If G is not a tree, then n = m and hence AG is an m×m matrix. It is known [13,
Lemmas 5.5 and 5.6] that AG is a regular matrix if and only if G is a pseudotree which
has no even cycles. If G is a tree, then n = m+1 and AG is an (m+1)×m matrix of rank
m.

Since the rank of the n×m matrix AG is m, for any u ∈ Rr, AGBGu = 0 if and only if
BGu = 0. From (5.1), PG ∩Zn = {AGρ(S1), . . . ,AGρ(Sr)}. Hence we have

ya −yb ∈ IPG ⇔ AGBG(a−b) = 0 and degya = degyb

⇔ BG(a−b) = 0 and degya = degyb

⇔ ya −yb ∈ IStab(L(G)).

Thus K[PG]≃ K[y]/IPG = K[y]/IStab(L(G)) ≃ K[Stab(L(G))] as desired.

Recall that a clique C of a graph G is a subset of the vertex set of G such that the
induced subgraph G[C] of G is a complete graph. The graph obtained by gluing two
graphs at a clique of them is called a clique-sum of them. An almost bipartite graph is a
graph whose induced subgraph obtained by deleting a vertex v is bipartite for some v.

Proposition 5.8. Let G be a pseudotree. Then PG is normal.

Proof. From Proposition 5.3, we may assume that G is not bipartite. Then, by Proposi-
tion 5.7, K[PG]∼= K[Stab(L(G))]. Hence it is enough to show that Stab(L(G)) is normal.
We will show it by induction on the number of vertices of G. Let n (≥ 3) be the number
of vertices of G.

If n= 3, then G=K3 since G has an odd cycle. Thus L(G)=K3, and hence Stab(L(G))
is a simplex. Then Stab(L(G)) is normal.

Suppose that n > 3 and that, for any pseudotree G′ with ≤ n−1 vertices, Stab(L(G′))
is normal. If G is an odd cycle, then L(G) is also an odd cycle. It is known [8, Theo-
rem 8.1] that the toric ideal of the stable set polytope of an almost bipartite graph has a
squarefree quadratic initial ideal. Hence, Stab(L(G)) is normal. Suppose that G is not an
odd cycle. Then G has a vertex v such that deg(v) = 1. Let e be the edge {v,v′} of G. Let
E be the edge set of G and let E ′ = {e′ ∈ E : v′ ∈ e′}. Then L(G) is the clique-sum of
the graphs G1 and G2, where G1 is the induced subgraph of L(G) obtained by the vertex
set E ′, and G2 is the induced subgraph of L(G) obtained by the vertex set E \ {e}. In
fact, E ′ \ {e} = E ′ ∩ (E \ {e}) is a clique of both G1 and G2. Since G1 is a complete
graph, Stab(G1) is a simplex, and hence normal. Since G2 is the line graph of pseudotree
G\{v} with n−1 vertices, Stab(G2) is normal by the hypothesis of induction. It is known
[23, Proposition 1] that the stable set polytope of the clique-sum of simple graphs G1 and
G2 is normal if and only if both Stab(G1) and Stab(G2) are normal. It then follows that
Stab(L(G)) is normal.
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Chapter 6

Compressed perfectly matchable
subgraph polytopes

In this chapter, we prove Theorem 4.6. The following proposition is due to Sullivant [39,
Theorem 2.4] (and also appeared in Haase’s dissertation [12]).

Proposition 6.1 ([39]). Let P be a lattice polytope having the irredundant linear descrip-
tion P = {x ∈ Rn : ai ·x ≥ bi, i = 1, . . . ,s}, where ai ∈ Rn for i = 1,2, . . . ,s. In addition,
let L ⊂ Zn be a lattice spanned by P ∩Zn. Then P is compressed if and only if, for
each i, there is at most one nonzero mi ∈ R such that {x ∈ L : ai ·x = bi +mi}∩P ̸= /0.

Let G′ be an induced subgraph of a graph G. Then PG′ is a face of PG. It is known
that every face of a compressed polytope is compressed. Hence, we have the following
immediately.

Lemma 6.2. Let G′ be a connected graph such that PG′ is not compressed. If a graph G
has G′ as an induced subgraph, then PG is not compressed.

The following fact is known in graph theory.

Proposition 6.3 ([22, 40]). Let G be a graph. Then the following conditions are equiva-
lent:

(i) The line graph L(G) of G is perfect;

(ii) G has no odd cycle of length ≥ 5 as a subgraph;

(iii) Each block of G is either a bipartite graph, K4, or K1,1,n.

It is known that Stab(G) is compressed if and only if G is perfect.

Lemma 6.4. Let G be a connected graph. If PG is compressed, then L(G) is perfect and
hence Stab(L(G)) is compressed.
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Proof. Suppose that L(G) is not perfect. From Proposition 6.3, G has an odd cycle C2n+1
with n ≥ 2 as a subgraph. Let S = V (C2n+1) and G′ = G[S]. From Lemma 6.2, it is
enough to prove that PG′ arising from the induced subgraph G′ of G is not compressed.
By assumption, G′ \ (S∪Γ(S)) is empty. Since C2n+1 is critical and since the vertex set
of C2n+1 coincides with the vertex set of G′, the graph G′ = G′[S] is critical. Moreover,
Γ(S) = /0 and G′[S∪Γ(S)] = G′ is connected. Hence,

x(S)≤ |S|−θ(S) = 2n+1−1 = 2n

is facet-inducing for PG′ from Proposition 4.2. Then there exist n+1 ≥ 3 kinds of values
for x(S) with x ∈ PG′ ∩Z2n+1. In fact, we have{

x(S) : x ∈ PG′ ∩Z2n+1}= {0,2, . . . ,2n}.

From Proposition 6.1, PG′ is not compressed.

Lemma 6.5. Let G be a connected graph. Suppose that PG is compressed. Then for any
even cycle C in G of length 2n ≥ 6, the induced subgraph G[V (C)] is a complete bipartite
graph Kn,n.

Proof. Suppose that PG is compressed. Let C = (v1, . . . ,v2n) be an even cycle in G of
length 2n ≥ 6, and let G′ = G[V (C)]. We prove the statement by induction on n.

From Lemma 6.2, PG′ is compressed. Note that G′ is a subgraph of a block of G.
From Proposition 6.3 and Lemma 6.4, G′ is a bipartite graph since neither K4 nor K1,1,n
has an even cycle of length ≥ 6. Let V ′

1 = {v1,v3, . . . ,v2n−1} and V ′
2 = {v2,v4, . . . ,v2n}.

Suppose that G′ is not a complete bipartite graph.

Case 1. (n = 3) Suppose that {v3,v6} is not an edge of G′. Then, for S = {v3}, both
G′[S ∪ Γ(S)] = G′[{v2,v3,v4}] and G′[(V ′

1 \ S)∪ (V ′
2 \ Γ(S)) = G′[{v1,v5,v6}] are con-

nected. However, we have

x(S)− x(Γ(S)) =


0 for x = ρ( /0) = 0,
−1 for x = ρ({v1,v2}),
−2 for x = ρ({v1,v2,v4,v5}).

Hence, PG′ is not compressed, a contradiction. It follows that C has all the possible
chords {v1,v4}, {v2,v5}, and {v3,v6}. Hence, G′ is a complete bipartite graph K3,3.

