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1 INTRODUCTION

1 Introduction

Dunkl theory is a far-reaching generalization of Euclidean Fourier analysis associated
with root system with a rich structure parallel to ordinary Fourier analysis. The study
of Dunkl theory originates from a generalization of spherical harmonics, in which the finite
reflection groups G play the role of orthogonal group O(N) in the classical theory of spherical
harmonics. The Lebesgue measure dx, which is invariant under O(N), is substituted by the
Dunkl weight measure dmy(z) = hy(x)dz which is invariant under the finite reflection group
G and parameterized by a multiplicity function k, where hy(z) = [] x| (e, @) [F®). The
Dunkl operator T; (see [18]) was constructed in such a way that the intersection of space of
the homogeneous polynomials P, of degree m with the kernel of the corresponding Laplacian
AVEES Z;.VZIT]-Q is orthogonal to that of lower degree with respect to the Dunkl weight measure
dmy. And the restrictions of the spaces H}" (RN) = P, NkerAr, m=20,1,--- to the unit
sphere SV~! are called spherical h-harmonics. The Dunkl operators commute pairwise and
they are in substitute of the ordinary partial derivatives in classical analysis. The joint
eigenfunctions of Dunkl operators take the place of the exponential functions in classical
Fourier transform. The Dunkl transform (see [20]) was then defined correspondingly and has
many similar properties with Fourier transform. The discovery of Dunkl operators also gave
an explicit expression of the radial part of the Laplacian operator on a flat symmetric space
unintentionally. Moreover, Dunkl theory has extensive application in algebra, probability
theory and mathematical physics. This theory has drawn considerable attention and there
have been a lot of works on Dunkl’s analysis in the last thirty years.

More recently, S. Ben Said, T. Kobayashi and B. Orsted [8] gave a further far-reaching
generalization of Dunkl theory by introducing a parameter a > 0 arisen from the “interpola-
tion” of the two s[(2, R) actions on the Weil representation of the metaplectic group Mp(N,R)
and the minimal unitary representation of the conformal group O(N + 1,2). They deformed
an sly triple studied in [4] via the parameter a such that the a-deformed Dunkl harmonic
oscillator Ay, = [lz]|*”* Ay, — ||#]|* is symmetric on the Hilbert space L? (RN, 9y, (z) dz),
where Vo (z) = ||z]|* (). In the case of k = 0, such a-deformed harmonic oscillator is
also a deformation of the operator ||z|| A — ||z|| studied by Kobayashi and Mano in [26, 27].
In [25], R. Howe studied a holomorphic semigroup on L*(RY) with the classical harmonic

oscillator H =: (A — [|z||*)/2 being the infinitesimal generator. The definition of the clas-
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sical Fourier transform F on L?(R") was then defined as the boundary value z = Z* of the

holomorphic semigroup

F =™/ *exp (%IH) .

Motivated by this definition of the classical Fourier transform on L? (RN ) by Howe, the au-
thors in [8] then proved the existence of a (k, a)-generalized holomorphic semigroup Z , (z) , Rz
> 0 with infinitesimal generator A, acting on L* (RY, s, (z) dz). The (k,a)-generalized
Laguerre semigroup Zy, (2) = exp (%Alaa) generalizes the Hermite semigroup studied by
Howe [25] (kK = 0 and a = 2), the Laguerre semigroup studied by Kobayashi and Mano
26, 27] (kK =0 and a = 1), and the Dunkl Hermite semigroup studied by Résler [35] (k > 0,
a =2 and z = 2t, t > 0). When taking the boundary value z = %, the semigroup Zy, (2)

recedes to the so-called (k, a)-generalized Fourier transform Fj,, i.e.,

Fk,a = CIk’a (%) s (11)

in(*HEE2) and (k) := > cp+ k(a). The generalized Fourier transform includes

where c = e
the Fourier transform (k = 0 and a = 2), the Kobayashi-Mano Hankel transform (k = 0 and
a = 1), and the Dunkl transform [20] (kK > 0 and a = 2).

We will define a one-dimensional a-deformed Laguerre holomorphic semigroup /I, 4., =
¢~ alae with the infinitesimal generator —%La,a, where L, , is the a-deformed Laguerre op-
erator. Then we will give a spherical harmonic expansion of the (k, a)-generalized Laguerre
semigroup Z , (z) via the a-deformed Laguerre holomorphic semigroups I, .., and show that
the expansion reduces to the Bochner-type identity when taking the boundary value z = %
And then we will prove a Hardy inequality for fractional powers of the a-deformed Dunkl
harmonic operator Ay, = [|z]|°™* Ay — ||z||* using this expansion. When a = 2, the fractional
Hardy inequality reduces to that of Dunkl-Hermite operators given by O. Ciaurri, L. Roncal
and S. Thangavelu [12]. The operators L, , also give a tangible characterization of the radial
part of the (k,a)-generalized Laguerre semigroup on each k-spherical component H}" (]RN )

w > —1/2 defined via decomposition of unitary representation.

for A\p.am ==
For the two particular cases when a = 1 and a = 2 (the Dunkl case) assuming that
2 (k)+N+a—3 > 0 of (k, a)-generalized Fourier analysis, the analytic structure is much richer

because it is already known that for the two cases the integral kernel By ,(x,y) of the (k,a)-
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generalized Fourier transform, which takes the place of the exponential function e=*®¥ in
classical Fourier transform, is uniformly bounded by 1. In this case one can define the (k, a)-
generalized translation operator via an integral combining the inversion formula of the (k, a)-
generalized Fourier transform for a = %, n € N. And for the two cases we have the formula of
the generalized translation operator for radial functions. For the case of a = 2 (Dunkl theory),
the radial formula was found by Rosler [36] and the analytic structure of Dunkl theory
was intensively studied in the past thirty years, including the study of maximal functions,
Bochner—Riesz means, multipliers, Riesz transforms and Calderéon-Zygmund theory. For the
case of a = 1, S. Ben Said and L. Deleaval derived the radial formula of the generalized
translation in [5] and also found many parallel results to Dunkl’s analysis. The study for
this case is still at its infancy. We will study the generalized translation in the two cases and
characterize the support of the translation on radial functions.

We will also define and investigate the imaginary powers (—Akﬁa)_w,a € R of the
(k, a)-generalized harmonic oscillator —4\ , for the two cases when a = 2 and 1 respectively,
and prove the LP-boundedness (1 < p < co) and weak L'-boundedness of such operators. To
prove this result, we develop the Calderén-Zygmund theory adapted to the (k, a)-generalized
setting (¢ = 2 and 1). For the case when a = 2 (Dunkl setting), the adapted Calderén—
Zygmund theory was already developed by Amri and Sifi [2] to prove the LP-boundedness
(1 < p < 00) and weak L'-boundedness of the Dunkl Riesz transform. For the case when
a = 1, we need to construct the metric space of homogeneous type corresponding to the (k, 1)-
generalized setting first according to the radial formula for the (k, 1)-generalized translation,
in order to adapt the Calderén—Zygmund theory on general homogeneous spaces to the (k, 1)-
generalized setting. And it will be shown that the imaginary powers (—Am)_w are singular
integral operators satisfying the corresponding Hormander type condition, which motivates
us to develop the Calderén—Zygmund theory in (k, 1)-generalized setting.

The material is divided into six chapters. In Chapter 2 we review the motivation and
some main results in Dunkl theory and the (k, a)-generalized Fourier analysis developed by S.
Ben Said, T. Kobayashi and B. Orsted. For these results we refer to [7, 8, 18, 20]. In Chapter
3, we give the definitions of the a-deformed Laguerre operators and holomorphic semigroup,
and then prove the fractional Hardy inequality for the (k, a)-generalized harmonic operator

— A}, using the spherical harmonic expansion of the (k, a)-generalized Laguerre semigroup.
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We will also show the relationship between the expansion with sly-representation in this
chapter. The results in this chapter are based on my paper [41]. In Chapter 4, we study
the (k,a)-generalized translation operator, and characterize the support of the generalized
translation on radial functions for a = 2 and 1 respectively from the radial formulas. The
study of the support of the generalized translation is based on my paper [39] and [40] for
a = 2 and 1 respectively. For the particular case when a = 1, we will study the metric
space corresponding to the (k,1)-generalized setting, which is contained in the paper [40].
In Chapter 5, we develop the Calderon—Zygmund theory adapted to the (k,a)-generalized
Fourier analysis for a = 2 and 1 (see [2] for the Calderén-Zygmund theory adapted to the
case when a = 2, the Dunkl case and [40] for the theory adapted to the case when a = 1). In
Chapter 6, we define and investigate the imaginary powers (—Ak,a)_w for a = 2 and 1 and
show that they satisfy the corresponding Hormander type condition given in Chapter 5 to
prove the LP-boundedness (1 < p < co) and weak L'-boundedness. The results for the case
when a = 1 in Chapter 5 and 6 are under the condition that £ > 0 and 2(k) + N —2 > 0

and are contained in my paper [40].
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2 Preliminaries

2.1 Classical spherical harmonics

In this subsection we review the classical theory of spherical harmonics and some proper-
ties. For x € RY, we write x = (x1,...,7y). For any x,y € RY, denote by (z,y) = Z;VZI TY;
the standard inner product associated with norm |[|z]|. For a = (ay,...,ay) € N}, denote

xa

= aft - 2% and it has degree |a| = a3 + --- 4+ ay. A homogeneous polynomial p of
degree m is defined as p(z) = |, _,,Caz®, where ¢, are real or complex numbers. Let P,
be the space of real homogeneous polynomials on RY of degree m. And let 9; be the partial
derivative and A = Zﬁilaf be the Euclidean Laplacian. The homogeneous polynomials
satisfying Ap = 0 are called harmonic polynomials. Let H™(RY) be the space of harmonic

polynomials of degree m. The restrictions of the elements of the spaces H™(RY) on the unit

sphere S¥=1 to be denoted as H™(R")|gv-1, are called spherical harmonics. The spherical

harmonics H™(RY)|gv-1, m = 0,1,2,... are orthogonal to each other with respect to the
inner product
I'(N/2)
{fi9lon-1 = 5 x5 f(@)g(x)do(x),

SN-1
where do is the surface measure. This can be shown in the following theorem.

Theorem 2.1. (See, e.g., [16, Theorem 1.1.2]) For Z, € H"(RY), Z,, € H™(RY), and
n # m, we have (Z,, Zm)sn—1 = 0.

Proof. For z = r2/(r > 0, 2’ € S¥1), we have Z,,(z) = r™Z,,(z') since Z,, is homogeneous.

So %Zn(3') = mZy,(x'). By Green’s identity,

(n— m)/ Ty Zpdo = / Zn% - Zm% do = / (ZyDNZy — ZiyNZy) da = 0,
SN-1 SN-1 8r 87’ BN

where BY is the unit ball in R, since AZ,, = AZ, = 0. O

The Laplace-Beltrami operator A\ is the restriction of the Laplace operator A to the

unit sphere SV-1. It satisfies

A—a_2+N_1£+l
- Or? roor 20
where
N-1 g9 NoIN-1 5?2 N-L g
No=S"2 e — (N — 1 o
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for the polar coordinates x = r&, r > 0, & € S¥1. And the spherical harmonics are

eigenfunctions of the Laplace-Beltrami operator A, i.e.,
NoZ(€) = —m(m+ N —2)Z(¢), Z € H™RY), ¢ e SV 1.

The following is the spherical harmonic decomposition for L? (SN “tdo(x )),
(SN ! dU ZHm RN |SN 1,
meN

where do is the spherical measure on SV ~!. For each fixed spherical harmonic H™ (RN ) |lsv-1,

we take an orthonormal basis of the space as

where n(m) = dim (H™ (R") |gv-1). Then we have the spherical harmonic expansion of

feL?(RY),

oo n(m)
Zmez VZ™ ('), r >0, 2’ € SN,
m=0 i=1
where
fnilr) = [ Tl 2o @),
S —1

2.2 The G-invariant measure

For any nonzero vector a € RY, define the reflection o, with respect to the hyperplane

a’* orthogonal to a,
(z,a)

2
el

A finite set R C RN\ {0} is called a (reduced) root system if it satisfies the following

Oo(r) =2 —2

conditions:
i. RNRa = {£a}, for any a € R;
ii. 0,(R) = R, for any a € R;

In addition, a root system is called a crystallographic root system if it satisfies the condition

2§§g i € Z for any o, 8 € R. We consider reduced but not necessarily crystallographic root
systems. Given a root system R, the finite subgroup G of O(N) generated by the reflections

0, is called the Cozeter group (relection group) of the root system. Define a multiplicity
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function k : R — C such that k is G-invariant, that is, k(«a) = k(8) if 0, and o5 are
conjugate. We assume that k£ > 0.

In the last 80’s, C.F. Dunkl [20] gave a far-reaching generalization of Euclidean Fourier
analysis related to root system with a rich structure parallel to ordinary Fourier analysis,
where the finite reflection groups play the role of orthogonal groups in Euclidean Fourier
analysis. The Lebesgue measure was replaced by a weighted measure dmy(z) = hy(x)dz,

where

het) = T e o) 42

acR
It is observed that

my(Bla,r) ~ ™ T (1, )] +m)",

acR

where B(z,r) = {y € RY : ||z — y|| < r}, and so m;, is a doubling measure, that is, there is

a constant C > 0 such that
my(B(z,2r)) < Cmg(B(z,r))

forx € RN, r > 0.

The measure parameterized by the multiplicity function k is invariant under the reflec-
tion group G. It is in substitute of the Lebesgue measure dx in classical analysis, which is
invariant under the orthogonal group O(N). So, in this sense we say that the finite reflection
group G plays the role of the orthogonal group in classical analysis. Such generalization of
classical analysis, called Dunkl theory, has been intensively studied in the past thirty years.

