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Photonic Crystals

by Huyen Thanh PHAN

The topological properties of photonic crystals (PhCs) have been experimentally
realized in many photonic systems. To explain for these robust properties, topolog-
ical invariants such as Chern number, Berry curvature are successfully theoretically
determined for two-dimensional (2D) PhCs. Besides, Zak phase is also a good quan-
tum number to explain for the existence of topological states in these systems. Zak
phase is defined as one-dimensional (1D) integral of Berry connection over the first
Brillouin zone (BZ). While in 1D systems, Zak phase is determined for each individ-
ual band, in 2D systems, it is determined for each in-plane direction.

In this thesis, we will numerically study the higher order topological states in
PhC systems by calculating Zak phase for each systems. We start with a 2D PhC
which exhibit topological edges and corner states. Then, we extend the study of
topological PhCs to three-dimensional (3D) systems. The topological surface states
are understood as the first order topology in 3D systems. To explain for these sur-
face states, we generalize the notation of Zak phase to 3D systems then numerically
calculate Zak phase for two types of 3D PhC structures. The structure with inver-
sion symmetry has quantized Zak phase (0 or π value). On the other hand, the PhC
without inversion symmetry will exhibit the winding of Zak phase in the first BZ.
We will also examine the higher order topological states (the second order as hinge
states) in these two PhCs. The numerical results of Zak phase can also be used to
explain for these higher order topological states. Our description of Zak phase cal-
culation in 3D systems is a priori not only restricted for photonic systems, but it is
also applicable for other 3D systems.
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Chapter 1

Introduction to Photonic Crystals

In this chapter, I will give a brief introduction to PhCs and the mathematical de-
scriptions of PhCs. Then, I make a review of Maxwell’s equations and how the
electromagnetic (EM) waves propagate in periodic media. The photonic band struc-
ture and origin of photonic band gap will also be discussed in this chapter. At the
end, I will explain about numerical methods usually used for evaluating properties
of PhCs.

1.1 From Conventional Crystals to Photonic Crystals

A conventional unit cell is known as atoms or molecules are arranged periodically
in a lattice [1, 2]. This arrangement causes periodic potential, which affect the trans-
portation of electrons. For more detail, the periodic potential will cause band gaps
in the energy band structure, where electrons with the energy at the gap region can
not propagate into the crystals. Thinking in the same way as crystals act on elec-
trons, the optical analog of conventional crystals are introduced as PhCs [3–5]. The
periodicity in PhCs is the periodic arrangement of dielectric materials. This periodic
dielectric "potential" will make photons behave in the same way as electrons do in
the conventional crystals. It means that the energy band gap of photons is the result
of periodic dielectric materials. According to the periodicity in real space, PhCs are
divided into three types, which are one-, two-, and three-dimensional PhCs.

(a) (b) (c)
1D Photonic Crystal 2D Photonic Crystal 3D Photonic Crystal

FIGURE 1.1: Schematic of three types of PhCs. (a) 1D PhC, which
is periodic along one direction. (b) 2D PhC, which is periodic along
two directions. (c) 3D PhC, which is periodic along three directions.

Different colors indicate different dielectric materials.

Figure 1.1(a) is the schematic of 1D PhC, which is periodic along one direction.
It is often known as multi-layer structures and was first time studied from hundred
years ago [6]. These 1D PhCs have many applications such as reflecting mirror, and
reflection waveguide. Most of the recent semiconductor lasers are also the applica-
tions of 1D PhCs. The schematic of 2D and 3D PhCs are shown in Fig. 1.1(b) and (c),
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which is periodic along two and three directions, respectively. The serious studies of
2D and 3D PhCs are really occur in 1987, when people were caring about the local-
ization of photons. A few years latter, following the experimental demonstration, a
3D PhC with complete band gap is successfully fabricated by Yablonovitch and his
team [7].

(a)
(b)

FIGURE 1.2: (a) Periodic micro structure of wings surface make color
for a butterfly. (b) SEM image from a wing showing 1D PhC structure.