Case 2. (n≥ 4 and suppose that the statement is true for any even cycle of length ≤ 2n−2)
Suppose that {v3,v2k} for some 3 ≤ k ≤ n is not an edge of G′. If {v3,v2k′} is an

edge of G′ for some k′, then v3,v2k are contained in an even cycle of length 2m with 6 ≤
2m ≤ 2n−2. By the hypothesis of induction, {v3,v2k} is an edge of G′, a contradiction.
Thus, for any 3 ≤ k′ ≤ n, {v3,v2k′} is not an edge of G′. Let S = {v3}. Then both
G′[S∪Γ(S)] = G′[{v2,v3,v4}] and G′[(V ′

1 \S)∪ (V ′
2 \Γ(S))] = G′[{v1,v5,v6, . . . ,v2n}] are

connected. However, we have

x(S)− x(Γ(S)) =


0 for x = ρ( /0) = 0,
−1 for x = ρ({v1,v2}),
−2 for x = ρ({v1,v2,v4,v5}).
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Hence, PG′ is not compressed, a contradiction. Thus, G′ is a complete bipartite graph
Kn,n.

Lemma 6.6. Let G be a connected graph. If PG is compressed, then any two triangles
of G have a common edge.

Proof. Suppose that PG is compressed and two triangles C and C′ of G have no common
edges.

Case 1. (C and C′ have exactly one common vertex) Let G′=C∪C′, where C =(v1,v2,v3)
and C′ = (v3,v4,v5). Then the vertex set and the edge set of G′ are

V ′ = {v1,v2,v3,v4,v5}, E ′ = {{v1,v2},{v2,v3},{v3,v1},{v3,v4},{v4,v5},{v5,v3}}.

Since G has no odd cycle of length ≥ 5 as a subgraph, G′ is an induced subgraph of G,
and hence PG′ is compressed.

We now consider the facets of PG′ . Let S = {v3}. Since |S| = 1, the set S satisfies
conditions (i) and (iii) in Lemma 4.2. In addition, since G′\(S∪Γ(S)) is empty, S satisfies
condition (ii) in Lemma 4.2. Thus, S induces a facet of PG′ . However, we have

x(S)− x(Γ(S)) =


0 for x = ρ( /0) = 0,
−2 for x = ρ({v1,v2}),
−4 for x = ρ({v1,v2,v4,v5}).

Hence, PG′ is not compressed, a contradiction.

Case 2. (C and C′ have no common vertices) From Case 1, we may assume that there
is no pair of triangles having exactly one common vertex. Since G is connected, there
exists a path P = (v1, p1, . . . , ps = v′1) connecting two triangles C = (v1,v2,v3) and C′ =
(v′1,v

′
2,v

′
3), where p1, . . . , ps−1 /∈ V (C)∪V (C′). We may assume that s ≥ 1 is minimal

among pairs of triangles without common edges. Let G′′ be an induced subgraph on the
vertex set V (C)∪V (C′)∪V (P). Let S = {v2}. Since |S|= 1, the set S satisfies conditions
(i) and (iii) in Lemma 4.2.

Case 2.1. (Γ(S) = {v1,v3}) For this case, G′′ \ (S∪Γ(S)) is nonbipartite. However, we
have

x(S)− x(Γ(S)) =


0 for x = ρ( /0) = 0,
−1 for x = ρ({v1, p1}),
−2 for x = ρ({v1,v3}).

Hence, PG′′ is not compressed, a contradiction.

Case 2.2. (Γ(S) ̸= {v1,v3}) There exists an edge {v2,v}, where v (̸= v1) belongs to
either the path P or C′. If v ̸= p1, then an odd cycle of length ≥ 5 is a subgraph of G′′.
Hence, we have v = p1. Then G′′ has triangles (v1,v2,v) and (v′1,v

′
2,v

′
3) connected by a

path (v = p1, . . . , ps = v′1) (s ≥ 2). This contradicts the hypothesis that s is minimal.
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We are now in a position to prove a main theorem.

Proof of Theorem 4.6. (“Only if”) Suppose that PG is compressed. From Proposition 6.3
and Lemma 6.4, each block of G is either a bipartite graph, K4, or K1,1,n. By Lemma 6.6,
at most one block is either K4 or K1,1,n. It is enough to show that each bipartite block
is a complete bipartite graph. Let B be a bipartite block of G on the vertex set B1 ∪B2.
Suppose that {i, j} is not an edge of G for vertices i ∈ B1 and j ∈ B2. Since B is 2-
connected, there exist two disjoint paths P1 and P2 from i to j in B. Note that the length
of each Pi is at least 3. Hence P1 ∪P2 is an even cycle of length ≥ 6. This contradicts to
Lemma 6.5. Thus, B is a complete bipartite graph.

(“if”) Suppose that all blocks of G are complete bipartite graphs except for at most
one block, which is either K4 or K1,1,n and PG is not compressed.

Case 1. (G is bipartite) There exists /0 ̸= S ⊊V1 such that

x(S)− x(Γ(S))≤ 0

is facet-inducing, and
x(S)− x(Γ(S))≤−2

for some x ∈PG∩Zn. It then follows that there exist four distinct vertices i, i′ ∈ Γ(S) and
j, j′ ∈ V1 − S such that {i, j},{i′, j′} ∈ E. By Proposition 4.4, G[S∪Γ(S)] and G[(V1 −
S)∪ (V2 −Γ(S))] are connected. Then there exists an even cycle

C = (i, j,k1, . . . ,k2p−1, j′, i′, ℓ1, . . . , ℓ2q−1),

where
k1,k3, . . . ,k2p−1 ∈V2 −Γ(S), k2,k4, . . . ,k2p−2 ∈V1 −S,

ℓ1, ℓ3, . . . , ℓ2q−1 ∈ S, ℓ2, ℓ4, . . . , ℓ2q−2 ∈ Γ(S).

Note that the length of C is at least 6. However, since G[V (C)] is complete bipartite, G
has an edge {k1, ℓ1}. This contradicts k1 ∈V2 −Γ(S) and ℓ1 ∈ S.

Case 2. (G is not bipartite) There exists a subset S ⊂V such that

x(S)− x(Γ(S))≤ |S|−θ(S) (6.1)

is facet-inducing, and

|{x(S)− x(Γ(S)) ∈ Z : x ∈ PG ∩Zn}| ≥ 3.

Note that G has no odd cycle of length ≥ 5 as a subgraph.

Case 2.1. (S is stable and G = G[S∪Γ(S)]) Since G = G[S∪Γ(S)], x(S)− x(Γ(S)) must
be even. It then follows that there exists x ∈ PG ∩Zn such that

x(S)− x(Γ(S))≤ |S|−θ(S)−4 =−4.
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Hence, G[Γ(S)] has two edges {i1, j1} and {i2, j2} without a common vertex. Since the
graph G′ obtained from G by deleting all edges with both ends in Γ(S) is connected, there
exists a path P in G′ from i1 to j1. By assumption, S is stable, and hence G′ is a bipartite
graph. Since i1 and j1 belong to the same part in the bipartite graph G′, the length of P is
even. Then T1 = P∪{i1, j1} is an odd cycle of G. Since G has no odd cycle of length ≥ 5,
T1 = (i1, j1,k1) for some k1 ∈ S. By the same argument, G has a triangle T2 = (i2, j2,k2)
for some k2 ∈ S. Hence G has two triangles T1 and T2 without a common edge. This is a
contradiction.

Case 2.2. (S is stable and G ̸= G[S ∪ Γ(S)]) From |S| = θ(S), x(S)− x(Γ(S)) ≤ 0 is
facet-inducing. By Proposition 4.2, every component of G \ (S∪Γ(S)) is nonbipartite,
and hence has a triangle. Since any two triangles of G have a common edge, it follows
that G\ (S∪Γ(S)) is connected. If G[Γ(S)] has an edge {i, j}, G[S∪Γ(S)] has a triangle
as in Case 2.1. This is a contradiction. Hence Γ(S) is a stable set. Thus G[S∪Γ(S)]
is a connected bipartite graph. Since x(S)− x(Γ(S)) ≤ −2 for some x ∈ PG ∩Zn, it
follows that there exist four distinct vertices i, i′ ∈ Γ(S) and j, j′ ∈V \ (S∪Γ(S)) such that
{i, j},{i′, j′} ∈ E. Since G[S∪Γ(S)] and G\ (S∪Γ(S)) are connected, there exists a cycle

C = (i, j,k1, . . . ,kp, j′, i′, ℓ1, . . . , ℓ2q−1),

where p ≥ 0, q ≥ 1 and
k1,k2, . . . ,kp ∈V \ (S∪Γ(S)),

ℓ1, ℓ3, . . . , ℓ2q−1 ∈ S, ℓ2, ℓ4, . . . , ℓ2q−2 ∈ Γ(S).