We denote N = N + > k() to be the homogeneous dimension of the root system.

2.3 Spherical h-harmonics

The study of Dunkl theory originates from a generalization of spherical harmonics, called
spherical h-harmonics, where the Dunkl weight measure dmy(z) = hi(z)dx plays the role of
Lebesgue measure dz in the classical theory of spherical harmonics. Dunkl [18] constructed
an operator A\, analogous to the classical Laplacian such that the intersection of the kernel of
the operator with the space of homogeneous polynomials of degree m are orthogonal to each
other with respect to the Dunkl weight measure dmy(z), for m = 0,1,2,---. The operator

A}, is called Dunkl Laplacian and has the following explicit expression for normalized root
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systems (i.e., [[a| = v2),
Ay = Dy — Ey,
with
(V/f, )

(@, 7)

Dif(a) = Af (@) +2 Y k()

aceRt

Y

where V is the Euclidean gradient and R™ is any fixed positive subsystem of R, and

B =2 3 ko) L0 = @)

2
acRt <a’ I>

The minus Dunkl Laplacian —/\;, is essentially self-adjoint on L?(RY hy(z)dz) and positive
definite, and so A is the generator of the contraction semigroup {emk} >0 The elements
in the space H} (]RN ) = P, N ker/A\, are h-harmonic polynomials of deéree m. And the
restrictions HJ* (RY) |sv-1 of the spaces H}" (RY) to the unit sphere S¥~! are called spherical
h-harmonics. The following theorem shows that the spherical hA-harmonics of different degree

are orthogonal to each other with respect to the inner product

U ovor=— [ F@)g@)h(x)do(),

WE JgN-1
where wy, = [onv1 hy(2)do(z).
Theorem 2.2. ([17]) If f € HR(RY), g € Hi*(RY) and n # m, then (f,g)sn 1,4, = 0.

Proof. We claim the following analogue of the classical Green’s identity without proof first,

N-1 671

0
[ Fouds = [ (gDt +(V£.V9))
s B
where % denotes the normal derivative of f. Since % = nf because f is homogeneous of

degree n, and Apf = Arg = 0, we have

(n —m) fghgdo = / (9Drf — [Drg) hidz = / (9Ewf — fErg) hidr = 0.
SN-1 BN BN

The last equality is from the symmetry of £}, with respect to (-, -)gnv-1,, (using polar coordi-

nates). O

The spaces H}! (]RN ) |sv—1, m =0,1,--- are finite dimensional and there is the spherical

harmonics decomposition

L (SN g (a) do(2))) = Hy (RY) [svos. (2.1)

meN
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For each fixed m € N, denote by d(m) = dim (H}" (R") |gnv-1). Let
{Y": i=1,2,--- ,d(m)} (2.2)

be an orthonormal basis of H}' (]RN ) |sv—1. They are the eigenvectors of the generalized

Laplace-Beltrami operator Ay|qv-1, i.e.,

AiloxY7(6) = —m(m + N = 2)Y"(€), € € SV,

2.4 The intertwining operator

Let {e;, i =1,2,..., N} be the canonical orthogonal basis in RY. The Dunkl operators
{T;: 1<i< N} introduced in [18] were constructed such that A, = 31V, T?. It is the
deformations by difference operators of directional derivatives and can be expressed explicitly
as follows for normalized root systems:

(&) — f(0a(z))

(o, x)

7f(x) = @)+ 3 2 o, e

acER

They commute pairwise and are skew-symmetric with respect to the G-invariant measure
dmy(z) = hg(z)dz.
The operators 0; and T; are intertwined by the Laplace-type operator (see [19])

Vif(@)= [ f(y)du(y),
RN
associated to a family of probability measures { te| © € RN } with compact support, that is,
TioVy=Vp00;.

Specifically, the support of u, is contained in the convex hull co(G.x), where G.x = {gz| g € G}
is the orbit of z. For any Borel set B and any r > 0, g € GG, the probability measures satisfy

fire (B) = po (1" B) , pige (B) = o (97 ' B) .

The intertwining operator V} is one of the most important operators in Dunkl theory.
The joint eigenfunction E(z,y) of the Dunkl operators {T; : 1 <1i < N} (or the eigen-
function of the Dunkl Laplacian Ay) for fixed y is the integral kernel of the generalized
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Fourier transform Fj, called Dunkl transform (see [20]). It takes the place of the exponential
function e®¥ in classical Fourier transform, i.e.,
1 , _l=l?
RN© = — [ f@B(-i€ o)dmo). o= [ o Fdmula), £ e L),
Ck JrN RN

The eigenfunction E(x,y) is called Dunkl kernel and can be expressed via the intertwining

operator as

B o) = Vi () (0) = [ ey, (o).

RN
2.5 The (k,a)-generalized harmonic oscillator

Take a basis of the Lie algebra s[(2,R) as

The triple {e", e, h} is an sl, triple, i.e.,
l[ef,e”] =h, [h,e"] =2e*, [he ] =—2e".
In [8], the authors gave a deformation of an sly triple studied in [4] via a parameter a

?

. N

i 0 9 u 2 N+2(k)+a—2

Eza = a H:C” ) IE:k,a = HxH Aka Hk,a = 5 szaz + .
=1

a

a
These differential-difference operators also form an sl, triple. With these operators, the Dunkl
harmonic oscillator Ay, — ||z||” is deformed to be the (k, a)-generalized harmonic oscillator as

. — 2—
Dpai=ia (B, —Ep,) = [l Ak — [lz]*.

It is symmetric on the Hilbert space L? (RN, 3y, (z) dz), where ¥y, (z) = )| *he(x). The
case when k = 0, a = 1 (the operator ||z||A — ||z||) was studied by T. Kobayashi and G.
Mano in [26, 27]. When a = 2, the (k, a)-generalized harmonic oscillator Ay, recedes to the

Dunkl harmonic oscillator.

Define the representation wy, of s[(2,R) on C> (R™\ {0})
wra 1 51(2,R) — End (C* (RM\ {0}))

by setting
Wk,a (h) = Hk,a; Wk,a (e+) = E;a, Wk,a (e*) = El;a'

10
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Denote by U (s[(2,C)) the universal enveloping algebra of the complex Lie algebra sl (2, C) ~

s[(2,R) ® C. Then we can extend the representation to a C-algebra homomorphism
wia : U (s1(2,C)) — End (C* (RM\ {0})) .

Set

k:=-(e"—e"), n" :=1(i(h—e* —e7), n~ := —(ith+e"+e").

Then we can interpret A, as sl representation

1 B 4 2 -V
wk,a(k) = Z (El-c‘r,a - Ek,a) = a - _aAk,a'
2.6 An orthonormal basis in L? (RN,ﬁkva (x) dx)
Consider the weight function ¥y, (z) = ||z]|* *hx(z). Tt reduces to hy(x) when a = 2

and for any 2’ € SN,
ﬁk,a (SL’/> = hk (x’) .

For the polar coordinates x = ra’(r > 0, 2’ € SV~1),
Do (x) do = 2 PFN+Ta=3g, (@) drdo ().

From the spherical harmonic decomposition (2.1) of L? (SN, hy (2/) do(2')), there is a
unitary isomorphism (see [8, (3.25)])

©®
S (R (BY) [ons) © L (R, r 2004300 80r) = 12 (RY, 0y () ).

meN
Define the Laguerre polynomial as

pn = (—D)T(u 14 1) ¢
HO = 2 GG g+ o e

5=0
Proposition 2.3. (/8, Proposition 3.15]) For fited m € N, a > 0, and a multiplicity function

k satisfying Ai.am = w > —1. Set

QMeamtID(] 1 1/ 2 1
¢I(C;)1(T) = ( (i+1) )) rmL;\k’“‘m (ar“) exp (——7‘“) . (2.3)

aMem (N am + 1+ 1 a

Then { @y le N} forms an orthonormal basis in L* (R, r 20 +N+a=3qy),

,m

11
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Combining the orthonormal basis (2.2) of H}" (RY) |sv-1, Proposition 2.3 yields the

orthonormal basis in L? (RN, ¥y, (z) dz) immediately.

Corollary 2.4. ([8, Corollary 3.17]) Suppose a > 0 and k satisfy that 2m+2 (k) +N+a—2 >
0, Set

o0 ()= 7" (50 ) el 2.4)

||l
Then

{Cbl(vi')%j’leN’m€N7j:172a"'7d(m)} (25)
forms an orthonormal basis of L* (RN, Uy, (z) dz).

Denote by
Wi (]RN) = C—spcm{q)ga)(p, )‘ leN, meN, peH" (RN)} ,

where
@l(a) (p,z) = p(x')rle’\k’“’m (zr“) exp (—lr“)
a a
for z = ra’ (r >0, 2’ € S"71). It is a dense subset of the Hilbert space L* (RY, 0y, (z) dz).
It was shown in [8, Theorem 3.19] that <I>§a) (p,-) are eigenfunctions for —Ay ,, i.e.,

wk,a(k)fbga) (p,z) = (2l + Agam + 1) CIDZ(G) (p,x). (2.6)

Let g = sl(2,R) and K be a maximal compact modulo center subgroup of the universal

—_——

covering group SL(2,R) of SL(2,R). Then (wyq, Wia (RY)) is a G x (g, K)-module and

can be decomposed as (see [8, Theorem 3.28])
Wia (RY) = P H(RY) |55 @ Tae(am). (2.7)
m=0

where g (Agam) is 8[(2,R) acting on the vector space (C—span{cbga) (p,-) : 1 € N} for fixed
p € H(RY). Tt is the irreducible lowest weight module of weight At 4., + 1.
2.7 The (k,a)-generalized Laguerre semigroup and Fourier transform

It is observed the fact that the (k,a)-generalized harmonic oscillator A, is an essen-
tially self-adjoint operator on L? (RN Vka (T) dx) with only negative discrete spectrum. And

so it is the infinitesimal generator of the corresponding contraction semigroup. Thus, for

12



2.7 The (k,a)-generalized Laguerre semigroup and Fourier transform 2 PRELIMINARIES

a+2(k)+ N —2 > 0, the infinitesimal representation wy, of s[(2,R) can be lifted to a

—_——

unique unitary representation €, of the universal covering group SL(2,R) of SL(2,RR) on
the Hilbert space L? (RN, ¥y, (z) dzx) (see [8, Theorem 3.30]), i.e

d
dt],—,

Wia(X) = Qo (Bzp(tX)), X € s1(2,R) (2.8)

on the dense subset Wy, (RY) of L* (RN, ¥}, (z) dz). We can then define the (k, a)-generalized
Laguerre holomorphic semigroup on L? (RN, 9y, (z) dz) as ((see [8]))

2
Tia (2) == Qpq (72) = exp (aAk’a> , 7. = Exp (—zk) R z > 0.

It has the following spectral decomposition on L? (RN, ¢y, (x) dz) via the basis (2.5)

L) (1) = Y e (204t +1) <f @lm]> o (x), (2.9)
l,m,j
where (f,g) ka f]RN x)Ukq(x)dz. By Schwartz kernel theorem, it has an integral

representation on > (RN , 191«7(1 (x) d:v) by means of a distribution kernel A, (z,y; 2) (see [8,

(4.56)))
Ira(2)f (2) = Cra . f(Y) Mo (2,95 2) Upa (y) dy, (2.10)

where ¢y = (fon exp (=21 [[2]|") Ua (2) dz) " and
Ara (w0, 5 2) 1= (Vi (7,531 )) (@) (2.11)

forx =rw,y =sn,r,s >0andw,n € SV Here V;, is defined by (th> (x,y) == (Vkhy) (z),
where hy(-) := h((:,y)) for a continuous function h(t) of one variable. And hy, (7, s; z; w)
has its closed formula

exp(—2(r® + s%) coth(z))

Pia(r, s;2;t) = -
sinh(z) R
N —1\~ V2(rs)2 1
I'( (k — I s ——L(1+4+1)2 =1
” << )+ 2 > <k>+¥< sinh 2z (1+1) ) ( ) (2.12)

exp(0) (a=2),

sinh z
where I, is the normalized I-Bessel function and has the following integral formula (see, e.g.,

[44, 6.15 (2)))

T 1 ' wu 2
Iv(w):m/le (1—u)
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2.7 The (k,a)-generalized Laguerre semigroup and Fourier transform 2 PRELIMINARIES

The integral on the right hand side of (2.10) converges absolutely for all f € L? (RN, 9}, (z) dz)
if Rz > 0 and for all f € (L' N L?) (RN, Uyq (z) dzx) if Rz = 0 (see [8, Corollary 4.28]). From
(2.11) and (2.12) we get an expression of Ay, (x,y;2) (a slight modification of Proposition
5.10 in [8])

exp(—z(Ilz]|* + [ly[|*) coth(z))

Apa (2,5 2) = sinh(z)2<k>+]zzv+a_2
[+ ) (e (VAT ) ) ) 0= ),
Vi (e () (a=2).
(2.13)
Let

2(k)+N+a—2

By (1,y) =™ 2 A, (xvy;l§> :

Then the (k, a)-generalized Fourier transform on L? (RY, ¥, (2) dz) can be expressed as

Fk,af (6) = Ck,a N f (y) Bk’,a (67 y) ﬁk,a (y) dyv 5 € RN

+N+a 2

)Z4a (5). For a+2(k) + N —2 > 0, it is a unitary operator
on L? (RN, 9y, (z) dz) (see [8, Theorem 5.1]), that is, ||Fa(f)|l,, = [ flloy for any f €
L? (RN, U0 (x) dx), where || flly, = (fon |f (2 )N Ppa (2 )d:x)l/Q. And the Laguerre function

(I>l(a) (p,x) is an eigenfunction of Fy,, i.e.,

Fk,a (q)l(a) (p7 )) = e_iﬂ(l—i_;) <(I>l(a)(p7 )) .

because [y, = e”(

As the distribution kernel By, (x,y) of the (k,a)-generalized Fourier transform for fixed
y is the eigenfunction of the operator |z||*~* Ay (see [8, Theorem 5.7]), we can consider
|z||>~* Ay as the a-deformed Dunkl Laplacian in (k,a)-generalized Fourier analysis. The
kernel By, (x,y) has the following properties:

1. By, (ax,y) = Bi (x,ay) for a > 0;

2. Bia (92, 9y) = Bra (x,y) for g € G;

3. Ba (2,y) = Bra (y,2);

4. Bro (0,y) = 1.

14



2.7 The (k,a)-generalized Laguerre semigroup and Fourier transform 2 PRELIMINARIES

And we have the inversion formulae of the (k, a)-generalized Fourier transform (see [8, The-
orem 5.3]), ie., (Fra) ' = Fraif a = L and (Fk_;f) (2) = (Frof) (=) if a = 325, where
r € Ni.