(Source from: P. Vukusic, Phys. World (2015))

PhCs were firstly known as artificial materials. However, it is found that PhCs
are already "fabricated" by nature. Figure 1.2 shows an image of a blue butterfly
and SEM image of its wing surface. It is easy to realize the 1D PhC structure in the
SEM image. The biological researches show that there is no pigment in the butter-
fly’s wings. Therefore, the colors come from periodic micro structure of the wings.
The PhC structures are also found in many other objects in our nature. The main
characteristic of these objects is the beautiful colors due to the complete reflection of
light.

1.2 Mathematical Demonstration of Photonic Crystals

Generally, the periodicity of a PhC is represented mathematically by a 3D vector Λ,
called lattice vector or Bravais lattice vector [8], as follow

Λ = l1a1 + l2a2 + l3a3, (1.1)

where a1, a2, a3 are three primitive lattice vectors, which are linearly independent
vectors. l1, l2, l3 are arbitrary integers. This lattice vector Λ can be understood that
one point in the space is copied and placed along the lattice vector infinite times.
Therefore, the whole space can be obtained by repeating one certain shape, called
"unit cell", over all the possible lattice vectors. Unit cell of a lattice is not uniquely
defined. The smallest one is called "primitive unit cell" is often defined as the paral-
lelepiped formed by three primitive lattice vectors.

Now we consider a plane wave

E(r, t) = E(r)e−iωt = E0eikr−iωt, (1.2)

propagating into this periodic lattice Λ, with amplitude E0 and wave vector k. Since
the wave vector k can be chosen specifically to make wave function have the same
periodicity as lattice vector Λ, so here we choose a wave vector k = G satisfy the
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equation below
eiGr = eiG(r+R), (1.3)

where R is the linear combination of three primitive lattice vectors R = l1a1 + l2a2 +
l3a3. The Eq. (1.3) indicates that the value of plane wave at vector r is equal to the
value of plane wave at vector r + R in real space. Also from Eq. (1.3), we can see the
condition below

eiGR = 1, (1.4)

All the vector G satisfying Eq. (1.4) will give rise to a new lattice corresponding to
the Bravais lattice, called "reciprocal lattice". In general, reciprocal lattice is defined
by three vectors b1, b2, b3, which have the relationship with a1, a2, a3 as follow

aibj = 2πδij, (1.5)

where δij is Kronecker delta, i, j = 1, 2, 3. Then, lattice vector of reciprocal lattice is
the linear combination of b1, b2, b3.

G = n1b1 + n2b2 + n3b3, (1.6)

where n1, n2, n3 are integers. It is easy to realize that vector G in the above equation
satisfy the condition in Eq. (1.4). In analog to the Bravais lattice, reciprocal lattice
also have a "primitive unit cell", which is called the first Brillouin zone (BZ) [8]. This
first BZ is the parallelepiped formed by three vectors b1, b2, b3.

FIGURE 1.3: The first BZ of an rectangular parallelepiped with high
symmetric points labeled by capital letters. Γ is the origin of the first
BZ. Three primitive vectors in reciprocal space are drawn by blue

color. The edges of irreducible BZ is drawn by red lines.

For each type of lattice, the first BZ has its own symmetries. For example, Fig. 1.3
presents the first BZ of an rectangular parallelepiped. It has 3 mirror symmetry
planes go across two in three vectors b1, b2, b3. Therefore, the first BZ can be reduce
to irreducible BZ labeled by red lines. These lines connect high symmetric points
together, forming a path, called high symmetric path. The shape of BZ, irreducible
BZ and position of high symmetric points are depend on each type of lattice.
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1.3 Maxwell’s Equations and Wave Equations

We start with the four Maxwell’s equations, which describe the behaviour of light [5,
9]. Since we focus on the eigenfrequency of EM wave, we assume that electric cur-
rent and free charge are absent. Maxwell’s equations are now shown as below

∇ · B (r, t) = 0,
∇ · D (r, t) = 0,

∇× E (r, t) = − ∂

∂t
B (r, t) ,

∇× H (r, t) =
∂

∂t
D (r, t) ,

(1.7)

where B is magnetic induction, D is electric field displacement, E is electric field,
H is magnetic field. To derive wave equations, we need to know the relationship
between B and H, D and E. Constitutive equations:

B (r, t) = µ0H (r, t) ,
D (r, t) = ε0ε (r) E (r, t) ,

(1.8)

here, ϵ0 and µ0 are electric permittivity and magnetic permeability in vacuum, re-
spectively. ϵ(r) is relative permittivity or relative dielectric constant of material. In
this thesis, we assume that dielectric constant ε (r) is real, isotropic, perfectly peri-
odic with respect to the spatial coordinate r and does not depend on frequency.