Note that the length of C is at least 5. Since G has no odd cycle of length ≥ 5 as a subgraph,
C is an even cycle of length ≥ 6 (and hence p ≥ 1 is odd). However, since G[V (C)] is
complete bipartite, G has an edge {k1, ℓ1}. This contradicts k1 ∈V \(S∪Γ(S)) and ℓ1 ∈ S.

Case 2.3. (S is not stable) Since every component of G[S] is critical, a component of
G[S] has a triangle T1 and other components of G[S] are isolated vertices. Let G′ be the
component of G[S] that contains T1. It is known [21] that a graph is critical if and only
if each block of the graph is critical. Hence every block of G′ is critical. Note that (i)
any critical graph is either a single vertex or a nonbipartite graph with an odd number of
vertices; (ii) K1,1,s is critical if and only if s = 1. Since G′ is an induced subgraph of G, it
then follows that G′ = K3 (= T1). Hence |S|−θ(S) = 2.

By Lemma 6.6, G\(S∪Γ(S)) has no triangle. Thus, either G\(S∪Γ(S)) is bipartite or
G\(S∪Γ(S)) = /0. Since (6.1) is facet-inducing, G\(S∪Γ(S)) = /0, i.e., G = G[S∪Γ(S)].

If G[Γ(S)] has an edge {i, j}, then G has a triangle T2 = (i, j,k) for some k ∈ S as
in Case 2.1. Hence G has two triangles T1 and T2 without a common edge. This is a
contradiction. Thus Γ(S) is stable.

Since G = G[S∪Γ(S)], x(S)− x(Γ(S)) must be even. It then follows that there exists
x ∈ PG ∩Zn such that

x(S)− x(Γ(S))≤ |S|−θ(S)−4 =−2.

However, since Γ(S) is stable, x(S)− x(Γ(S))≥ 0 which is a contradiction.

41



Figure 6.1: Graph which has K3,3, K4, and K2,3 as blocks

Example 6.7. The perfectly matchable subgraph polytope PG of the graph G in Fig-
ure 6.1 is compressed.
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Chapter 7

Gorenstein perfectly matchable
subgraph polytopes

In this chapter, for several classes of graphs, we give a characterization of a graph G
such that K[PG] is Gorenstein. If G is either K1 or K2, then K[PG] is isomorphic to
a polynomial ring and hence K[PG] is Gorenstein. Throughout this chapter, we may
assume that G has at least two edges.

7.1 2-connected bipartite graphs
Suppose that G is a bipartite graph on the vertex set V = V1 ∪V2 = {1, . . . ,n}, where
n ∈ V2. Then PG lies on the hyperplane H defined by the equation x(V1) = x(V2). Let
ψ : Rn−1 → H denote the affine map defined by setting

ψ(y) = (y1, . . . ,yn−1,y(V1)− y(V2 \{n})),

for each y= (y1, . . . ,yn−1)∈Rn−1. Then ψ is an affine isomorphism such that ψ(Zn−1) =
H ∩Zn. Hence, ψ−1(PG) ⊂ Rn−1 is a lattice polytope of dimension n− 1 which is
unimodulary equivalent to PG.

If G is bipartite, we have the following criterion for G whose PG is Gorenstein. Note
that any vertex of degree one is not a cut vertex.

Proposition 7.1. Let G be a connected bipartite graph on the vertex set V = {1,2, . . . ,n}=
V1 ∪V2. Then PG is Gorenstein of index δ if and only if δ ≥ 2 and there exists α ∈ Zn

such that the following hold:

(i) α(V1) = α(V2);

(ii) If v is not a cut vertex, then α(v) = 1;

(iii) If deg(v)≥ 2, then α(v) = δ −1;

(iv) If G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))] are connected for a subset /0 ̸= S ⊊ V1,
then α(S)−α(Γ(S)) =−1.
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Proof. Let P = ψ−1(PG), where ψ is the map defined as above. Then P is Gorenstein
of index δ if and only if there exists a lattice point β ∈ δ (P \ ∂P)∩Zn−1 such that
δP −β is a reflexive polytope, where δP = {δa : a ∈ P} and ∂P is the boundary of
P .

By Propositions 4.3, 4.4 and Remark 4.5, substituting x(n) = x(V1)− x(V2 \ {n}), it
follows that δP is a set of vectors x ∈ RV\{n} such that

0 ≤ x(v)≤ δ for all v ∈V \{n}, (7.1)
0 ≤ x(V1)− x(V2 \{n})≤ δ , (7.2)

x(S)− x(Γ(S))≤ 0
for all /0 ̸= S ⊊V1 such that n /∈ Γ(S) and
G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))]
are connected,

(7.3)

−x(V1 \S)+ x(V2 \Γ(S))≤ 0
for all /0 ̸= S ⊊V1 such that n ∈ Γ(S) and
G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))]
are connected.

(7.4)

Furthermore, δP−β , where β ∈ δ (P \∂P)∩Zn−1, is a set of vectors x ∈RV\{n} such
that

−β (v)≤ x(v)≤ δ −β (v) for all v ∈V \{n},

−β (V1)+β (V2 \{n})≤ x(V1)− x(V2 \{n})≤ δ −β (V1)+β (V2 \{n}),

x(S)− x(Γ(S))≤−β (S)+β (Γ(S))
for all /0 ̸= S ⊊V1 such that n /∈ Γ(S) and
G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))]
are connected,

−x(V1\S)+x(V2\Γ(S))≤ β (V1\S)−β (V2\Γ(S))
for all /0 ̸= S ⊊V1 such that n ∈ Γ(S) and
G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))]
are connected.

Note that 0 < β (v) < δ and −β (S)+β (Γ(S) \ {n}) > 0 for all /0 ̸= S ⊊ V1. Thus, P is
Gorenstein if and only if δ ≥ 2 and there exists β ∈ δ (P \∂P)∩Zn−1 such that

−β (v) =−1 if v (̸= n) is not a cut vertex
δ −β (v) = 1 if deg(v)≥ 2,v ̸= n

−β (V1)+β (V2 \{n}) =−1 if n is not a cut vertex
δ −β (V1)+β (V2 \{n}) = 1 if deg(n)≥ 2

−β (S)+β (Γ(S)) = 1 if n /∈ Γ(S) and G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))]
are connected for a subset /0 ̸= S ⊊V1,

β (V1 \S)−β (V2 \Γ(S)) = 1 if n ∈ Γ(S) and G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))]
are connected for a subset /0 ̸= S ⊊V1.

By taking α = ψ(β ), this is equivalent to conditions (i)–(iv).

The following characterization is known for graphs having a perfect matching.
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Proposition 7.2 (Hall’s marriage theorem). Let G be a bipartite graph on the vertex set
V1 ∪V2. Then G has a perfect matching if and only if |V1|= |V2| and |S| ≤ |Γ(S)| for any
subset /0 ̸= S ⊂V1.

Recall that a lattice polytope P ⊂Rn is said to be Gorenstein of index 2 if there exists
a lattice point α ∈ 2(P \∂P)∩Zn such that 2P −α is a reflexive polytope.