In [8, Theorem 5.11], the authors showed that the integral kernel By, (z,y) satisfies the

condition
|Bra (2,9)| < Bra (0,y) =1 (2.14)

if a = 1 or 2 assuming that 2 (k) + N +a — 3 > 0. In this case one can define the (k,a)-
generalized translation operator via an integral combining the inversion formulae of the (k, a)-
generalized Fourier transform for a = 7%, n € N. For the general case of 2 (k) + N +a—3 > 0,
the condition of boundedness (2.14) is not necessarily true. In [11], the authors proved such
boundedness for a = 2, n € N only. And in [24], the authors found some negative results.
They proved that if a € (1,2) U (2, +00), then || Byl > 1 (either finite or infinite). They
also found the necessary and sufficient condition for the boundedness of the kernel By, (z, y)

for the one dimensional case, i.e., 4 (k) + a — 2 > 0.

15



3 FRACTIONAL HARDY INEQUALITIES

3  Fractional Hardy inequalities

We will be interested in Hardy inequalities of the form

2
[ pein ) < B 41 (3.1)
(or the Hardy inequality with homogeneous potential) for given 0 < o < 1, where L7 is
the fractional powers of a non-negative self-adjoint operator L and B, is a constant. It is a
generalization of the classical Hardy inequality on RY

(N=2 [ |f @)
L of?

xS/ IV f(x)]* dz, N > 3.
RN

In [12], 0. Ciaurri, L. Roncal and S. Thangavelu worked with conformally invariant frac-
tional powers of Dunkl-Hermite operators Hy = —A + ||z||°, where A\, is the generalization
of classical Laplacian on Euclidean space called Dunkl Laplacian, and proved the fractional
Hardy inequalities for these operators of form (3.1) using ground state representation. The
conformal invariant fractional powers was borrowed from the context of sublaplacians on
Heisenberg groups (see [33]). They also deduced the Hardy inequalities for pure fractional
powers of Dunkl-Hermite operators H{ (see [12, Corollary 1.5]) as a consequence of the
conformally invariant fractional Hardy inequalities.

We will prove a Hardy inequality of type (3.1) for fractional powers of the a-deformed
Dunkl-Hermite operator Ay, = ||z]|*"* Ak — [|z||* using the spherical harmonic expansion
of the (k, a)-generalized Laguerre semigroup (3.8).

Theorem 3.1. ([/1]) Let us define the constant
B =0 —(%) .
o = VT ()

ForO0<o<1,d>0and4(k)+2N +a—4>0,

a\° ‘f(x)‘z
-) B, s Upa()de < ((=Dra), [ ) amn o (2)de
G) 2 (5+ 2 pa) He

for all f € CP(RY).

When a = 2, this inequality reduces to the fractional Hardy inequality in [12], which was

proved using Dunkl-Hermite expansions. The definition of the modified fractional operator
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3 FRACTIONAL HARDY INEQUALITIES

(—=Aj,q), will be given analogously as in [12] in Section 3.3. We can also deduce the Hardy
inequalities for pure fractional powers of the operator (—A,)” analogous to Corollary 1.5
in [12] from this Hardy inequality. An uncertainty principle for fractional powers of A\, can
also be deduced from this Hardy inequality as in [33].

There have also been several other studies of Hardy inequalities of form (3.1). For
example, D. Gorbachev, V. Ivanov and S. Tikhonov [22] proved a sharp Pitt’s inequality for
Dunkl transform in L? (RY). Such Pitt’s inequalities can imply a Hardy inequality of the
form (3.1) for fractional powers of the Dunkl Laplacian A,. They also proved a sharp Pitt’s
inequality for the generalized Fourier transform Fj , in [23] using the Bochner-type identity
(3.9), a particular case of the expansion (3.8) we will use. By the formula (5.6 b) in [8], The

fractional powers of —||z||* ®Aj can be naturally defined as follows,

Fra (= 1P 20" £) (©) = (€Y Fra (5 (&)

And then from the inversion formula [8, Theorem 5.3] of the (k, a)-generalized Fourier trans-
form, the Pitt’s inequality in [23] implies also a Hardy inequality of the form (3.1) for
L = —|jz|**A, for a = 2 n € Ny. When a = 2, this Hardy inequality reduces to
that for fractional powers of the Dunkl Laplacian in [22]. The two Pitt’s inequalities imply
the logarithmic uncertainty principle for the Dunkl transform and Fj, ,, respectively.

The results in this chapter are based on my paper [41]. In Section 3.1, we give the
definitions of the a-deformed Laguerre convolution and the fractional a-deformed Laguerre
operators, and then prove the radial Hardy inequality for the fractional a-deformed Laguerre

operators. In Section 3.2 we give the proof of the spherical harmonic expansion of the (k, a)-

generalized Laguerre semigroup and show that it reduces to the Bochner-type identity when

z takes the boundary value % In Section 3.3, we give the proof of the fractional Hardy
inequality in Theorem 3.1 using the expansion in Section 3.2. In Section 3.4 we study the
relationship of the expansion in Section 3.2 with sly-representation. We will give a tangible
characterization of the radial part of the (k,a)-generalized Laguerre semigroup on each k-

spherical component H; (RN ) for A\gam > —1/2.

17



3.1 'The a-deformed Laguerre operator 3 FRACTIONAL HARDY INEQUALITIES

3.1 The a-deformed Laguerre operator

The Laguerre translation 7, was introduced by McCully [29] for & = 0 and was ex-
tended to o« > —1/2 (see [3] or [42, Chapter 6]). We define the a-deformed Laguerre transla-

tion as

T2 f(s) %/{) f((r“+s“+2r%s% 0089)1/a>.

2 3 3 2 3 3 o) 2
Jo1/2 (ar 5 sin@) (—7“ s sin@) (sin@)** db

a
for r,s > 0 and o > —1/2, where J, is the Bessel function of order v. When a = 2, it reduces
to the Laguerre translation 7% in [12]. The results in [12] are also valid for the critical case
when av = —1/2 since the definition of the Laguerre translation can be extended to this case.
If f and g are functions defined on (0, 00), the a-deformed Laguerre convolution f %, g is
given by

*a.0 9(T / T f(s)g(s)s* 1 ds. (3.2)

r= (8) = (B
r=r((5)" o) a=a((5)" ),
we have

0o a\ a+1 o a\ atl
[ st ([ Tstamr - () st
0 0
a a+1 a a+1 o0
_<‘> 91 %o fi(r1) = §> / Tig1(s1) fu(s1)s1* " dsy
0

/ Taa ) aa+a—1 dS,

where f %, g is the Laguerre convolution defined in [42, Chapter 6]. Thus f *,, g(r) =

g *aa f(1).
2 1
0 (r) == LY (—r“) exp (——r“) , 1=0,1,---
a a

Let
Then substituting r as \/gr% and s as \/gs% in the formula (3.2) in [12], we get

By changing variables

and setting

n!

T ) =

et (r)en(s),  az-1/2. (3.3)

18



3.1 'The a-deformed Laguerre operator 3 FRACTIONAL HARDY INEQUALITIES

The Laguerre operator

2, 2a+1d

Lo=—" 12 @
dr2+r r dr

(3.4)

studied in [12] is a symmetric operator on L? ((0,00),du,), where o > —1/2 and dpu, (r) =

r2et1ldy. The functions

N oar(l+1) \'? ., 1,
e = (2T ) L _Z I1=0.1.---
2 (T) <F(Oé+l+ 1)) l (T )exp 2T 9 07 )

are eigenfunctions of L, with eigenvalues 2 (2 4+ o + 1).

Substituting r by u = \/gr% in (3.4),

P o 204ld  2( 1 & <1_a) L dYy, 2, 2+1d
du? u du a \r“2dr? 2/ ro=1dr a re=b dr

2 1 d? N (a0 +1) 1 d

=—|- — +r* — (ax —

a \ re2dr? 7"“ Ldr

The a-deformed Laguerre differential operator can then be defined as

1 d? u 1 d
Laa= e T T (ea+1) ro=1dy’ (3:5)

It is symmetric on L? (0, 00) with respect to the measure du, o(r) = r** = tdr, a > —1/2.
When a = 2, the operator reduces to the Laguerre operator (3.4).

Define the Laguerre functions of type « as

_ 2010 (1+1) \? /2 1
a0 e[ 2y e —0.1.---
2 (7’) (aaF(a—i—l—i— 1)) l (CLT )eXp( CLT ) ) [ 07 ) )

where @ > —1/2. Then they form an orthonormal basis of L? ((0,00),d,) (this is also

the case of Proposition 2.1 when a = A, ,,) and are the eigenfunctions of the a-deformed

Laguerre operator (3.5). Indeed,
Loodi"=a@+a+1)g", 1=0,1,---.

It suffices to substitute r by \/gr% in the conclusions of [12, Section 3] to get this.

The Laguerre expansion of f € L?*((0,00), dig.«), namely the expansion

/= Z (aO‘F a+1+ 1)> (f ¢ >d““’agpl

can be written in a compact form in terms of Laguerre convolution.
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3.1 'The a-deformed Laguerre operator 3 FRACTIONAL HARDY INEQUALITIES

Lemma 3.2. For a function f € L*((0,00), duas), ©;"" is an eigenfunction of f, i.e.,

l
fran o = Mo+ I(+1)

oo e

Fla+1+1)
In particular,
gat+1
Onjior ™ = m%’a *a,0 05 (3.6)
Proof. Omitted. It is only a slight modification of the proof of Lemma 3.1 in [12]. O

Thus [ *.4 ©"" are eigenfunctions of L, , with the eigenvalues a (21 + a+ 1) for | =
0,1,--- and we have the spectral decomposition of the a-deformed Laguerre operator

2a+1

Za 2L+ a+1) f*ea ]
1=0

LCLCX
of = Tl 1)

It is then natural to define fractional powers of Laguerre operators as

2a+1

L7 f= a (21 na U > —1/2.
a,x aaFoz—i— ; +a+ )) f*,SOZ a =z /

But it suits better to work with the modified fractional operator L, .., with the spectrum

47547 1e

*)

2a+1 0
Z (20)7 S5 s oV, o> —1/2,
=

Laao BV EY
ol = aT(a+1

where
r (a(2[;a+1) 4 HTU>
U _ a
r (a(2l+a+1) . 1__0> ’
2a 2

because such fractional powers of the operator correspond to the conformally invariant frac-

tional powers of sublaplacian £ on Heisenberg groups when we consider the conformally
invariant fractional powers £, (see [33]) acting on the functions of the form e f (|z]). In
short, we write
(%)
()
The motivation for this definition goes back to [9, (1.33)], for instance.

For § > 0 and o > —1/2, denote

Looo = (2a)7

- 5+ 2re
a a a+1+0)/2 a
wg,a(r) = Cao (5 + %T ) el K(@+1+U)/2 ( 92 ) )

20



3.1 Expansion 3 FRACTIONAL HARDY INEQUALITIES

where K, is the Macdonald’s function of order v (see [28, Chapter 5, Section 5.7]), and ¢, »

is the constant

ﬁZl_a
Cao i= :
’ ' (a+2+0)/2)
In [12], the authors proved a Hardy inequality for the fractional Laguerre operator for the

case of a = 2 using ground state representation.

Theorem 3.3. ([12, Theorem 1.1]) Let 0 < o <1, § >0, and 2a+ 1 > 0. Then

§ = |f(T)|2 47 s 2 [T 2 Wi,a(@
Blo [ G tieln) < g (BL) [ 1O Sdnetn) < (Lot 1),
for all f € C3°(0,00).

Taking f as the Laguerre functions for the case of a = 2, and then substituting r by

2 a
\/;7’2, we get

~a,x 2 d,a
> ’ r 40. 2 o ~Q, wa’o'<7a)
B, [ —(“”l s dpaatr) < 5 (B [ 10O 22 )
0 0

2 o a,o
0+ —7’“)
2 ~a,00 ~a,x
S < (aLa,a> 30[7 ) 9017 >
o dpia,o

a
2L(L,a 1+
F<GT+TU
2La,& 1—
F( o +—2">

Then using the expansion via Laguerre functions, we derive the Hardy inequality for

for « > —1/2. Here (%La,a)a = 4° and it equals to (%)U Lo

the fractional a-deformed Laguerre operator.

Theorem 3.4. ([{1]) Let0 <o <1, § >0, and « > —1/2. Then

G, ﬁ“ <(5) o 1500 ZE Gt

) + —pa a,—0o
a

< <La,a;af7 f>d,ua,a

for all f € C3°(0,00).