The above Maxwell’s equations are time-dependent equations. Since they are lin-
ear equations, the time-dependent term can be eliminated by writing field function
in the form of time-harmonic field as follow

H (r, t) = H (r) e−iωt,

E (r, t) = E (r) e−iωt,
(1.9)

Substituting Eq. (1.9) and also Eq. (1.8) into Eq. (1.7) we obtain

∇ · B (r) = 0, (1.10a)
∇ · D (r) = 0, (1.10b)
∇× E (r) = iωµ0H (r) , (1.10c)
∇× H (r) = −iωε0ε (r) E (r) , (1.10d)

Equation (1.10) still contain both electric field E and magnetic field H. To decouple
these two components, we take rotation of Eq. (1.10c) then substitute Eq. (1.10d) into
it to obtain wave equation for electric field E. Detail is as follow

∇×∇× E (r) =iωµ0∇× H (r)
⇒ ∇×∇× E (r) =iωµ0 [−iωε0ε (r) E (r)]

⇒ ∇×∇× E (r) =ω2µ0ε0ε(r)E (r)

⇒ 1
ε(r)

∇×∇× E (r) =
ω2

c2 E (r) .

(1.11)

here we put c =
1

√
µ0ε0

is speed of light in vacuum.
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Similarly, we take rotation of Eq. (1.10d) then substitute Eq. (1.10c) into it to ob-
tain wave equation for magnetic field H. From Eq. (1.10d) we have

1
ε(r)

∇× H (r) =− iωε0E (r)

⇒ ∇× 1
ε(r)

∇× H (r) =− iωε0∇× E (r)

⇒ ∇× 1
ε(r)

∇× H (r) =− iωε0 [iωµ0H (r)]

⇒ ∇× 1
ε(r)

∇× H (r) =
ω2

c2 H (r) .

(1.12)

To find electric and magnetic components of EM wave propagating in a PhC, we
need to solve eigenvalue equations (1.11) and (1.12), separately. However, since
these two components always couple to each other, only one of two wave equations
is needed, then the remain component can be obtain by the following relation

E (r) =
i

ωε0ε(r)
∇× H (r) , (1.13a)

H (r) =
−i

ωµ0
∇× E (r) . (1.13b)

Equations. (1.11) or (1.12) are standard differential equations, called Master equa-
tions, used to describe behaviour of EM wave in PhC. Depending on each numerical
environment, one of these two equation have more benefits than the other one. All
the results in this thesis is obtained by solving one of these two equations.

1.4 Photonic Band Structure and Photonic Band Gap

To obtain the eigenmodes of PhCs, according to Bloch theorem [10], electric and
magnetic wave function should be written in term of plane waves and modulated
by a periodic function

H (r) = uk (r) eikr, (1.14a)

E (r) = vk (r) eikr, (1.14b)

where uk (r) and vk (r) are periodic function, which satisfy the periodicity of the
lattice

uk (r) = uk (r + R) , (1.15a)
vk (r) = vk (r + R) . (1.15b)

Because of the periodic boundary condition, the eigenvalue problem of PhCs can
be restricted to one unit cell. Solving the Master equations, the eigenvalues ω (k)
and eigenvectors as wave functions can be obtained. The relation of ω and wave
vectors k are called dispersion relation. In a homogeneous media with dielectric
constant ε, this dispersion relation is

ω (k) =
c√
ε

k. (1.16)
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The wave vectors k is belonged to the reciprocal space. Because of the periodicity of
reciprocal lattice as discussed in section 1.2, value of k is restricted to within the first
BZ. Other value beyond the first BZ will represent the repetition of both eigenvalues
and eigenvectors. The dispersion relation is separated into lines, called photonic

wave vector

FIGURE 1.4: Frequency dispersion of light in vacuum ε = 1.

bands. The set of these bands are called photonic band structure. In Fig. 1.4, we plot
the photonic band structure of EM wave propagating in vacuum. The horizontal
axis represent wave vector k. In one dimension it is from −π to π.

unit cell

(a)

(b)

(c)

(d)

FIGURE 1.5: PhCs and their corresponding photonic band structures.
(a) 1D PhC, where dielectric slabs are arranged periodically in z di-
rection. (b) Photonic band structure for 1D PhC in (a). (c) 2D PhC,
where dielectric rods are arranged periodically in x and y directions.