Proposition 7.3. Let G be a connected bipartite graph. Then PG is Gorenstein of index 2
if and only if G has a perfect matching and, for any subset /0 ̸= S⊊V1 such that G[S∪Γ(S)]
and G[(V1 \S)∪ (V2 \Γ(S))] are connected, we have |S|+1 = |Γ(S)|.

Proof. From Proposition 7.1, PG is Gorenstein of index 2 if and only if there exists
α ∈ Zn such that the following hold:

(i) α(V1) = α(V2);

(ii) If v is not a cut vertex, then α(v) = 1;

(iii) If deg(v)≥ 2, then α(v) = 1;

(iv) If G[S∪Γ(S)] and G[(V1 \ S)∪ (V2 \Γ(S))] are connected for a subset /0 ̸= S ⊊ V1,
then α(S)−α(Γ(S)) =−1.

Two conditions (ii) and (iii) say that any vertex v in V1 ∪V2 satisfies α(v) = 1 (i.e., α =
(1,1, . . . ,1)), since any vertex of degree one is not a cut vertex. Hence PG is Gorenstein
of index 2 if and only if

(a) |V1|= |V2|;

(b) If G[S∪Γ(S)] and G[(V1 \ S)∪ (V2 \Γ(S))] are connected for a subset /0 ̸= S ⊊ V1,
then |S|− |Γ(S)|=−1.

It is enough to show that (a) and (b) hold if and only if

(a’) G has a perfect matching;

(b) If G[S∪Γ(S)] and G[(V1 \ S)∪ (V2 \Γ(S))] are connected for a subset /0 ̸= S ⊊ V1,
then |S|− |Γ(S)|=−1

hold. From Hall’s marriage theorem, (a’) ⇒ (a). Hence we have “(a’) and (b)” ⇒ “(a)
and (b)”. Suppose that (a) and (b) hold. Then PG is Gorenstein of index 2, and hence
α = (1, . . . ,1)∈ 2(PG \∂PG). From Proposition 4.3, |S|−|Γ(S)| ≤ 0 for all /0 ̸= S ⊂V1,
and |V1|− |V2| = 0. From Hall’s marriage theorem, G has a perfect matching. Thus (a’)
and (b) hold, as desired.

Theorem 7.4. Suppose that a connected bipartite graph G has a vertex v with deg(v)≥ 2
such that v is not a cut vertex. Then the following conditions are equivalent:

(i) PG is Gorenstein;
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(ii) PG is Gorenstein of index 2;

(iii) G has a perfect matching and, for any subset /0 ̸= S ⊊V1 such that G[S∪Γ(S)] and
G[(V1 \S)∪ (V2 \Γ(S))] are connected, we have |S|+1 = |Γ(S)|.

Proof. From Proposition 7.3, (ii) ⇔ (iii). It is obvious that (ii) ⇒ (i). It remains prove
that (i) ⇒ (ii). Since α in Proposition 7.1 satisfies α(v) = δ −1= 1, we obtain δ = 2.

On the other hand, the following is known.

Proposition 7.5 ([32, Theorem 2.1 (iii) (a’)]). Let G be a 2-connected bipartite graph.
Then the edge polytope Ed(G) is Gorenstein if and only if G has a perfect matching and,
for any subset /0 ̸= S ⊂ V1 such that G[S∪Γ(S)] is connected and that G[(V1 \ S)∪ (V2 \
Γ(S))] is connected and has at least one edge, we have |S|+1 = |Γ(S)|.

If G is a 2-connected bipartite graph, the conditions in Propositions 7.3 and 7.5 are
equivalent. Since the statement is slightly different, we give a proof for the readers.

Corollary 7.6. Let G be a 2-connected bipartite graph. Then PG is Gorenstein if and
only if the edge polytope Ed(G) of G is Gorenstein.

Proof. Suppose that G is a 2-connected bipartite graph. Then deg(v)≥ 2 for any vertex v
of G.

Suppose that Ed(G) is Gorenstein. Assume that, for /0 ̸= S ⊊ V1, G[(V1 \ S)∪ (V2 \
Γ(S))] is a connected graph with no edges. Then G[(V1 \ S)∪ (V2 \Γ(S))] has exactly
one vertex v. It then follows that V1 = S∪ {v} and V2 = Γ(S). Since G has a perfect
matching, we have |V1|= |V2|. Thus, |S|+1 = |V1|= |V2|= |Γ(S)| in this case. Thus, by
Proposition 7.4, PG is Gorenstein.

Suppose that PG is Gorenstein. Assume that, for /0 ̸= S ⊂V1, G[(V1 \S)∪ (V2 \Γ(S))]
is a connected graph. If S ̸= V1, then |S|+1 = |Γ(S)| by Proposition 7.4. If S = V1, then
Γ(S) = V2 and hence G[(V1 \ S)∪ (V2 \Γ(S))] has no vertices. Thus, by Proposition 7.5,
Ed(G) is Gorenstein.

Theorem 4.7 follows from Theorem 7.4 and Corollary 7.6.

Remark 7.7. The conclusion of Corollary 7.6 is not true if G is not a 2-connected bipartite
graph. There are many bipartite graphs G such that Ed(G) is Gorenstein and PG is not
Gorenstein.

(a) Let G be a bipartite pseudotree. Then the edge polytope Ed(G) of G is Goren-
stein since the toric ring of Ed(G) is either isomorphic to a polynomial ring or a
hypersurface.

(b) Let G be a bipartite pseudotree. Then PG is Gorenstein if and only if G satisfies
either (i) or (iv) in Theorem 4.8. For example, the perfectly matchable subgraph
polytope of the bipartite pseudotree with the edge set

{{1,2},{2,3},{3,4},{1,4}}∪{{4,5},{5,6}, . . . ,{n−1,n}}

is not Gorenstein.
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In fact, {1,2,3,4} is an even cycle of the graph, but deg(4)= 3 ̸= deg(1)= deg(2)=
deg(3) = 2. Thus G satisfies neither (i) nor (iv) in Theorem 4.8.

Proposition 7.8. Let G be a 2-connected bipartite graph. Then we have the following.

(a) If G is outerplanar, then PG is Gorenstein.

(b) If G is 4-connected and planar, then PG is not Gorenstein.

Proof. Let G be a 2-connected bipartite graph with n vertices.
(a) Suppose that G is outerplanar. Then G has an even cycle (i1, i2, . . . , in) of length

n which corresponds to the outer face of G. Suppose that, for a subset /0 ̸= S ⊊ V1, both
G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))] are connected. We may assume that

S∪Γ(S) = {i1, i2, . . . , ik′1}∪{ik2, ik2+1, . . . , ik′2}∪ · · ·∪{ikp, ikp+1, . . . , ik′p},

where k′j+1< k j+1 for each j = 1,2, . . . , p−1. Since S ̸=V1, we may assume that k′p < n.

Case 1. (p = 1) If i1 (resp. ik′1) belongs to S, then in (resp. ik′1+1) belongs to Γ(S). This is
a contradiction. Hence i1 and ik′1 belong to Γ(S). Then S = {i2, i4, . . . , ik′1−1} and Γ(S) =
{i1, i3, . . . , ik′1}. Hence |S|+1 = |Γ(S)|.

Case 2. (p ≥ 2) Since G[S∪Γ(S)] is connected, there exists an edge e1 = {iα , iβ} of
G[S ∪ Γ(S)], where 1 ≤ α ≤ k′1 and kq ≤ β ≤ k′q for some 2 ≤ q ≤ p. On the other
hand, since G[(V1 \ S)∪ (V2 \Γ(S))] is connected, there exists an edge e2 = {iγ , iδ} of
G[(V1 \ S)∪ (V2 \Γ(S))], where k′1 < γ < kq and k′q < δ ≤ n. Then e1 and e2 intersect in
the drawing. This contradicts that G is outerplanar.