3.2 Spherical harmonic expansion of the (k, a)-generalized Laguerre semigroup

The holomorphic semigroup related to the a-deformed Laguerre operator L, , is defined
on L2((0,00) , dpia) by
Ly f = e aleof Rz >0. (3.7)
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3.2 Expansion 3 FRACTIONAL HARDY INEQUALITIES

From the spectral decomposition of L, , it equals to

2a+1 0

21+a+1 a,o
e
aT(a+1) ZI—O Fao P

We will show that this a-deformed Laguerre holomorphic semigroup reduces to a-
deformed Hankel transform H, , when taking the boundary value z = % The operators L, 4
also give an explicit expression of the radial part Q,(:;) (72) of the (k,a)-generalized Laguerre
semigroup on each k-spherical component Hj" (]RN ) defined via decomposition of unitary

representation in [8, Section 4.1], i.e., Q;Cm) (72) f(s) = s™ oz ()77 F) (5), Rz > 0,

,a

s> 0 for f € L? (R+, r 2<k>+N+“*3d7“) and A, > —1/2 as will be shown in Section 3.4. We

2(k)+N—2
==

denote A\, :=
Theorem 3.5. ([{1]) For any function f € L*((0,00),dpaa), @ > —1/2, we have
€(a+1)7ri/21 . (f) _ Ha,a(f);

@075

where the a-deformed Hankel transform is defined as

Haal0) = oy || 7 (Brst ) st

and jo(t) = 2°T (o + 1)t=*J, (t) is the normalized Bessel function.

We will then give a spherical harmonic expansion of the (k,a)-generalized Laguerre

semigroup.

Theorem 3.6. ([/1])(Spherical harmonic expansion of the (k,a)-generalized Laguerre semi-
group) For f € L* (RN, Uy, (x)dz), 4(k) + 2N +a—4 > 0, and © € RY, z = ra/, with

r e RY, 2/ € S¥!, we have
Tia (2 ZYmJ P Ty (7™ fn) (7). (3.8)

where Rz > 0. Specially, the (k,a)-generalized Laguerre semigroup reduces to the one

dimensional a-deformed Laguerre holomorphic semigroup for radial functions, that s, for

f=rfo(lD), foe L? (Ry,r20+NTa=30r) and r = ||z||, we have

Tra (2) f () = Tha (2) Flo (1) (Tia (2) o (1) = Langs=(fo) (1) -
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3.2 Expansion 3 FRACTIONAL HARDY INEQUALITIES

Remark 3.7. i). This theorem, together with (1.1) and Theorem 3.5, imply the Bochner-type
identity in [8, Theorem 5.21], which was used in [23] for Schwartz functions to prove Pitt’s
inequalities for the generalized Fourier transform. That is, taking the boundary value z = %i,
the expansion reduces to

Fraf() =Y e ™Y, (@)™ Honp o ()7 fing) (1) (3.9)

m,j

This theorem also generalizes the result in [43] that Hermite semigroups reduce to Laguerre
semigroups of type % — 1 (the case of a =2 and k = 0) for radial functions on RY.
ii). When a =2 and z = 2t, t > 0, the expansion reduces to the formula given in Theorem
4.5 in [12], but our proof is different from that in [12] even in this case because we used the
new tools introduced by S. Ben Said, T. Kobayashi and B. Orsted [8] in the development of

(k,a)-generalized Fourier analysis.

Proof of Theorem 3.5.
Define

o (1) = 20+1 ie A(2rat) poe gy 2 aq2 . \/?Tg
BOEA aaF (a+1 a e a ’

=

Then we can write
z
_zj
e areef=Ff *a,a Qa,0;z -

We give the kernel of the holomorphic semigroup I, q.»-

Lemma 3.8. Let « > —1/2, Rz > 0 and z # 0, we have that

- e Co‘chz( a+sa) 27”%8%
) J— a
1" a,0:2(8) = z I | & :

(r2s2)esinh 2

where I, is the modified Bessel function of the first kind and order «, see [28, Chapter 5,
Section 5.7].

Proof. For the case when a = 2, we take w = e~* in the equality (see [42, p. 83])

> F n + 1 o "
Z son(f’)son(S)UJ2

1/1 2 2
=(1- w2)_1(7"sw)_aexp{ - §<1j2}]2>(r2 + 32)}Ia<1 @_m;;), lw| < 1.
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3.2 Expansion 3 FRACTIONAL HARDY INEQUALITIES

Then we get the Lemma for a = 2. And it reduces to Lemma 3.2 in [12] when z = 2t, t > 0
in this case.

For the general case of a > 0, change variables

Then we get

2
,];a’aq%a;z(s) = (a) T q22a(31)

th th 2 a a
2\ @ =T E(ri+s?) / ( 181 ) e‘%g(raﬂa)j_ %r%sg

=\ - X « . == . o A .
a/) (rys1)*sinh z sinh z (rzsz)>sinh 2z sinh z

The proof of Lemma 3.8 is therefore completed. This Lemma can also be deduced from

Hille-Hardy identity directly. [

Let z = 3. Then from formula (5.7.4) in [28],

2 a a s & a\a
2r252 ) 2w a ) (_“82) 9 . .

I, | < _ —cwrZ/QJ 255 ) _ —ami/2_\a (258 ).
<smh %> e a|ores e —QO‘I‘(a+1)j UL

So
Ia,a;i%f(r) = f *q e Qa a; 7, / f Ta QQG «; z ( ) accta=l dS
. 2 a a ]
—(a+1)mi/2 . 25 s aata—1 ds = —(cx+1)7rz/2H )
et [T o (Bt ) et = el )0
The proof of Theorem 3.5 is therefore completed. O

Consider the orthonormal basis (2.2) of H}* (RY) |sv—1. Accordingly, we have the h-

harmonic expansion for f € L (R, 9y, () dz),

oo d(m)
=33 fuaY (= (3.10)
m=0 =1
where
fma(r) = f(ra) Y™ (2") g a(2")do(2).

SN-1
Proof of Theorem 3.6. By Lemma 3.1, the a-deformed Laguerre holomorphic semigroup can

also be written as

aazf Zefz (2l4+a+1) <f ~a, a>duaa§5?a.
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3.2 Expansion 3 FRACTIONAL HARDY INEQUALITIES

We then apply the spherical harmonic expansion (3.10) to the spectral definition (2.9) of
Tia(2)f (x). By (2.4) and by noticing that

~a, )\ ,a,m —-m a
G () = g (r)
when A o.m > —1/2, we have

Tia(2)f (x) = Y e Ot (500 ) @) (@)
l,m,j @

oo d(m) oo

-3y Z/ Fong (7)) () r20 N +a3 .

m=0 j=0 [=0
7Z(2l+)\k,a,m+1) (a) Y ) /
€ Im (1) m,j (')

oom

[e.e]
- Z Z / fm,j (T) T_m@?’)‘k'“’m (7”) raAk,a,mta=l g
0

=0 [=0

=0y
(2l+/\k a m+1)§5;1 )‘k: a,m ( ) Tmmej (:C/)

Z V™ Loz ()7 Fn) ().

m,]

For f(z) = Yy, (&) (r), ¥(r) € L? (Ry,r 2FFTNTa=3qr) o = ra’, we have the follow-

ing Hecke-Bochner identity for the (k, a)-generalized Laguerre semigroups,

Tia(2)f () = Yo (@)™ Loy iz ()7 0) (1)

Taking m = 0, we get the special case for radial functions. The proof of Theorem 3.6 is
therefore completed. a

Define the a-deformed Dunkl-Hermite heat semigroup with infinitesimal generator Ay,
as Ttk’af = Ty (ta) f, t > 0 and the a-deformed Laguerre heat semigroup as Tj o f =
Lo oiaf, t > 0. Then from Theorem 3.6,

T f ( Zij " Taamt ()7 Fng) (1) - (3.11)

It reduces to the equation in Theorem 4.5 in [12] when a = 2.

Remark 3.9. The case of a = 2 of the above argument gives a new proof of the Theorem
4.5 1n [12]. In [12] the authors proved the Theorem 4.5 by using Dunkl-Hermite expansions

and proving the identity for Dunkl-Hermite projections first. But if we use the basis given in
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3.3 Proof of Theorem 3.1 3 FRACTIONAL HARDY INEQUALITIES

terms of Laguerre polynomials, which are also the eigenfunctions of Dunkl Hermaite operators,
the theorem can be proven directly from the above. For radial functions it was shown in [43]
i classical case that Hermite expansions reduce to Laguerre expansions. The Heisenberg
uncertainty principle for Dunkl transforms was also proved using the two different expansions
successively. It was first proved by Résler using Dunkl-Hermite expansions (see [34]), and
was then proved in [8, Section 5.7] using the tools we refer to in this paper as well (see [37]
also for a proof using the basis given by Dunkl [20] in terms of Laguerre polynomials).

3.3 Proof of Theorem 3.1

Now we use the following Lemma (see [12]) to give the expansion of the fractional
(k, a)-generalized harmonic ocillator into fractional a-deformed Laguerre operator (there is a

constant missed in [12, Lemma 3.4]. Here we give the corrected Lemma).

Lemma 3.10. ([12, Lemma 3.4]) Let 0 < o < 1, and A € R such that A+ o > —1. Then,

F(3+57)

27| (—o)] m

:/ (cosh ¢ — 1) (sinh #)"""" dt + / (1—e™) (sinh )" dt.
0 0

Denote by E, := ﬁ J,” (cosh ¢ — 1) (sinh t)~° " dt. Then

2a+1

La,a;crf (T) -

(a1 D) 2275 e e70)

FE f (T) —+ m/ﬂ (f (7”) — Ta,a;t/af (T)) (Sinh t)_g_ dt.

Given 0 < o < 1, we define conformally invariant fractional (k,a)-generalized harmonic

ocillator (—=A,), to be the operator
_A ,a 1+o
P (=g + =)
—Aga l1-—0o .
r ( 2 T T)
So, in view of (2.6), (—A,q), corresponds to the spectral multiplier (2a)7T" <M + HTU) /

2
T (M + 1—”> and it equals to

(=Dka)y = (20)7

Eof (2) + 50, / ) - Thef (x)) (sinh £)™""'dt

from Lemma 3.10. For a = 2, it should coincide with the fractional Dunkl-Hermite operator

n [12] (there is a constant factor missed in the definition given in [12]).
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3.3 Proof of Theorem 3.1 3 FRACTIONAL HARDY INEQUALITIES

By formula (3.11),
(—Ona). f (@) = Eo f (x) e / )= The f (:c)) (sinh )" dt
= Z mej(m’)rm {EUT_mfm,j (r)
| / _mfm] - a)\kam t/a (()_m fm,j) (T>) (Sinh t)_g_l dt:|
_ Z yw(g/)rm [Eggm,j (r)

ey / (9ons () — Ture o t/any (r)) (sinh t>—“—1dt}

—ZYW )™ Loz amioGmj () 5

where g, ; (1) = 17" fr.; (7).
The following Lemma was found by Yafaev [46] for v = m/2, m € N, and was then

proved in [23] for any v > 0.

Lemma 3.11. (/23, Lemma 2.3]) If v > 0, then

D(t+v) _ L)

O<t<r.
I'(r+v) T(r) 4

We can then start to prove the fractional Hardy inequality in Theorem 3.1 using the

above expansion and lemma. By Theorem 3.4 we have

<( Aka) ff>L2(]RN19ka d:c Z{)Zl<LaAkamagmj>gm]>Lg<ooo d”"‘)‘kam())
m=0 j
oo d(m) d,a
2a 2 [ Wy am,a’(r)
Z Z Z ( ) < >\k a,m» U) / |gm7.7 (T) |2 67:’ , dﬂa7>\k,a,m (T)
m=0 j=1 0 w,\k‘a’mﬁg(r)
oo d(m) 9 o w&,a (7”)
2 A ,a,m>0
=S (3) (Be) [ 1m0 S (),
m=0 j=1 0 w)\kya’m,fa(r)

Then by Lemma 3.11 and a similar argument as in the end of the proof in [12],

p d,a
2a Bé 2 w)\k,a’m,a(r)
7 )‘k,a,m’g §,a
w)‘k,a,'mv*g(r)
Ak,a,m+2+‘7 a
F( 2 ) K()‘kam+1+0 (((5_'_ 2y )/2)

B <g>050F (M> K wmii—oy2 (6 + 212)/2) (6 + %TGYO

2
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3.4 Relationship with sls-representation 3 FRACTIONAL HARDY INEQUALITIES

Aat240 ) a\©o

> (g)a% (6+2r) 7 = (5) Bl (G+2)77,

2

Therefore,
2a\° 2 [0 A ()
<( Dia)y | f>L2 RN 0 o (z)d) —;(7) (st\k,a,m,a> / ’fm](T)|2 wf\} < )dMaAa(T)
> (5) Bo X [ s (54 27) 7 s, 1)

— (" pgo @
N <2) B)‘“’U /RN (5+%Hx||a)aﬁk,a (Jf) dx.

The proof of Theorem 3.1 is completed.

3.4 Relationship with sl,-representation

Consider the map

aka HP(RY)[gv-1 @ L (R, p?FHNTa=3gp) s L2(RN, 0y o (7)d)

defined by

for p € H"(RY)|gn-1 and f € LA(R,, r2<k>+N+“_3dr).

It follows that the unitary representation Q. of S Z(E/R) on the Hilbert space L*(RY,
Vk.o(z)dx) induces a family of unitary operators Q (%) on L?(R,, r**+N+a=3qp) such that
(see [BSKO), (4.3)])

o) (p@ A ()()) = Ualr) (ol 0@ 1)) (3.12)

Then from (2.7), (2.8), Tk (Agam) is integrable and dﬂm) = Tg(Mgam). And in [8, Sec-
tion 4.1] they showed that the unitary operator Q,(;Z) (72) on L? (R, r 2R+NFa=34p) can be

expressed as
0 (2) F(r) = / ALy (1552) f ()W s, (3.13)
0

where A,E:Z) (r,s; z) has its closed formula (see [8, (4.11)])

—(k)—%-&-l 2,2 g
m s cothz/ .a rz2s2
A (r5:2) = (r8) 7 s Do ( ) |

sinh z sinh 2
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3.4 Relationship with sls-representation 3 FRACTIONAL HARDY INEQUALITIES

The integral on the right hand side of (3.13) converges for f € L? (Ry,r2®)+N+Ta=3qy)
if Rz > 0 and for all f in the dense subspace of L? (R+,T2<k>+N +a*3dr) spanned by the
functions {wl(ii(r) NS N} if Rz = 0 (see (2.3) for the definition of 1/)1(‘;)1(7“)) We give an
explicit expression of Q,%) (7.) in this section via the a-deformed Laguerre operator L, , (see

[4] for the case of a = 2 on such expression).