Thus, G satisfies the condition in Proposition 7.3, and hence PG is Gorenstein.
(b) Suppose that G is 4-connected and planar. Let S = {v}, where v ∈ V1 is a vertex

of G. Since G is 4-connected, the degree of each vertex of G is greater than or equal
to 4. Hence, we have |Γ(S)| ≥ 4 > |S|+ 1. In addition, G[S ∪ Γ(S)] is a star graph
and hence connected. Since G is 4-connected and planar, it is known [9, Lemma 1]
that G[(V1 \ S)∪ (V2 \Γ(S))] is connected. Hence, G does not satisfy the condition in
Proposition 7.3. Thus, PG is not Gorenstein.
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Figure 7.1: Graph G and the subtree which has v as the root

7.2 Pseudotrees with an even cycle
In this section, we give a proof of Theorem 4.8 for a pseudotree which has an even cycle.

Proof of Theorem 4.8 (when G has an even cycle C). Let V = Vc ⊔Vt ⊔Vp be a partition
of the vertex set V of G, where Vc = {v1, . . . ,v2n} is the vertex set of the even cycle
C = (v1,v2, . . . ,v2n), Vt = {v ∈ V \Vc : deg(v) > 1}, and Vp = {v ∈ V \Vc : deg(v) = 1}.
The graph G′ obtained from G by deleting edges of C has 2n connected components. Each
of these connected components of G′ is a tree. We regard each tree as a rooted tree whose
root is a vertex in C. Let Tv be the rooted subtree of such a rooted tree in G′ whose root is
v. See Figure 7.1.

(“If”) Suppose that graph G satisfies the condition that there exists an integer δ ≥ 2
such that deg(v) = δ if v ∈ Vc and deg(v) = δ − 1 if v ∈ Vt . By Proposition 7.1, it is
enough to show that α ∈ Zn, where

α(v) =
{

δ −1 if v ∈Vc ∪Vt
1 if v ∈Vp

satisfies conditions (i)–(iv) in Proposition 7.1.

(i) Note that, for a bipartite graph on the vertex set V1 ∪V2, ∑v∈V1 deg(v) = ∑v∈V2 deg(v).
Since α(v) = deg(v) if v ∈V \Vc and α(v) = deg(v)−1 if v ∈Vc, we have

α(V1)−α(V2) =

(
∑

v∈V1

deg(v)−|Vc ∩V1|

)
−

(
∑

v∈V2

deg(v)−|Vc ∩V2|

)
= |Vc ∩V2|− |Vc ∩V1|= n−n = 0.

(ii) Note that v is not a cut vertex if and only if either (a) deg(v) = 1 or (b) v ∈ Vc and
deg(v) = 2 (then δ = 2 and G =C). In both cases, we have α(v) = 1.
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(iii) If deg(v)≥ 2, then v ∈Vc ∪Vt and hence we have α(v) = δ −1.

(iv) Suppose that G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))] are connected. Then S satisfies
one of the following:

Case 1. (Vc ∩ S = /0) Since both G[S∪Γ(S)] and G[(V1 \ S)∪ (V2 \Γ(S))] are connected,
G[S∪Γ(S)] is Tv, where v ∈ Γ(S). Since S and Γ(S) give a partition of the vertex set of
bipartite graph G[S∪Γ(S)], the sum of the degree sequence of S is equal to that of Γ(S)
in G[S∪Γ(S)].

Case 1.1. (v ∈Vt) Then degG(v) = degG[S∪Γ(S)](v)+1. Since (S∪Γ(S))∩Vc = /0,

α(S)−α(Γ(S)) = ∑
v′∈S

degG(v
′)− ∑

v′∈Γ(S)
degG(v

′)

= ∑
v′∈S

degG[S∪Γ(S)](v
′)− (1+ ∑

v′∈Γ(S)
degG[S∪Γ(S)](v

′))

= −1.

Case 1.2. (v ∈Vc) Then degG(v) = degG[S∪Γ(S)](v)+2. Since (S∪Γ(S))∩Vc = {v},

α(S)−α(Γ(S)) = ∑
v′∈S

degG(v
′)− (−1+ ∑

v′∈Γ(S)
degG(v

′))

= ∑
v′∈S

degG[S∪Γ(S)](v
′)− (−1+2+ ∑

v′∈Γ(S)
degG[S∪Γ(S)](v

′))

= −1.

Case 2. (Vc ⊂ (S∪Γ(S))) Let S′ =V2 \Γ(S). Since G[(V1 \S)∪ (V2 \Γ(S))] is connected,
we have Γ(S′) = V1 \ S. By the condition (i) and Remark 4.5, then we have α(S)−
α(Γ(S)) = α(S′)−α(Γ(S′)). Note that Vc∩(S′∪Γ(S)) = /0. By the argument of Case 1.1,
we have α(S)−α(Γ(S)) = α(S′)−α(Γ(S′)) =−1.

Case 3. (otherwise) Since G[S∪Γ(S)] is connected, we may assume that

Vc ∩S = {v2,v4, . . . ,v2m} and Vc ∩Γ(S) = {v1,v3, . . . ,v2m+1}

by rearranging indices if necessary.

Case 3.1. (deg(vi) = 2 for some i) Then δ = 2 and G = C. Since α(v j) = 1 for j =
1,2, . . . ,2m+1, we have α(S)−α(Γ(S)) = m− (m+1) =−1.

Case 3.2. (deg(vi)≥ 3 for all i) Then G[S∪Γ(S)] is a graph whose edge set is

{{v1,v2}, . . . ,{v2m,v2m+1}}∪Tv1 ∪Tv2 ∪·· ·∪Tv2m+1 .

By the argument in Case 1.2, α(S∩Tvi)−α(Γ(S)∩Tvi) = (−1)i. Then α(S)−α(Γ(S)) =
∑

2m+1
i=1 (−1)i =−1.
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In any case, we have α(S)−α(Γ(S)) =−1.

Hence, by Proposition 7.1, PG is Gorenstein.

(“Only if”) Suppose that PG is Gorenstein. Since any even cycle satisfies condition
(iv) in Theorem 4.8, we may assume that G is not an even cycle. Then we have Vp ̸= /0.
By Proposition 7.1, there exist δ and α satisfying conditions (i)–(iv). By conditions (ii)
and (iii), we have

α(v) =
{

δ −1 if v ∈Vc ∪Vt ,
1 if v ∈Vp.

Case 1. (Vc has a vertex which is not a cut vertex) Since every vertex v in Vc satisfies
deg(v)≥ 2, we obtain δ −1 = 1 and hence δ = 2, α = (1, . . . ,1). Since G is not an even
cycle, there exist S ⊂Vp and v ∈Vt ∪Vc such that Γ(S) = {v}. Since G[S∪Γ(S)] is K2 or
star graph, α(S)−α(Γ(S))≥ 0. Since both G[S∪Γ(S)] and G[(V1 \S)∪ (V2 \Γ(S))] are
connected, this contradicts to condition (iv).

Case 2. (any vertex in Vc is a cut vertex) Let v ∈Vt ∪Vc. Then v is a cut vertex. Let S be
a subset of V1 (or V2) such that G[S∪Γ(S)] is a subtree Tv which has v ∈ Γ(S) as a root.
Let v′ ∈ S be a child of v, i.e., {v,v′} is an edge of Tv. If degG(v

′) ≥ 2, then there exists
a subset Sv′ ⊂ Γ(S) such that G[Sv′ ∪Γ(Sv′)] is a rooted subtree of G[S∪Γ(S)] with root
v′ ∈ Γ(Sv′) . By condition (iv), α(Γ(Sv′))−α(Sv′) = 1. If deg(v′) = 1, then α(v′) = 1.
Since Tv \{v} is a disjoint union of rooted subtrees in {Tv′ : v′ is a child of v},

S =
⋃

v′ is a child of v

Γ(Sv′)

Γ(S) = {v}∪
⋃

v′ is a child of v

Sv′

are partitions of S and Γ(S), respectively. Hence

−1 = α(S)−α(Γ(S))
= −α(v)+ ∑

v′ is a child of v
(α(Γ(Sv′))−α(Sv′))

= −(δ −1)+ ∑
v′ is a child of v

1

= −δ +1+degG[S∪Γ(S)](v).

If v ∈Vc, then
degG(v) = degG[S∪Γ(S)](v)+2 = δ .

If v ∈Vt , then
degG(v) = degG[S∪Γ(S)](v)+1 = δ −1.

Example 7.9. The perfectly matchable subgraph polytope PG of the graph G in Fig-
ure 7.2 is Gorenstein.
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Figure 7.2: deg(vc) = 4 and deg(vt) = 3

7.3 Pseudotrees without even cycles
In this section, we give a proof of Theorem 4.8 for a pseudotree which has no even cycles.

A graph G is said to be h-perfect if the stable set polytope Stab(G) is defined by the
following constraints:

x(v)≥ 0 for any v ∈V (G), (7.5)
x(K)≤ 1 for any maximal clique K in G, (7.6)
x(C)≤ n for any induced odd cycle C in G of length 2n+1 ≥ 5. (7.7)

In particular, any perfect graph is h-perfect. An odd subdivision of a graph G is a graph
obtained by replacing each edge of G by a path of odd length. Let C5 + e be the graph on
the vertex set {1, . . . ,5} and the edge set {{1,2},{2,3},{3,4},{4,5},{1,5},{1,3}}. It is
known [4, Theorem 5] that L(G) is h-perfect if and only if G has no odd subdivision of
C5 + e. Since any pseudotree has at most one cycle, we have the following immediately.

Lemma 7.10. Let G be a pseudotree. Then L(G) is h-perfect.

Let K be a field. The Ehrhart ring of a lattice polytope P ⊂ Rn is

K[xαsm : α ∈ mP∩Zn,m ∈ Z≥0]⊂ K[x±1 , . . . ,x
±
n ,s].

It is known that the Ehrhart ring of P coincides with the toric ring of P if and only if P
has IDP. For the Ehrhart ring of Stab(G), the following fact is known.

Proposition 7.11 ([24, Theorem 3.8]). Let G be an h-perfect graph. Then the Ehrhart ring
of Stab(G) is Gorenstein if and only if all maximal cliques of G have the same cardinality
(say ω), and that G satisfies one of the following conditions:

(i) ω = 1;

(ii) ω = 2 and G has no induced odd cycles of length ≥ 7;
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(iii) ω ≥ 3 and G has no induced odd cycles of length ≥ 5.

Recall that a star graph is a complete bipartite graph K1,n. Then L(K1,n) is Kn. On
the other hand, we have L(C3) = K3. It is known that, in general, each clique in L(G)
corresponds to a star or to a triangle in G. Note that an induced cycle in L(G) of length
≥ 4 corresponds to a (not necessarily induced) cycle in G of the same length. From these
facts, we have the following.

Proof of Theorem 4.8 (when G has no even cycles). From Proposition 5.7, K[PG] is iso-
morphic to K[Stab(L(G))]. Hence K[PG] is Gorenstein if and only if K[Stab(L(G))] is
Gorenstein. Moreover, from Proposition 5.8, Stab(L(G)) is normal. Since the lattice
spanned by Stab(L(G))∩Zm is equal to Zm, Stab(L(G)) has IDP. Hence, the toric ring of
Stab(L(G)) coincides with the Ehrhart ring of Stab(L(G)). Thus, K[PG] is Gorenstein if
and only if the Ehrhart ring of Stab(L(G)) is Gorenstein.

From Lemma 7.10, L(G) is h-perfect. Hence, by Proposition 7.11, the Ehrhart ring
of Stab(L(G)) is Gorenstein if and only if L(G) satisfies one of conditions (i)–(iii) in
Proposition 7.11. These conditions are equivalent to the following, respectively:

(i) L(G) has no edges, i.e., G is K1 or K2.

(ii) G is either a path of length ≥ 2 or C5.

(iii) G is either a bidegreed tree which is not a path, or G has a triangle C where deg(v)∈
{2,3} if v ∈V (C), and deg(v) ∈ {1,3} if v ∈V \V (C).

Thus, (i)–(iii) above hold if and only if K[PG] is Gorenstein.

7.4 Complete multipartite graphs
Proposition 7.12. Let G be a complete bipartite graph Kp,q (p ≤ q). Then K[PG] is
Gorenstein (equivalently, PG is Gorenstein) if and only if either p = 1 or p = q.

Proof. If p= 1, then G is a star graph. By Theorem 4.8, PG is Gorenstein. Let 1< p≤ q.
Then every vertex v of G is not a cut vertex and satisfies deg(v)≥ 2. By Theorem 7.4, PG
is not Gorenstein if p ̸= q since G has no perfect matchings. If p = q, then G has a perfect
matching. Since G is complete bipartite, Γ(S) = V2 for /0 ̸= S ⊊ V1. Hence G[S∪Γ(S)]
and G[(V1 \S)∪ (V2 \Γ(S))] are connected if and only if S =V1 \{v} for some v ∈V1. If
S =V1 \{v}, then p = |S|+1 = |Γ(S)|. By Proposition 7.3, PG is Gorenstein.

Let P ⊂ Rn be a lattice polytope and let α ∈ Zn \ aff(P). Then the convex hull of
P ∪{α} is called the pyramid over P with apex α . In general, if a lattice polytope P
is a pyramid over a lattice polytope P ′, then K[P] is isomorphic to a polynomial ring in
one variable over K[P ′].

Proposition 7.13. Let G be a complete multipartite graph K1,1,q with q ≥ 1. Then K[PG]
is Gorenstein if and only if q ≤ 2.
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Proof. Let G = K1,1,q on the vertex set {1}∪{2}∪{3,4, . . . ,q+2} and G′ = K2,q on the
vertex set {1,2}∪ {3,4, . . . ,q+ 2}. For S = {3,4, . . . ,q+ 2}, since S is a stable set in
G and since the graph obtained from G[S∪Γ(S)] by deleting all edges with both ends in
Γ(S) is the connected graph G′,

x(S)− x(Γ(S)) = x3 + x4 + · · ·+ xq+2 − (x1 + x2)≤ 0

is facet-inducing for PG. In addition, the facet is PG′ . It then follows that PG is a
pyramid over PG′ with apex e1 + e2. Hence the toric ring K[PG] is isomorphic to a
polynomial ring in one variable over K[PG′]. Thus K[PG] is Gorenstein if and only
if K[PG′ ] is Gorenstein. From Proposition 7.12, K[PG′] is Gorenstein if and only if
q ≤ 2.

Let G be a simple graph on the vertex set V = {1,2, ...,n} and the edge set E. Given
S ⊂ V , the cut semimetric on G induced by S is the (0,1) vector δG(S) = (di j : {i, j} ∈
E) ∈ RE , where

di j =

{
1 if |S∩{i, j}|= 1
0 otherwise

for each {i, j} ∈ E. In particular, δG( /0) = 0. The cut polytopeCut2(G) of G is the convex
hull of {δG(S) : S ⊂V} ⊂ ZE .

Proposition 7.14. Let G be a complete graph Kn. Then K[PG] is Gorenstein if and only
if n ≤ 4.

Proof. By Theorem 4.8, K[PG] is Gorenstein if n ≤ 3.
Let n ≥ 4. By the definition of perfectly matchable subgraphs, we have

W (G) = {S ⊂V : |S| ≡ 0 (mod 2)},

since G is complete. Then PG is the cut polytope of a cycle Cn of length n (see [20])
which is normal. It is known [28, Theorem 3.4] that the toric ring of the cut polytope of
a graph H is normal and Gorenstein if and only if H has no K5-minor and satisfies one of
the following:

(i) H is a bipartite graph without induced cycle of length ≥ 6;

(ii) H is a bridgeless chordal graph.