Theorem 3.12. ([{1]) Assume A qm > —1/2, R2 >0 and s > 0. Then Q,(C";) (7.) acting on
L? (Ry,r 204NTa=34r) has the form

UM (12) F(5) = 8™ Tupeamsz ()7 F) (5).

Thus

diz UM (12) £(5) = T (Mam) (K) £(5) = —sméLa,Ak,a,m (()™f) (s).

z=0

Proof. We can take av as Ay 4m in Lemma 3.8, then we get
a7>\k,a,m _ —m (m) .
7. qa,Ak,a,m;Z(S) - (TS) Ak,a (Tu S5 2) : (3'14>

For every f in the dense subspace of L? (Ry,r 2®+N*a=34r) spanned by the functions

{ (a() ZEN} we have

Q( / f r s Z>r2(k)+N+a73dr

m —-m a>\ ,a,m m a—
: / FYTE () 220N 0y
0
= SmIa’)‘k,a,m;Z ((.)_m f) (S> * D

Remark 3.13. i). From this theorem, the spherical harmonic expansion of the (k,a)-
generalized Laguerre semigroup (3.8) can be derived directly. Taking p as Y™ in (3.12),

)

we have
Vo (V:) (Fni ()Y (&) = V(@)U (1) (fini(7))

for every fu.(r)Y;"(z"), Then by summing up, we can derive (3.8).
ii). Taking m = 0, we get the formula of Ay, on radial Schwartz functions f = fo (||-|]),

fo € S(Ry),
Ak,af(*T) - _La)\a (fO) (T) , T'= ”‘/BH .
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3.4 Relationship with sls-representation 3 FRACTIONAL HARDY INEQUALITIES

This is equivalent to the formula of Dunkl Laplacian Ay on radial functions in [30, Proposi-

tion 4.15], i.e.,
_d_2+2<k>+N—1i
dr? r dr’

it1). In [4], there is a comparable result on expressing each m-component of the representation

A

(wk,a, Wh.a (RN)) via differential operators.

30



4 THE GENERALIZED TRANSLATION OPERATOR

4 The generalized translation operator

Assume 2 (k) + N +a—3 > 0. For a = 2, n € N, one can define the (k, a)-generalized

translation on L? (R, ¥y, (z) dz) as

Fra (14f) (€) = Bra (y,€) Fra (f) (§), € €RY.

The above definition makes sense because for a = %, n € N, Fy, is an isometry on

L? (]RN Vga (2) dz) from the inversion formulae, and its integral kernel By ,(z,y) satisfies
the uniform boundedness condition (2.14). In this case the (k, a)-generalized translation can

also be written via an integral as

7 (2) = cha / B (4,€) Broa (1,€) Fia () (€) Uha (€) d€

RN

for f € £} (RY), where
L, (RY) :={feL" (R, U, (z)dr): Fya(f) €L (RY, U, (2)dx)}.

This formula holds true on Schwartz space S (R") since S (RY) is a subspace of £}, (RY).

For the two cases of @ = 1 and a = 2, the analytic structure is richer because we
have the formulas for radial functions of the generalized translation for the two special cases.
The radial formula for a = 2 ( for the Dunkl translation) was found by Résler [34] and
for a = 1 it was found by S. Ben Sald and L. Deleaval [5]. The generalized translation
operator 7, corresponds to the classical translation operator f +— f(x —-) for a = 1, and
corresponds to f +— f(z +-) for a = 2. This is because for a = 1, the inversion formula of
the generalized Fourier analysis is F} L (f) = Fr1 (f), and for a = 2, the inversion formula is
(F, ' f) (z) = (Fif) (—z). We will study the generalized translation for the two cases in the
following. And in particular, we will investigate the support of the generalized translations
of radial functions. Such results in the chapter for a = 2 was in my paper [39] and that for
a = 1 was in my paper [40]. And for the case of a = 1, we will need to study the metric space
(also contained in [40]) corresponding to the (k, 1)-generalized analysis in order to investigate
the support of translations of functions.

4.1 The case of a =2 (the Dunkl case)

The generalized translation for a = 2 (called Dunkl translation) on L'(m;) can also be

defined by the intertwining operator as

7o (y) = Vi), (Va), [(Ve) ™ (f) (& + )] -
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4.1 The case of a = 2 (the Dunkl case)d ~THE GENERALIZED TRANSLATION OPERATOR

Here are some basic properties of Dunkl translations.

1. (identity) 7o = I;

2. (Symmetry) 7.f(y) = 7, f(x), z, y € RY, f e S(RY);

3. (Commutativity) Te(1.f) = 7.(T¢f), x, £ € RY;

4. (Skew — symmetry)

/RN 7o f (y)g(y)dmy(y) = /RN F@)g(y)dmi(y), » €RY, f, g € S(RY).

The Dunkl translations can be defined on LP(my), 1 < p < oo in the distributional sense

due to the latter formula. Further,

|t @dmitn) = [ i), « €RY, e SEY) (4.1

The following formula for radial functions was first proved by Rosler [34] for Schwartz

functions, and was then extended to all continuous radial functions in [15]:

rf=0) = [ (FoA)e v miduato). .y RN (4.2)

where f(z) = f(||z[]) and

Atw, g, ) = el + 1l = 249 0 = /ol = Il + lly = nl”
For any n € co(G.x), we have
Alz, y, m) 2 minly — g . (4.3)
It follows from the symmetry of Dunkl translations that (see [21])
T_of(y) = 7y f(—2) = o f(~y), @, y €RY, f € Sraa(RY).
The Dunkl convolution of Schwartz functions is defined by
(Frg)le) = | TW)g(=y)dmy),
or can be written as
Fx0)w) = [ (B ED OB, dme(e)

The following are some basic properties of Dunkl convolution,

L Fy(f xg9) = Fif - Frg;

32



4.1 The case of a = 2 (the Dunkl case)d ~THE GENERALIZED TRANSLATION OPERATOR

2. Fi(f - g9) = Fi.f x Frg;

3. fxg=gx*f;

4. (fxg)xh=fx(g*h);

BoALf * gl x < f I kllglly 4o f € L), g € L2 ().

The following theorem (part ii) shows that the support of 7_, f obtained in [14, Theorem
1.7] (part i of the following Theorem) is precise when the multiplicity function & > 0. The
preciseness has been proved for characteristic functions by Gallardo and Rejeb [21] and we
extend the result to any nonnegative radial functions on L?(my) in the following theorem.

Here B(z,r) denotes the closed ball {y € RY : ||z — y|| < r}.

Theorem 4.1. If f € L*(my) and suppf C B(0,r), then for any x € RY
i).([14, Theorem 1.7])
suppt, f(— U B(gz, 1)

geG

it).([39]) If the multiplicity function k > 0 and let f be a nonnegative radial function on
L2<mk)7 Suppf = B(O,’f’), then

suppt, f(— U B(gx, r)
geG

Proof. ii). It suffices to prove that

suppt, f(— U B(gz, 1)

geG

Firstly, we will prove for continuous nonnegative radial functions. Suppose there exists

ay € |J B(gx, r), that is, there exists a g € G, ||y — gz|| < r, such that y & suppt.f (—),
geG
that is, there exists ¢ > 0, for any z € B(y, ¢),

0=raf(=2)= [ FOlall+ el =2 it

then

FO/ 2l + 11207 = 2 (2, n)) = 0, for any n € suppy.

By a result of Gallardo and Rejeb (see [21]), that the orbit of x, G.z, is contained in the
support of 11, if k > 0, for the above g we can select ) = gz, then f(z—gz) = f(||z — gz||) = 0.

33



4.2 The case of a =1 4 THE GENERALIZED TRANSLATION OPERATOR

For any z; € B(y — gz,¢), z1 + gr € B(y,¢), and so f(z1) = f(z1 + gr — gz) = 0, which
means y — gz ¢ suppf, and this leads to a contradiction to that suppf = B(0, ).

Then for any nonnegative radial functions f on L?(my), suppf = B(0,7), by the den-
sity of continuous functions with compact support B(0,r) in L*(B(0,7),my), there exists a
sequence of continuous nonnegative radial functions g, whose support is B(0,7), such that
f/2 can be approximated by g, with respect to L?-norm. So for any nonnegative smooth
function ¢ on RY with compact support, [ g, — [ %gp. If (suppp)®° N B(0,r) # &, then
[ fo > 0, where A° stands for the interior of A for any A C RY. So there exists a sufficiently
large natural number L such that [grp < [ fo. If (suppp)® N B(0,7) = &, then for any
neN, [gup= [ fe=0.So for any nonnegative smooth function ¢ on R" with compact
support, [ gre < [ fo. Thus g, < fa.e. and [ 7,91 ¢ < [ 7_..f - ¢ by positivity of Dunkl
translations on radial functions. Let D = (suppr_,f)¢, then D is the largest open set such
that 0 = [ 7_,f - ¢ for any smooth functions functions ¢ with compact support in D. If
¢ >0, then [7_,g1-¢ =0. Then by 7_,g;, > 0,

| B(gz, r) = suppr_og;, € D = suppr_, f. u
geG

Remark 4.2. This theorem does not hold for k > 0. For example, for any nontrival finite
reflection group G, we can take k = 0. Then suppt, f(—) = B(x,r) when suppf = B(0,r)
and is obviously not \J e B(gz, 1) since G is nontrival. We refer to [21, Ezample 3.1] for
more counterexamples.

4.2 The case of a =1

The generalized translation 7, for a = 1 satisfies the following properties:

(1). For every z,y € RY,
mf(x) =7f(y), f €S (RY). (4.4)
(2). For every y € RV,
/R S @@t @dr= [ F@)ng@ i@ dn fgeSE®Y).  @5)

Here the property (1) corresponds to 7, f () = 7_, f (—y) and (2) corresponds to the skew-

symmetry in classical Fourier analysis and Dunkl analysis.
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4.2 The case of a =1 4 THE GENERALIZED TRANSLATION OPERATOR

For any radial function f € S (RV), ie., f(z) = fo(||z]), (k) + 52 > 0, 7, can be

expressed as follows (see [5])

) — I (52 + (k)
RV L=

Vi ([ o (bl ol = VRO C) (1 - )

And so 7, is positive on radial functions and can be extended as a bounded operator to the

S

=2 du) (r). (4.6)

space of all radial functions on L? (RN Vg () dm) , 1 < p < 2. Further, if f is a nonnegative
radial function on L' (RN, 9 (z) dz), then

/ Ty f (2) Vg1 (2) do = f(x)Okq (z)da. (4.7)
RN RN
The authors in [5] also gave a special case of the formula for radial functions
Al N =1\ Xali+isl) T
7y (M) () = T (k) + =5 )e Vie (T 502 (W2AT T+ () ) (v)

(4.8)

Now we construct the metric space corresponding to the (k, 1)-generalized setting. For
x,y € RV in view of the expression (4.6) of (k, 1)-generalized translation operators, we define

a function d from RY x RY to R as

d(w.9): = \/llall + Iyl = VE (ATl + o)
= lall+ Iyl = 2/l T cos & > |/ - VTG

where 6 = arccos ||§§|C|’ﬁ;”, 0<0<m.

I

Proposition 4.3. ([40]) The function d(x,y) is a metric.

Proof. The symmetry property is obvious. For the positivity property, if d (x,y) = 0, then

|lz|| = |ly|| and \/||x|| — |||l cos & = 0 leading to 6 = 0. Hence z = y.

Then we turn to prove the triangle inequality. Let

Q= arccos M, 0= arccesﬂ, 7y = arccos M 0<a, B, y<m.

[yl (2]l 121 lyll”
Then we have 3 4 v > « from the triangle inequality of the spherical distance. Therefore,

B+
d(x,y)é\/l\ﬂﬁHH!yH—Q ]| ||yl cos 5
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4.2 The case of a =1 4 THE GENERALIZED TRANSLATION OPERATOR

It suffices to show that

B+
¢WM+WM—QVWMMAwS 5 <d(z,z)+d(zy).

Take the square of the above inequality and eliminate some items. It suffices to show the

following inequality,
.o B+ .o 27 gy
Iz lyll sin® == + [l |2l sin® 5 + [|2]] [lyll sin® 5 + 2 |z V][ [ly]| cos 5 cos 5

2
B B+ v B+
-+ﬂMHdeHWIWS§aE -+MWHVH4HMIwS§MB

2 2

gl g Bt~
22||z[l V= lHlyll cos 5 + 2|yl Vll=l llxll cos 5 + 2zl v/l [ly ]| cos =——

And the inequality is equivalent to

At} B 7\’
(VETTTsn 257~ VETRTsn -~ VFTTsn ) 20

Proposition 4.3 is therefore proved. n

Remark 4.4. i). For the one dimensional case, the metric d(x,y) recedes to

NERT

The ball with respect to this metric in this case was already used in [6] to define the generalized

d(z,y) o
, Ty

Hardy-Littlewood mazximal operator.

it). A continuous rectifiable curve between two distinct points does not necessarily exist with
respect to this metric. For example, if we take x = —1 and y = 1 for the one dimensional
case, then distance between x and y with respect to the induced length metric is no less than

n 2 o
sup Zi:l \/; = 00.
n

Proposition 4.5. ([40]) (R",d) is a complete metric space.