Hence, the toric ring of the cut polytope of Cn is Gorenstein if and only if n ≤ 4.

It is an interesting problem to characterize complete multipartite graphs G such that
K[PG] is Gorenstein. However, PG does not have IDP if G is not bipartite. In addition,
the normality of PG is unknown except for Kp,q, K1,1,q, and Kn.
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Appendix A

Source code

In this chapter we write source codes to compute the toric ideal of stable set polytope and
perfectly matchable subgraph polytope for CoCoA.

At first, the following source code can compute the stable set from finite graph.

Listing A.1: Stable set
1 Define Stable(E,n)
2 A:=[];
3 B:=[];
4 S:=subsets(1..n);
5 for i:=1 to len(S) do
6 for j:=1 to len(E) do
7 If len(intersection(E[j],S[i]))=2 then append(ref A, (S[i]))

;
8 else append(ref B, (S[i]));
9 endif;

10 endfor;
11 endfor;
12 return MakeSet(diff(B,A))
13 enddefine; -- Stable

Next, following source code can compute sets induce perfectly matchable subgraph
polytope from finite graph.

Listing A.2: Perfectly matchable subgraph
1 Define tuika(A,B)
2 If Len(intersection(A,B))=0 Then Return sorted(flatten([A,B]));
3 else return []
4 EndIf;
5 EndDefine; --tuika
6
7 define Match(E)
8 F:=[];
9 for i:=1 to len(E) do

10 for j:=1 to len(E) do
11 append(ref F ,(tuika(E[i],E[j])))
12 endfor;
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13 endfor
14 return MakeSet(concat(E,F));
15 enddefine; -- Match

Finally, we introduce the source code which generate (0,1)-polytope from finite sets.

Listing A.3: Make triangulation
1 Define henkan(A,n)
2 zeero:=[0| i in 1..n+1];
3 foreach i in A do
4 zeero[i]:=zeero[i]+1;
5 endforeach;
6 zeero[n+1]:=1;
7 return zeero;
8 enddefine; -- henkan
9

10
11 Define gyoretu(E,n)
12 F:=[];
13 for i:=1 to len(E) do
14 append(ref F, (henkan(E[i],n)))
15 endfor;
16 return transposed(Mat(MakeSet(F)))
17 enddefine; -- gyoretu

By using them, we can compute the algebraic properties of toric rings of stable set
polytopes and perfectly matchable subgraph polytopes.

Example A.1. We will compute toric ideal, its minimal generators and Hilbert series of
K[Stab(C6)].

1 /**/ E:=[[1,2],[2,3],[3,4],[4,5],[5,6],[1,6]];
2 /**/ S:=Stable(E,6);
3 /**/ S;
4 [[], [6], [5], [4], [4, 6], [3], [3, 6], [3, 5], [2], [2, 6],

[2, 5], [2, 4], [2, 4, 6], [1], [1, 5], [1, 4], [1, 3], [1,
3, 5]]

5 /**/ n:=len(S);
6 /**/ Use R::=QQ[x[1..n]],DegLex ;
7 /**/ gyoretu(S,6);
8 matrix(QQ,
9 [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],

10 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
11 [0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
12 [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0],
13 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1],
14 [0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
15 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
16 /**/ I:=toric(gyoretu(S,6));
17 /**/ I;
18 ideal(x[1]*x[8] -x[3]*x[6], x[1]*x[11] -x[3]*x[9], x[1]*x[15] -x

[3]*x[14], x[1]*x[5] -x[2]*x[4], x[1]*x[12] -x[4]*x[9], x
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[1]*x[10] -x[2]*x[9], x[1]*x[16] -x[4]*x[14], x[1]*x[17] -x
[6]*x[14], -x[1]*x[7] +x[2]*x[6], x[3]*x[12] -x[4]*x[11], -x
[9]*x[15] +x[11]*x[14], -x[4]*x[17] +x[6]*x[16], x[1]*x[13]
-x[5]*x[9], x[6]*x[11] -x[8]*x[9], -x[9]*x[16] +x[12]*x[14],
x[2]*x[17] -x[7]*x[14], x[3]*x[17] -x[6]*x[15], x[6]*x[15]

-x[8]*x[14], x[3]*x[16] -x[4]*x[15], x[4]*x[10] -x[5]*x[9],
-x[1]*x[18] +x[8]*x[14], x[2]*x[12] -x[5]*x[9], x[2]*x[8] -x
[3]*x[7], x[6]*x[10] -x[7]*x[9], x[2]*x[11] -x[3]*x[10], x
[2]*x[16] -x[5]*x[14], -x[4]*x[7] +x[5]*x[6], -x[1]^2*x[18]
+x[3]*x[6]*x[14], x[11]*x[16] -x[12]*x[15], x[5]*x[17] -x
[7]*x[16], -x[7]*x[11] +x[8]*x[10], -x[9]*x[18] +x[11]*x
[17], -x[4]*x[13] +x[5]*x[12], x[10]*x[16] -x[13]*x[14], -x
[4]*x[18] +x[8]*x[16], -x[3]*x[18] +x[8]*x[15], x[6]*x[13] -
x[7]*x[12], x[3]*x[13] -x[5]*x[11], -x[14]*x[18] +x[15]*x
[17], -x[2]*x[18] +x[7]*x[15], x[2]*x[13] -x[5]*x[10], -x
[9]*x[13] +x[10]*x[12], -x[6]*x[18] +x[8]*x[17], -x[1]*x[2]*
x[18] +x[3]*x[7]*x[14], -x[2]*x[9]*x[15] +x[3]*x[10]*x[14],
-x[2]*x[4]*x[15] +x[3]*x[5]*x[14], -x[4]*x[7]*x[11] +x[5]*x
[8]*x[9], x[4]*x[13]*x[14] -x[5]*x[9]*x[16], x[4]*x[13]*x
[17] -x[7]*x[12]*x[16], -x[7]*x[11]*x[12] +x[8]*x[9]*x[13])

19 /**/ MinGens(I);
20 [-x[14]*x[18] +x[15]*x[17], x[11]*x[16] -x[12]*x[15], x[10]*x

[16] -x[13]*x[14], -x[9]*x[18] +x[11]*x[17], -x[9]*x[16] +x
[12]*x[14], -x[9]*x[15] +x[11]*x[14], -x[9]*x[13] +x[10]*x
[12], -x[7]*x[11] +x[8]*x[10], -x[6]*x[18] +x[8]*x[17], x
[6]*x[15] -x[8]*x[14], x[6]*x[13] -x[7]*x[12], x[6]*x[11] -x
[8]*x[9], x[6]*x[10] -x[7]*x[9], x[5]*x[17] -x[7]*x[16], -x
[4]*x[18] +x[8]*x[16], -x[4]*x[17] +x[6]*x[16], -x[4]*x[13]
+x[5]*x[12], x[4]*x[10] -x[5]*x[9], -x[4]*x[7] +x[5]*x[6], -
x[3]*x[18] +x[8]*x[15], x[3]*x[17] -x[8]*x[14], x[3]*x[16] -
x[4]*x[15], x[3]*x[13] -x[5]*x[11], x[3]*x[12] -x[4]*x[11],
-x[2]*x[18] +x[7]*x[15], x[2]*x[17] -x[7]*x[14], x[2]*x[16]
-x[5]*x[14], x[2]*x[13] -x[5]*x[10], x[2]*x[12] -x[5]*x[9],
x[2]*x[11] -x[3]*x[10], x[2]*x[8] -x[3]*x[7], -x[1]*x[18] +x
[8]*x[14], x[1]*x[17] -x[6]*x[14], x[1]*x[16] -x[4]*x[14], x
[1]*x[15] -x[3]*x[14], x[1]*x[13] -x[5]*x[9], x[1]*x[12] -x
[4]*x[9], x[1]*x[11] -x[3]*x[9], x[1]*x[10] -x[2]*x[9], x
[1]*x[8] -x[3]*x[6], -x[1]*x[7] +x[2]*x[6], x[1]*x[5] -x[2]*
x[4]]

21 /**/ HilbertSeries(R/I);
22 (1 + 11*t + 24*t^2 + 11*t^3 + t^4) / (1-t)^7

Example A.2. Let G be a cycle of length 6. We will compute K[PG]. The edge set of C6
is [1,2], [2,3], [3,4], [4,5], [5,6], [1,6].