Proof. We will show that d(z,y) is equivalent to the Euclidean metric. If y,, — y with respect
to the Euclidean metric, then d (y,,y) — 0 obviously. If d(y,,y) — 0, then ||y.|| — ||yl

Denote 6,, = arccos ~22¥. Then

Ton o]
: On,
2yl ~ 2y Jim cos 2 =0.
S0, lim, o cos 6, = 1 and lim, .o (Yn, y) = ||y|°. Hence
i [y — ol = i/l + P — 2 {3 9) = 0. =
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4.2 The case of a =1 4 THE GENERALIZED TRANSLATION OPERATOR

The closure of an open ball in a metric space is not necessarily the closed ball. In [45]
the authors gave a sufficient but not necessary condition such that the closure of the open
ball is the closed ball. They showed that if the metric is weakly convex, i.e., for any two
different points x and y, there exists z # z,y, such that d(z,y) = d(z,2) + d(z,y). The
metric d we are concerned with is not weakly convex obviously but the closure of the open

ball with respect to this metric is still the closed ball.

Theorem 4.6. ([40]) The closure By (x,r) of the open ball By (x,r) = {y : d(y,z) <r}, r>
0 is the closed ball B(x,r).

Proof. Let y be a point RY distinct from z such that d(x,y) = r. We show that for any ¢ > 0,
there exists z € B(y,¢), such that d(z,z) < r = d(z,y). Let M,, x # 0 be the mapping
M, : RN — [0,400), y +— d(z,y) and L,(y) := M,(y)*. It suffices to show that the
function L, takes no minimum point on R" except at y = x. Notice that L, is differentiable

on RM\ {0}. We calculate the points such that

L, ; x| £ +
0:8 _ Y | HlIyH . i=1,2,--- N.
Oy vl V2=l Tyl + (=, 9))
By summing up the square, we get
2 =2 d z; = ty;, wh =2- llz]
V2 (el iyl + (o, 9) = 21lyll and ;= tys, where t =2 =207

Thus 2y; = |t| y; + ty; and y = x. For the point y = 0, consider the function

el + Tyl = V2 (ol o] + 21)

| + vy — \/2<||$|| + 1)1, 1h >0
2l —y1 — /=2 (|lzl| — 21) 1, 31 <O0.

L(y1) :== Ly (11,0,...,0)

It does not take minimum at y; = 0 obviously. Therefore, L, takes no minimum point on

RY except at y = z. 0

The metric space (RN , d), rather than the standard Euclidean metric space, is the nat-
ural metric space corresponding to the (k, 1)-generalized setting when metric is involved due
to the expression of the (k, 1)-generalized translation operators. In the following theorem we

give a characterization of support of the (k, 1)-generalized translation of a function supported

in B(0,r) = {yGRN : \/M§r}.
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4.2 The case of a =1 4 THE GENERALIZED TRANSLATION OPERATOR

Theorem 4.7. ([40]) Let f = fo (||||) be a nonnegative radial function on L? (RN, 9y, ; (z) dz),
supp f = B(0,r), then
suppr.f = | J Blgz,7).

geG
Proof. We extend the formula of (k, 1)-generalized translations on radial Schwartz functions
(4.6) to all continuous radial functions on L? (RY, 9y (z) dz) first. The proof goes similar

to the Lemma 3.4 in [15]. The only difference is to take the set A, in the proof as

An= Anly) = {w e RY 127 < |Vl = VIl < VIl + VIl < 2}

for n € Nand n > £ [log [ly|| /log 2]+ 1, since

VIl = VIRl < el + iyl = V2T T+ 09w < /Il + /Tl

for n € co(G.x) and u € [—1, 1].

Then we prove the theorem for continuous nonnegative radial functions. For the proof
of suppr,f C U eq B(gx,7), from the radial formula (4.6) of (k,1)-generalized translations
and notice that for any 7 € co(G.x) and u € [—1, 1],

\/Il-rll +lyll = V2l lyll + (0, 9))u > min d(gz,y), (4.9)

we have 7, f(y) = 0 for y € (UgGGB(ga:,r)) if suppf C B(0,7). For the converse part
UgeG B(gx,r) C supp 7. f, we will show that UQGG Bo(gz,r) C supp 7,.f first. Suppose there
exists a y € Uy Bolgr,r) for which y & supp 7, f. Then there exists € > 0, such that for

any z € B(y,e), we have z € |J,.- Bo(gz,r) (that is, there also exists a ¢ € G such that

d(z,gz) <r)and
o TOFEw)
L[ g (el el = VTR G zu) (1 =) 5 dudi o).
Thus

o (Nell + 112l — V2T = + . 2)u) = 0

for any n € supp p, and u € [—1,1]. Then from a result of Gallardo and Rejeb (see [21]),

that the orbit of z, G.x, is contained in supp ., we can select u = 1 and n = gz for the above
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4.2 The case of a =1 4 THE GENERALIZED TRANSLATION OPERATOR

g. Then we get fo (d (gz, 2)2) =0 for all z € B(y,¢). But d(z,gz) < r, which contradicts to
that supp fo = [0,72]. Then from Theorem 3.4, we get Uyee Blgz,7) C supp 7. f.

The conclusion for all nonnegative radial function on L? (]RN Uk () dx) can then be
derived from the density of continuous functions with compact support B(0,7) in L*(B(0,r),
Vi1 (x) dr) and the positivity of the (k, 1)-generalized translations on radial functions as in

the proof of Theorem 4.1. n
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5 CALDERON-ZYGMUND THEORY

5 Calderon—Zygmund theory

We recall the Calderén—Zygmund theory on general homogeneous space first. Let (X, d)
be a metric space. Denote B(z,r) to be the ball B (z,r) :={y € X : d(z,y) <r} forz € X.
If there exists a doubling measure m, i.e., there exists a measure m such that for some

absolute constant C,
m (B (z,2r)) < Cm (B (x,7)), Yz € RN, r >0, (5.1)

then (X,d) is a space of homogeneous type. The Calderén-Zygmund theory on a space of

homogeneous type (X,d,m) says that for f € LY(X,m) N L?*(X,m) and \ > Mﬂg), there

exists the Calderén—Zygmund decomposition f = h + b with b = > ;bj and a sequence of
balls (B(y;,7;)); =(B;); such that for some absolute constant C,
(1) Al < CX;
(i) supp(b;) C By;
(i) / by (2)dm(x) = 0;
B;
(V) 1150l 2 (x my < € Am(By);

A1l 21 o m)

(v) Y m(B;) <C S

From the Calderén—-Zygmund decomposition one can deduce that for a bounded operator S

on L*(X,m) associated with kernel K (x,y), if K (z,y) satisfies the Hormander type condition

/ K (e, 9) = Ko, o)l dm(a) < C. yogo € R,
d(@,y)>2d(y,yo)

then the operator S can be extended to a bounded operator on LP(X,m) (1 <p <2) and a

weakly bounded operator on L'(X,m), i.e.,
1Sfl, < Gllfll,, f1<p<2,
and

1711,
-

mix: [S(f)x)] > A} <Gy

We refer to [13, Chapter III] for this theory.
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5 CALDERON-ZYGMUND THEORY

We adapt the Calderén-Zygmund theory on homogeneous space to the context of (k, a)-
generalized Fourier analysis for a = 2 (Dunkl setting) and a = 1, respectively. For a = 2,
such adaption was already given in [2], and for a = 1, the adaption was contained in my
paper [40].

We define the distance between the two orbits G.z and G.y as dg (z,y) = I;leiél d(gx,y),
where d (z,y) denotes the metric corresponding to the (k, a)-generalized Fourier analysis for
a=2and 1. For a = 2, d(z,y) denotes the Euclidean metric, i.e., d(x,y) := ||z — y||, and for
a=1,d(xy) \/HSUH + lyll = V2 ([Jz] lyll + (x,y)), as was studied in the last chapter.

Denote dmk,a( ) = Ukq (x)dr. We then show that the metric spaces (X, d,my,) for

both a = 2 and a = 1 are of homogeneous type. For a = 2, it was already shown in Section

2.2 that the measure is doubling with respect to the Euclidean metric. For a = 1, we consider

the ball B(z,r) with respect to the metric d(x,y) \/HxH + lyll = /2 (=] Jy]] + (=, v)).

The measure my, ; satisfies the scaling property
M1 < (tx \/_7“)) = ¢k +N_1mk71 (B (z,7)), t>0. (5.2)

From polar coordinate transformation z = rw, r > 0, w € S¥~!, we have

mes (B = / I 2 40h (1) d
’ SN=1 J(0,4+00)
pHllzll—~24/pllal] cos §<r2

u—f / / (k)+N)— 3duhk( )dw
N-1.J(0,+00)

u2+||x||— 2u ||a:\cosg<7“2
N e P
E(zw,r)

(@w) o 4 [lzfw
[ Iz + ]| wll”

and F (x,,r) denotes the Euclidean ball centered at z,, with radius r. For the one dimensional

where

6 = arccos

case, this expression coincides with that of the measure of the ball in the proof of Lemma 2.2
n [6]. Soif 2(k) + N —2 > 0, then for any z € RY and r > 0, my; (B (z,r)) is finite and
my (B(tz,r)) is nondecreasing as t grows. It is then easy to check that my; is a doubling
measure when 2 (k) + N —2 > 0 combining (5.2). Therefore, for a = 1 and 2, (RY,d, my,) are
both spaces of homogeneous type, and for all f € L! (RN, Vgo () dx) N L? (RN, Vo () d:c)
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5 CALDERON-ZYGMUND THEORY

and A > 0, there exists the corresponding Calderén—Zygmund decomposition of f satisfying
(1)~(v).

Now we are ready to give the Hérmander type condition adapted to (k,a)-generalized
setting for a = 1 or 2. The classical Hormander type condition on a homogeneous space in
[13, Chapter III, Theorem 2.4] no longer holds in the (k, a)-generalized Fourier analysis, and
so we need a modification via the distance of orbits dg (x,y). The proof is borrowed from

that of Theorem 3.1 in [2].

Theorem 5.1. (See [2] for a =2 and [40] fora=1) For 2(k)+ N+a—3>0,a=1 or2,
let K be a measurable function on RY x RN\ {(x,g.qz) xeRN, g€ G} and S be a bounded
operator on L? (RN,ﬁkya (x) dx) associated with the kernel K such that for any compactly
supported function f € L? (]RN,QS‘;W (x) d:c),
S (@)= [ K(2,y)f(y)Ira(y)dy, Gansuwp f=2.
R

If K satisfies
/ 1K (z, y) — K(x, y0)| Vra () dz < C, y,y0 € RY,

then S extends to a bounded operator on LP (]RN,ﬁk,a (x) d.:l:) for 1 < p < 2 and a weakly
bounded operator on L' (RN, Uy, () dz).

Proof. We will show that S is weakly bounded on L! (RN Vka () dz) and conclude by
Marcinkiewicz interpolation. The proof is similar to that of Theorem 3.1 in [2] but we
repeat it here for reader’s convenience.

The proof consists in showing the following inequality on weakly L!'-boundedness for

f=hand f=0:

\ TP
pA(S() = i ({r € BY: 1S()(@)] > 51) < €~ g
By using the L2-boundedness of S, we get
4 C
p(S0) < 55 [ 180 Pdmen() < 55 [ @) Py (a). (5.4)
From (7) and (v),
/U (@) dma(x) < OXmia(UB;) < OANflls (v g or0s)- (5.5)

J
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5 CALDERON-ZYGMUND THEORY

Since on (U; B;)", f(x) = h(z), then

[ @) Pdmea(e) < NS o) (56)
(U;Bj)° ’

From (5.4), (5.5) and (5.6), the inequality (5.3) holds for h.
Next we turn to the inequality (5.3) for the function b. Consider

B = B(y;,2r; ); and Q; = U 9.B;.

geqG

Then

pa(S(0)) < mia (U@ ) + i { e (U@) 150> g} .

Now by (5.1) and (v)

T
mia(JQ5) 161D mea(B) < O3 mia(B) < O — (= el )
J j F

Furthermore, if z ¢ @7, we have

de (z,y;) > 2d(y,y;), vy € Bj.

Thus, from (%) ,(ii), (iv) and (v)
/ 1S(8) (@) dma(x)
(UQy)
S Z/ " |dmka( )
_ Z /
- ?[Qpc

> L[ 1) = K dmeae)imeat)

> R / (K (2, ) — K (2, y5) ldmpa (2)dmy ()
RN da (z,y;)>2d(y,y;)

< C Z 1011 1 (2 9, o (@)
J

K (z,y)b;(y )dmkva(y)’ dmyq(x)

/RN bi(y) (K(x, y) — K(x, yj))dmkﬂ(y)‘ o (@)

IN

IN
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5 CALDERON-ZYGMUND THEORY

< O Al @ oy o @ya)
Therefore,

11 5 e )

* C. )\ 2
Mi.a {90 € <L]_JQ]‘) $15(0) ()] > 5} < X/(uQ;)C 1S(b)(x)|dmyq(z) < C 3

This achieves the proof of the inequality (5.3) for b. ]
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6 IMAGINARY POWERS

6 Imaginary powers of the (k,a)-generalized harmonic oscillator

We will define and investigate the imaginary powers (—Ak,a)fw ,o € R of the (k,a)-
generalized harmonic oscillator Ay, = ||z[*™* Ay — ||#]|* and prove the LP-boundedness
(1 < p < 00) and weak L'-boundedness of such operators for a = 2 and 1 respectively.
We will use the Calderén—Zygmund theory developed in the last Chapter to prove such
results. For the case of a = 2, the result was already proved for G = Z5 in [32]. For
general finite reflection groups G in this case, the proof goes similar to that of the LP-
boundedness (1 < p < oo) and weakly L!'-boundedness of the Riesz transforms related to
the Dunkl harmonic oscillator in [1], using the estimate of the derivative of integral kernel.
For the case of a = 1, however, the method on the estimate of the derivative can no longer
be used due to the metric corresponding to the context of (k,1)-generalized analysis. For
a general metric space, a well-known definition of differentiation by Cheeger [10] is given
via integration on continuous rectifiable curves. Unfortunately, as Remark 4.4. ii shows,
rectifiable curves between two distinct points do not necessarily exist (or in other words, the
induced length metric could be infinite) with respect to the metric corresponding to (k, 1)-
generalized analysis and derivatives on the metric space cannot be defined. We will make
use of an estimate of difference quotient analogue in substitute of estimate of derivative. The
result and proof are contained for this case in my paper [40]. We denote C, C;, Cy to be
constants varying from line to line and b, ¢, by, by to be some positive absolute constants in
the following.

From the formula

= coth z

tanh Z +
2 sinh 2

we reformulate the reproducing kernel Ay, (z,; z) of ea®ka from (2.13), (4.8) and (4.6) as

exp(—5([=]1* + lyl|) tanh 5) /1 0
Ak,a (g;7y,z) — : S 2 7 (6 asmhz” I > ((_]_)
sinh(z)™ a
exp(— (=1 + [ly[|*) tanh 5)

sinh(z) A=

az) (6.1)
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6 IMAGINARY POWERS

k)

(k)

X ( 1 e thz(
Vel

¢~ zamwz (Il +lwll® ~2(, y>)> () (a =2).

><

el ol 2T Ele) (1 2y 892 du) (@) (a=1),

(T EH
u_|_

(6.2)
Let z=at, t > 0. For 0 < t < 1, sinh at behaves like at. So
1 b” Ha 2
A (03 0)] £ Cgmemry (¢H117) (1)) (6.3)
For ¢t > 1, sinh at behaves like €. So
a 2
Ao (2,5 at)| < Cem@RHNFDin () (1)ag), (6.4)

From (2.6) we can define the imaginary powers (—Aq) 7,0 € R for f € L*(RY,
Vi.o (x) dz) of the (k,a)-generalized harmonic oscillator —Ay , naturally as
(~2)™7 (D) (@) = 3@ (2 M + ) (L.2005) ¥ @). (65)
lm,j
It is obviously a bounded operator on L? (R, 9y, () dz) from its spectrum.

In what follow we put
K (z,y) = / Ao (z,y; at) t71dt. (6.6)
0
We will show that the integral (6.6) converges absolutely for @ = 1 or 2. Based on the formula

1 o ,
/ e Mo ldt, N> 0
0

)\—ia —
[ (io)

and (6.5), (2.9), (2.10), we can write (—Ayq) " in the following way (such definition goes
back to [32] and [38])
1 > [7ANR o—1
a tio-1at
i e @

Clk,a ioc—1
— A : . .
T (io_)/o 1o dt RNf (y) Ao (2,95 0t) Vg o (y) dy (6.7)

(_Ak,a)_w (f) (z) =

We will observe that this integral converges absolutely for all compactly supported functions
f € LA RN ¥y, (x) dx) with supp f N G.z = @. And for compactly supported functions
felL? (]RN,"&‘M (x) dx)7 G.xNsupp f = 9, (—Ak,a)_w satisfies

(=00 (1) @) = ity K @) F () Dra (v) dy
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6.1 The case of a =2 6 IMAGINARY POWERS

by changing the order of integration. We will show that the kernel K (z,y) of (—/Ayq) " for
a =1 or 2 satisfies the condition in Theorem 5.1 to prove the following main theorem.

Theorem 6.1. ([40]) For 2{(k) + N +a —3 > 0, a = 1 or 2, the imaginary powers
(—Ak,a)_w,a € R of the (k,a)-generalized harmonic oscillator —Ay, are bounded opera-

tors on L? (RN, ¥y, (z) dz), 1 < p < 00, and weakly bounded on L* (RN, 9y, (z) dz).

In the following two sections we will prove the above theorem for a = 2 and 1 respec-

tively. We will show the convergence of the integral (6.7) first.

6.1 The case of a =2

Lemma 6.2. For all v,y € RN, a =2, y & G.x, the integral (6.6) converges absolutely and
1
dG (.’L' y)2<k>+N :

K (z,y)| <C
Proof. From (6.3), (4.2), (4.3), we have

1

10— 1 b2 1
/ }Ak2 x,y;2t)t 1‘dt<C’ <k>+%7y <e il H)(_ﬂ;dt

b 2
< — 5 (JallP+ 1P -2(n9))
C/]RN/O t"“>+ T didyz (1)

1 o 1 b
< / dpi, (n)/ ————e sds
(k)+& (k)y+5+1
B (lell® + lyl* =2 (m,)) 0 S
1 1
<C / dpz () < C
de (,y)" " e dg (,y)* "

And from (6.4), (4.2), (4.3),

/OO | Ak (2, y;2t) 77| dt < (J/ e~ 2k ( ]| ||2> dt
1 1
<

<cr, ( | ||>( 2) C/ Aty () e~ote)?

1
< Cebidc(@y)® <C ) H
dG’ (.’17, y)2<k>+N

Thus the integral (6.7) for a = 2 converges absolutely for all compactly supported
functions f € L? (RN, hy. () dx) with G.z Nsupp f = &, because
ot A $2t)| ha (y) dtdy < C hy. (y) dy.
Lo 1 Mo 20 e )y € o 1 0 0y

We need also an estimate of the partial derivative of the integral kernel Ay (z,y; 2t)

before the proof.
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6.1 The case of a =2 6 IMAGINARY POWERS

Lemma 6.3. For 0 <t <1, we have

) . < - - i _ )
‘ ayz <x7 Y; 2t)‘ — t<k>+1\7+1 Ty (e ) ( x)

Proof. From (6.1), we write

8Ak2 1 1 2 1 2 2 hit
2 (z,y; 2t) = —N<—ty (e sora Il ) (ar)e~ 3 Nall Pyl taney oy g
Ay sinh(2t) %+ %
e bl ) tanh ey (e (el P20 L ( o ))
© k<6 o 2sinh 2t \V’ ();) ) ()
1
- (L +1L).
sinh(2t)<k>+% (i + I2)

Notice that sinh 2¢ behaves like 2t for 0 < ¢ < 1. For the first part [y, along with the

fact that ue=2%" is a bounded function, we have
b
1] < O, (6—%”.\\2) (—2)

For the second part I, we have

1

sy Y — il dpts
S nh ol [y — 1| dpea(n)

|| < / o~ zemiar Izl +lyl* ~2¢n.))
co(G.x)

ly — 0l dp(n)

< / efm(HI||2+H?/||2*2<777?/>)6*m(H??||2+Hy||2*2<777y>) -
co(G.x) 2 sinh 2¢

1 L ) ,
< C —/ e~ wemnae (127 +wIP=20.9) g
- sinh 2t co(G.x) H (77)

< OQ%T_?J (e‘bTQH'W) (x).

Thus

s ] e () 1)

yi Tty
C c 2
- 1
= L+ Y (6 ) (=2). -
We can then start the proof of Theorem 6.1 for a = 2.
Proof of Theorem 6.1 (for a = 2). We only need to show that the operator (—A\5) ™" is LP-
bounded for 1 < p < 2 and weakly L!-bounded since it is symmetric on L? (]RN ,Uko () dm)

and its LP-boundedness for 2 < p < oo can be derived from the duality argument. From

(6.6), we write
1 o0
K (z,y) = / Ao (z,y;2t) 7 dt +/ Apo (z,y;2t) "7 dt
0 1
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6.1 The case of a =2 6 IMAGINARY POWERS

=K (2,y) + K@ (z,9),

where z,y € RV, y & G.2. We claim that K (z,y) satisfies the condition in Theorem 5.1.
For the second part K (z,v), by (6.3), (4.1) and the Property 2 of Dunkl translations,

/RN ‘K z,Y }ﬁkz )dz < C’/RN/ k)+N)t - ( *bH'H) (x)lhk (z) dtdz

1
_ C/ / kE)+N)t —beH hk( )d{E
. t

gc/ e~ (2kHN t—dth’.
1 t
Then we have
/ ‘K@)(q:,y) K (z, Yo)| b (x d;z:<2/ ‘K( (z,y)| hi (z) dz < C.
da(z,y)>2/ly—yoll RN
For the first part KO (z,y), from Lemma 6.3,

1
1
|KW (z,y) = KW (2, y0)| < / [Ar2 (2, y;2t) — Apa (2, y0; 21)] Zdt

<=l | dt/
_ - =S (—
<Clly -l [ w«w%dt / (&1 ()b,

where o = go + 0(y — yo). When da(z,y) > 2 |ly — yo|, we have

8Ak 2

(x yg,;2t)‘ de

de(z,y0) = da(z,y) = lly = yoll > lly — woll -
Then from (4.2) and (4.3), we have
. (ﬁn-n?) (—yo) < 7a (675<u-||+||y—you>2> (~v0).

Therefore, from the Property 2 of Dunkl translations and (4.1),

/ ‘K()(x y) — KW (x,y0)| b () da
de (2,y)>2[ly—yol|

1
< Clly - wol / / (/ (eft”'*“yy°>)<—x>hk<x>dx)de

c _ 2
= C |y - yOH/ proress / e~ &I () d
RN

1
1 c
=Cly — wol| / TQ(kHN_ldr/ .z e~ w (r+ly=vol)? gy
0 0

2
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6.2 The case of a =1 6 IMAGINARY POWERS

k)+N-1 o] 1 .
<Cl|y- yOH/ dr/ — e nudu
r+¢w yID BN o u

1
gom—%w/ dr=C.
o (r+1ly—wl)’

The proof of Theorem 6.1 is complete for a = 2. a

6.2 The caseof a=1

Lemma 6.4. For all 2,y € RN, a = 1, y & G.x, 2(k) + N —2 > 0, the integral (6.6)

converges absolutely and
1

’K (x,y)| < CdG ([L’ y)2(2<k>+N71) )

Proof. From (6.3), (4.6), (4.9), we have

! : L | b 1
4 pio—1 =z Z
/0 ‘Ak,l (I,y,t)t ’dté C/O WTZJ (6 > (CC)tdt
<c///252 o~ (lelleloll= /2T rT) gy
RN

(1= u2) 9 dude, ()

1
1
SC/R;NdM‘T <77)/_1 ( >2<k‘>+N1
k

(1 + [yl = /2 ([ Iy + (7))

: (1 - u2)% 2 du /000 82(k1>+N6_2d8
<C 21 _ / dpts () /1 (1 _uz)%+(k>—2 Ju
do: (2,9) REFN=D) [y »
<C !

T da (O

And from (6.4), (4.6), (4.9),

< Cry (eI (2)

1 Ny
<C dpiy (?7)/ (1—u2)2+<k> 2 du - e bdc@y)®
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6.2 The case of a =1 6 IMAGINARY POWERS

Thus the integral (6.7) for a = 1 converges absolutely for all compactly supported
functions f € L? (RN, 0,1 (z) dz) with G.z Nsupp f = &, because

oo 1
/ / [#771F (9) A (2, 3 )| D () dtdy < C / e | )91 () dy.
RN JO R

N dG (II?, y)
We can then start the proof of Theorem 6.1 for @ = 1. It begins with the following two

lemmas. The first one is an enhancement of the triangle inequality of the metric d(z,y).

Lemma 6.5. Foru € [—1,1], n € co(G.z), and z,y € RY,

‘\/Hw\l +lyll = V2 (2l lyll + (0, 9))u — \/II@“H 2l = V2l 2l + (7, 2))u| < d(y,2).

Proof. 1f n € co(G.x), then there exists a rotation transformation 7" such that n = kT'(z), 0 <

k < 1. So we assume 1 = kz in the proof since ||T" (x)|| = ||z||. Then

VAT G = 2Tl 5 (04 keosu

V2 (llz 2l + (0, 2))u = 2¢/]|] IIZII\/% (1 + K cos B)u.

Denote by

1 1
ap = 2arccos \/5 (1+ kcosa), [ = 2arccos \/5 (14 kcosf3).
We assert that
| — Bl < - (6.8)

Here o, # and 7 are given as in the proof of Proposition 4.3.

Assume ||z|| = |ly|]| = ||z]| = 1. Then (6.8) is equivalent to
L—{y.2)" = K {2,9)" — K {z,2)" + 2k* (2,) (y. 2) (2, 2) 2 0.
It suffices to show that
k(1 - (y, z>2) — k2 (z,y)? — K2 (2, 2) 4 282 (&, y) (y, 2) (x, 2) > 0.

And it is equivalent to

det <y,ZL‘> 1 <y7 Z) ZO
(z;2) (z,9) 1
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It is the determinant of the Gram matrix of the three vectors z, y, and z. Thus (6.8) is
proved.

From assertion (6.8), similar to the proof in Proposition 4.3, it suffices to show that

(6753 ﬁk
‘\/Ilﬂfllellyll—2 ||56||||y||u0087—\/II@“IIﬂLIIZII—2 [} |2 cos =~

oy — P
< 1ol + 120 = 2 T =T cos 2%
And it suffices to show
Qy Bk o Ok — [P
ol (1w cos® 5 )+l el (1w cos ) o el ol i 5
Br oy — B
422l /T Tolfwcos 2 cos
Br O o, — B, O
2ol /T Tl os 2 cos %% + 2y /[T Tl cos 24— % cos %
ay — P B 7
> 2] /Tl Tl eos ™2 42yl /T TiaTfwcos % + 212l T T cos 2.