1 /**/ E:=[[1,2],[2,3],[3,4],[4,5],[5,6],[1,6]];
2 /**/ M:=Match(Match(Match((E))));
3 M;
4 [[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [1, 6], [], [1, 2, 3,

4], [1, 2, 4, 5], [1, 2, 5, 6], [2, 3, 4, 5], [2, 3, 5, 6],
[1, 2, 3, 6], [3, 4, 5, 6], [1, 3, 4, 6], [1, 4, 5, 6],

[1, 2, 3, 4, 5, 6]]
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5 /**/ n:=len(M);
6 /**/ Use R::=QQ[x[1..n]],DegLex ;
7 /**/ gyoretu(M,6);
8 matrix(QQ,
9 [[1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1],

10 [1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1],
11 [0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1],
12 [0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1],
13 [0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1],
14 [0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1],
15 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
16 /**/ I:=toric(gyoretu(M,6));
17 /**/ I;
18 ideal(x[1]*x[5] -x[7]*x[10], -x[1]*x[3] +x[7]*x[8], -x[1]*x[4] +

x[7]*x[9], -x[2]*x[5] +x[7]*x[12], -x[4]*x[6] +x[7]*x[16], -
x[2]*x[4] +x[7]*x[11], -x[2]*x[6] +x[7]*x[13], -x[3]*x[6] +x
[7]*x[15], -x[3]*x[5] +x[7]*x[14], x[5]*x[13] -x[6]*x[12], x
[5]*x[15] -x[6]*x[14], x[2]*x[16] -x[6]*x[11], -x[3]*x[10] +
x[6]*x[11], -x[3]*x[10] +x[4]*x[13], -x[3]*x[10] +x[7]*x
[17], x[1]*x[14] -x[3]*x[10], -x[3]*x[9] +x[4]*x[8], x[1]*x
[12] -x[2]*x[10], -x[3]*x[10] +x[5]*x[8], x[1]*x[15] -x[6]*x
[8], x[4]*x[12] -x[5]*x[11], x[2]*x[14] -x[3]*x[12], -x[4]*x
[10] +x[5]*x[9], x[1]*x[11] -x[2]*x[9], x[1]*x[16] -x[6]*x
[9], -x[3]*x[16] +x[4]*x[15], x[2]*x[15] -x[3]*x[13], x[2]*x
[4]*x[6] -x[3]*x[7]*x[10], -x[3]*x[17] +x[8]*x[14], x[2]*x
[17] -x[11]*x[13], x[6]*x[17] -x[13]*x[16], x[4]*x[17] -x
[11]*x[16], -x[3]*x[17] +x[11]*x[15], x[1]*x[17] -x[8]*x
[10], -x[9]*x[14] +x[11]*x[16], x[5]*x[17] -x[10]*x[14], -x
[10]*x[14] +x[12]*x[16], -x[8]*x[12] +x[11]*x[13], x[9]*x
[12] -x[10]*x[11], -x[8]*x[10] +x[9]*x[13], -x[10]*x[15] +x
[13]*x[16], x[12]*x[15] -x[13]*x[14], x[8]*x[16] -x[9]*x
[15], -x[1]*x[3]*x[10] +x[2]*x[6]*x[9], -x[3]*x[5]*x[16] +x
[4]*x[6]*x[14], -x[1]*x[3]*x[13] +x[2]*x[6]*x[8], -x[3]*x
[10]*x[13] +x[6]*x[8]*x[12], -x[3]*x[10]*x[16] +x[6]*x[9]*x
[14], -x[3]*x[16]*x[17] +x[9]*x[14]*x[15])

19 /**/ MinGens(I);
20 [x[12]*x[15] -x[13]*x[14], -x[10]*x[15] +x[13]*x[16], -x[10]*x

[14] +x[12]*x[16], -x[9]*x[14] +x[11]*x[16], x[9]*x[12] -x
[10]*x[11], x[8]*x[16] -x[9]*x[15], -x[8]*x[12] +x[11]*x
[13], -x[8]*x[10] +x[9]*x[13], x[6]*x[17] -x[13]*x[16], x
[5]*x[17] -x[12]*x[16], x[5]*x[15] -x[6]*x[14], x[5]*x[13] -
x[6]*x[12], x[4]*x[17] -x[11]*x[16], x[4]*x[12] -x[5]*x[11],
-x[4]*x[10] +x[5]*x[9], -x[4]*x[6] +x[7]*x[16], -x[3]*x[17]
+x[11]*x[15], -x[8]*x[14] +x[11]*x[15], -x[3]*x[16] +x[4]*x

[15], -x[3]*x[10] +x[7]*x[17], x[4]*x[13] -x[7]*x[17], -x
[6]*x[11] +x[7]*x[17], x[5]*x[8] -x[7]*x[17], -x[3]*x[9] +x
[4]*x[8], -x[3]*x[6] +x[7]*x[15], -x[3]*x[5] +x[7]*x[14], x
[2]*x[17] -x[11]*x[13], x[2]*x[16] -x[7]*x[17], x[2]*x[15] -
x[3]*x[13], x[2]*x[14] -x[3]*x[12], -x[2]*x[6] +x[7]*x[13],
-x[2]*x[5] +x[7]*x[12], -x[2]*x[4] +x[7]*x[11], x[1]*x[17] -
x[9]*x[13], x[1]*x[16] -x[6]*x[9], x[1]*x[15] -x[6]*x[8], x
[1]*x[14] -x[7]*x[17], x[1]*x[12] -x[2]*x[10], x[1]*x[11] -x
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[2]*x[9], x[1]*x[5] -x[7]*x[10], -x[1]*x[4] +x[7]*x[9], -x
[1]*x[3] +x[7]*x[8]]

21 /**/ HilbertSeries(R/I);
22 (1 + 11*t + 24*t^2 + 11*t^3 + t^4) / (1-t)^6

Example A.3. Let G be a C5. By Theorem 4.8, PG is Gorenstein.

1 /**/ E:=[[1,2],[2,3],[3,4],[4,5],[1,5]];
2 /**/ M:=Match(Match(Match((E))));
3 /**/ n:=len(M);
4 /**/ gyoretu(M,5);
5 matrix(QQ,
6 [[1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1],
7 [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0],
8 [0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1],
9 [0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1],

10 [0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1],
11 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
12 /**/ Use R::=QQ[x[1..n]],DegRevLex ;
13 /**/ I:=toric(gyoretu(M,5));
14 /**/ HilbertSeries(R/I);
15 (1 + 5*t + 5*t^2 + t^3) / (1-t)^6

We computed the toric ideals of perfectly matchable subgraph polytopes for a lot of
graphs. However, we cannot find the graph whose toric ideal of perfectly matchable
subgraph polytope is not generated by quadratic binomials.

Conjecture A.4. Let G be a graph. The toric ideal IPG is generated by quadratic binomi-
als.

If above conjecture is true, we should study the following conjecture.

Conjecture A.5. Let G be a graph. There exists a monomial order such that Gröbner
basis of IPG is quadratic.
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