The above is equivalent to

2
. O . DB .o — B
(\/Hxll lyllusin == = v/l |2llusin = = /]| [lyl| sin —; ) + 2l (lyll + [1=0) (1 = u?)
ag — B
> 2|zl Izl lyll (1 = u?) cos 5 -

The Lemma is therefore proved. O]

The next lemma is an estimate of the difference quotient analogue. We can no longer
make use of estimates of partial derivatives because we cannot define differentiation on the
metric space corresponding to (k, 1)-generalized analysis for the failure of the existence of

continuous rectifiable curves between two distinct points (see Remark 4.4. ii).

Lemma 6.6. For 0 <t <1, y # yo,

Apa(z,y5t) — A (2,903t C e e
ko ( d)(y yok)l( 0; ) SthN% (Tyo (e Al H)(x>+7—y (e Al H)(x)).

Proof. From (6.1), we write

Ay (,y5t) — Ay (2,903 1)
d (ya yO)
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6.2 The case of a =1 6 IMAGINARY POWERS

. ¢ tanh S (lel+ ) - <e—sin—it||-||) (y) — e tanh Sl +lvl) - (e—m—itn-u) (%)
- (sinh ¢)2R+N-1 ( d (Y, yo)

e tanh £(llel+lvl) 7, (Kﬁwn) (o) — e— tanh (el l) 7, (Kmu.n) (y0)>
_l’_

d <y7 yO)
1
- (sinh ¢)2(k)+N-1 (

Notice that sinh ¢ behaves like ¢ for 0 < ¢ < 1. For the second part I, if ||y|| = ||vol|,

L+ 1).

then Ir = 0. If ||y|| # ||yoll, then from the inequality

—tanh £-22 — tanh £ .22
e 21 — e 32 t B .2
< mazx |2tanh = - ge~ P27 < C’Q\/E,
T — T2 T 2
we have
—tanh 3 (2]l +lyll) _ o~ tanh g (llz(l+]lyoll)
— i ¢
|]2| — Tx € sinh t (yo)
d (yv yO)

—tanh £y _ .~ tanh &lyo]

VIl = /Tyl

e

<7, (e‘siTlhf”'”> (30) -
< CoV/tr, (e_b%”'”> (vo)-

For the first part I;, from the inequality

2

1 2 1
e sinh ¢ %1 — @ sinh £ T2 2 1 2
S max - . xe sinht z
T1 — X zo<a<zi |sinh ¢
2 1 2

1 g2 1 4
e 2sinh t 72 Mmax . e 2sinht

<
V/sinh ¢ T2ST<T1

_0 2
S Cl_e L2 T > X,

vsinh ¢

along with Lemma 6.5 and (4.6),

1] < Cretann §(el+lyl)

1| = s (el =20l +Cau) = s (el +loll—y/2(TellTvoll + o0
Vi /
-1 d(yvyO)

[z

(=) du) ()

< 1~ tanh £l 1)

TVt /RN </{ue[—1,u:y||—\/2<||z||||y||+<n,y>>u>||yo||—\/2(||x||yo+<n,yo> u}
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6.2 The case of a =1 6 IMAGINARY POWERS

ozt (el o= /2Tl I+ (0w (1—u )%+<k>—2 Ju

+ / o~z (el +lyl— /20yl 0)w)
{uel=1,13: 1yl /2l Tyl+ (7)) u<llvoll— /2Tl Tl +r.yo))e

-(1—u) 3= du)d,ux()

< % <Ty0 <e_b71“'H) () + 7y (e_le”'”> (a:)) :

Thus
Apa (z,y5t) — Mg (2, yo; Cy ey, ey,
e s (i ) (e 0 1) )
C c c
< et (o (7 @) 7y (1) (@) 0

Proof of Theorem 6.1 (for a = 1). We only need to show that the operator (—A\; ;)" is LP-
bounded for 1 < p < 2 and weakly L!-bounded since it is symmetric on L? (RN Uk () dm)
and its LP-boundedness for 2 < p < oo can be derived from the duality argument. From

(6.6), we write

1 oo
K (ZE, y) = / Ak71 (m,y;t) titf—ldt + / Ak,l (:L‘, Y t) tia—ldt
0

1
=KW (z,y) + K@ (2,y),

where z,y € RV, y & G.x. We claim that K (z,y) satisfies the condition in Theorem 5.1.
For the second part K® (z,y), by (6.3), (4.4) and (4.7),

/ |K® (2,y)| 931 (z) dz < (J/ / BN=1)t . (e=bH)) (x)lﬁkJ (z) dtda

_ / / o~ @R +N-1)t bl L i (a) d
RN

(J/ e~ (2(R)+N- dt<C
1

IN

Then we have
/ }K(Q)(x,y)—K()x y0|19k1 dm<2/ ‘K( xy|19k1 ydx < C.
de(z,y)>2d(y,y0) RN
For the first part K1) (z,y), from Lemma 6.6,
1

o) 1) . 1 L

{K ("L‘ay) - K (xayO)} < |Ak,1 ({L‘,y,t) _A/ﬁl (Jf,yo,t)lgdt
0

o4



6.2 The case of a =1 6 IMAGINARY POWERS

< Cd(y,yo)/o m (74 (e T () + 7, (e7 ¥ () dt.

When dg(z,y) > 2d(y,yo), we have

da(z,y0) > da(z,y) — d(yo,y) > d(y,y0), da(z,y) > d(y, yo).

Then from (4.9), for any u € [—1,1] and 7 € co(G.x), we have

\/IIZEH +lyoll = V2 Ul lyoll + (1, 90))u > de(, yo) > d(y. yo),

\/Hxl\ +llyll = V2 el llyll + (. y))u > de(z.y) > d(y, yo).

So

7 (e7H) (yo) < 72 (e”@(m*d(%%)f) (o), 7= (e M) (y) <7 (e—;t( -||+d<y,yo>)2> ().

Therefore, from (4.4) and (4.7),

/ KO (2,) = KO (e, go)| 05,1 (2) da
da(x,y)>2d(y,y0)
< Cdyge) | ! o (VT 00) (20, (2) da
+/ 7 (e_éft( ||~||+d(y,yo)> )(55)1916,1 (z) d.ic) dt
RN

b & (vl +dwan)”
:C’d(?/ayo)/o Mdt/RN 2¢ 4 Vg1 () do

o0 1

2 c 2
SCd(y,yO)/ T’2<k>+N_2d7’/ Meu(ﬁm(y,yo)) gt
0 0

> r2(k)+N-2 0 )
< Cd(yjyo)/ . dr/ e fidu
0 (VT dy,y) 2N o w2
°° 1
< Cdy.) | dr=C.
0 (\/F_‘_d(yayO))g
The proof of Theorem 6.1 is complete for a = 1. .

95






References

[1] B. Amri, Riesz Transforms for Dunkl Hermite Expansions, J. Math. Anal. Appl., vol.
423, no. 1 (2015), 646-659.

[2] B. Amri, M. Sifi, Riesz transforms for the Dunkl transform, Ann. Math.Blaise Pascal
19(2012), no. 1, 247-262.

[3] R. Askey, Orthogonal polynomials and positivity, In: Studies in Applied Mathematics,
Wave propagation and special functions, STAM (1970), 64-85.

[4] S. Ben Said, On the integrability of a representation of s[(2,R), J. Funct. Anal.,
250(2007), 249-264.

[5] S. Ben Said, L. Deleaval, Translation Operator and Maximal Function for the (k,1)-
Generalized Fourier Transform, J. Funct. Anal., vol. 279, no. 8 (2020), 108706.

[6] S. Ben Said, L. Deleaval, A Hardy-Littlewood Maximal Operator for the Generalized
Fourier Transform on R, J. Geom. Anal., 30, 2273-2289 (2020).

[7] S. Ben Said, T. Kobayashi, B. Orsted, Generalized Fourier transforms Fj ,, C. R. Math.
Acad. Sci. Paris, 347[19-20](2009), 1119-1124.

[8] S. Ben Said, T. Kobayashi, B. Orsted, Laguerre semigroup and Dunkl operators, Com-
pos. Math., 148(4)(2012), 1265-1336.

[9] T.P. Branson, L. Fontana, C. Morpurgo, Moser-Trudinger and Beckner-Onofri’s inequal-
ities on the CR sphere, Ann. Math. 177 (2013), 1-52.

[10] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom.

Funct. Anal. 9 (1999), 428-517.

[11] D. Constales, H. De Bie, P. Lian, Explicit formulas for the Dunkl dihedral kernel and
the (k, a)-generalized Fourier kernel, J. Math. Anal. Appl. 460(2) (2018), 900-926.

[12] O. Ciaurri, L. Roncal, S. Thangavelu, Hardy-type inequalities for fractional powers of
the Dunkl-Hermite operator, Proc. Edinburg Math. Soc.(2018), 1-32.

57



[13] R. R. Coifman, G. Weiss, Analyse Hamonique Non-Commutative sur Certains Espaces

Homogenes, Springer Berlin Heidelberg, 1971.

[14] J. Dziubariski, A. Hejna, Hormander’s multiplier theorem for the Dunkl transform, J.

Funct.Anal. 277(7)(2019), 2133-2159.

[15] F. Dai, H. Wang, A transference theorem for the Dunkl transform and its applications,

J. Funct. Anal. 258.12(2010), 4052-4074.

[16] F. Dai, Y. Xu, Approximation theory and harmonic analysis on spheres and balls, New

York: Springer, 2013.

[17] C.F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z., 197
(1988), 33-60.

[18] C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans.

Amer. Math. Soc., 311, no. 1(1989), 167-183.

[19] C.F. Dunkl, Integral kernels with reflection group invariance, Can. J. Math. Vol.43
(1991), 1213-1227.

[20] C.F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric
Functions on Domains of Positivity, Jack Polynomials, and Applications, Proceedings of
an AMS Special Session Held March 22-23, 1991 in Tampa, Florida (Vol. 138, p. 123).

American Mathematical Soc..

[21] L. Gallardo, C. Rejeb, Support properties of the intertwining and the mean value oper-
ators in Dunkl theory, Proc. Am. Math. Soc., 146.1(2017), 1.

[22] D. Gorbachev, V. Ivanov, S. Tikhonov, Sharp Pitt inequality and logarithmic uncertainty
principle for Dunkl transform in L2, J. Approx. Theory., (2016), 109-118.

[23] D. Gorbachev, V. Ivanov, S. Tikhonov, Pitt’s inequalities and uncertainty principle for
generalized Fourier transform, Int. Math. Res. Not., Issue 23(2016), 7179-7200.

[24] D.V. Gorbachev, V.I. Ivanov, S. Tikhonov, On the kernel of the (k, a)-generalized Fourier
transform, arXiv:2210.15730.

98



[25] R. Howe, The oscillator semigroup, The mathematical heritage of Hermann Weyl
(Durham, NC, 1987), 61-132, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Provi-
dence, RI, 1988.

[26] T. Kobayashi, G. Mano, The inversion formula and holomorphic extension of the mini-
mal representation of the conformal group, Harmonic Analysis, Group Representations,
Automorphic Forms and Invariant Theory: In honor of Roger Howe, (eds. J. S. Li, E.
C. Tan, N. Wallach and C. B. Zhu), World Scientific(2007), 159-223.

[27] T. Kobayashi, G. Mano, The Schrodinger model for the minimal representation of the
indefinite orthogonal group O(p, ¢), Mem. Amer. Math. Soc., 213(1000), 2011.

[28] N. N. Lebedev, Special functions and its applications, Dover, New York, 1972.
[29] J. McCully, The Laguerre transform, SIAM Rev. 2 (1960), 185-191.

[30] H. Mejjaoli, K. Trimeche, On a mean value property associated with the Dunkl Laplacian
operator and applications, Integral Transforms Spec, 12:3(2001), 279-302.

[31] A. Nowak, K. Stempak, Riesz Transforms for the Dunkl Harmonic Oscillator, Math. Z.,
262 (3)(2009), 539-556.

[32] A. Nowak, K. Stempak, Imaginary Powers of the Dunkl Harmonic Oscillator, Symmetry
Integr. Geom., vol. 5 (2009) p. 16.

[33] L. Roncal, S. Thangavelu, Hardy’s inequality for fractional powers of the sublaplacian
on the Heisenberg group, Adv. Math., 302 (2016), 106-158.

[34] M. Résler, An uncertainty principle for the Dunkl transform, Bull. Austral. Math. Soc.,
59(1999), 353-360.

[35] M. Rosler, Generalized Hermite polynomials and the heat equation for Dunkl operators,

Comm. Math. Phys., 192(3)(1998), 519-542.

[36] M. Rosler, Positivity of Dunkl’s intertwining operator, Duke Math. J., vol. 98, no. 3
(1999) pp. 445-463.

[37] N. Shimeno, A Note on the Uncertainty Principle for the Dunkl Transform,
J.Math.Sci.Univ.Tokyo, 8(1)(2001), 33-42.

99



[38] K. Stempak, J. L. Torrea. Higher Riesz Transforms and Imaginary Powers Associated
to the Harmonic Oscillator, Acta Math. Hung., vol. 111, no. 1 (2006), 43-64.

[39] W. Teng, Dunkl translations, Dunkl-type BMO space and Riesz transforms for Dunkl
transform on L*°, Funct Anal Its Appl 55 (2021), 304-315.

[40] W. Teng, Imaginary powers of (k,a)-generalized harmonic oscillator, Complex Anal.

Oper. Theory 16, 89 (2022).

[41] W. Teng, Hardy inequalities for (k,a)-generalized fractional harmonic oscillator, J. Lie

Theory 32 (2022), No. 4, 1007-1023.

[42] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Vol. 42, Princeton Uni-

versity Press, Princeton, NJ, 1993.

[43] S. Thangavelu, Hermite and Laguerre semigroups: some recent developments, CIMPA

lecture notes, 2006.

[44] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University
Press, Cambridge, 1922.

[45] J. S'W. Wong, Remarks on Metric Spaces, Indag. Math. (Proceedings), Volume 69
(1966), 70-73.

[46] D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168(1999),
121-144.

60