(d) Photonic band structure for 2D PhC in (c).

For PhC structures, where dielectric functions are not constants but periodic
functions, photonic band structures are obtained by solving Master equations. For



1.4. Photonic Band Structure and Photonic Band Gap 7

example, here we present photonic band structures for two simple PhCs. In Fig. 1.5(a),
many dielectric slabs, whose thickness and dielectric constant is d and ε, are ar-
ranged periodically in z direction, which formed an 1D PhC. Unit cell is labeled
by the red dash line. Lattice constant for this 1D PhC is a. Photonic band structure
for d/a = 0.8 and ε = 12.25 is shown in Fig. 1.5(b). Photonic bands and band gaps
appear alternately for this 1D PhC. The band gaps is a forbidden region where EM
wave in this frequency range can not propagate into the crystals. Fig. 1.5(c) is the
schematic of 2D PhC, where dielectric rods, whose radii are r and dielectric constant
is ε′, are arranged periodically in air and in both x and y directions. The photonic
band structure with r/a = 0.38, ε′ = 11.7 is shown in Fig. 1.5(d). For this 2D PhC,
photonic band structure still consists of bands and band gaps, which is more compli-
cated than 1D PhC due to the inhomogeneous in two directions. The above results
is obtained by solving Master equations of electric field 1.11.

Photonic band gap is the most important characteristic of PhC. The origin of pho-
tonic band gap is due to the total reflection of EM wave at many interface between
two materials. For example, in a semi-infinite 1D PhC as shown in Fig. 1.6, the in-

Incident light

Refection light

FIGURE 1.6: Multi-reflection of light at the interface between two ma-
terials in 1D PhC.

cident light eikz is reflected when it meet the interfaces between dielectric material
and air. Assuming that the reflectivity is r, the reflection light amplitude is re−ikz.
No matter how small the reflectivity r is, the total refection R from semi-infinite 1D
PhC is

R =re−ikz + re−ikze−ik2a + re−ikze−ik4a + . . .

≈re−ikz 1
1 − e−ik2a

(1.17)

The above formula will diverge if

e−ik2a = 1

⇒k =
nπ

a
.

(1.18)

where n is integers. The above condition of wave vector is called Bragg condition.
Light with frequency satisfy condition 1.18 can not propagate into PhC, which cause
photonic band gaps. In the experimental point of view, the wider the band gap is,
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the more interesting it is. In almost the results in this thesis, we try to examine the
novel properties of PhCs inside the band gap.

1.5 Numerical Calculation Methods

Almost things in the world around us and their characteristics can be represented
by mathematical equations, PhCs are not an exception. However, solving the math-
ematical equations analytically is not an easy task. It is possible for some very simple
cases, almost cases are very complicated. That is why numerical calculation methods
come to play. These methods are based on discrete calculations, where the param-
eters are divided in to finite set of small segments. Then solutions are obtained for
each small segment. The key factor for numerical methods is that the numerical so-
lutions must converge to the real solutions. The difference between numerical and
real solution can be made arbitrarily small by dividing parameters into more small
segments. These methods can solve the problem directly by writing code in com-
puters.

There are many numerical methods that can be used to model the flow of light
in PhCs. Here we explain three numerical methods, which are mostly used in solv-
ing problems of PhCs. The first one is plane wave expansion (PWE) method. This
method is the most popular method in the PhC community to solve the photonic
band structure. As its name is, this method uses time-harmonic form and expand
wave function to numbers of plane wave by Fourier series along reciprocal space.
Similarly, the dielectric function is also expand to Fourier series. PWE method is
highly efficient for solving eigenmodes of PhCs. However, it suffers from the Gibbs
phenomena, which make dielectric function converges very slowly when the dielec-
tric contrast are very high. Moreover, this method is also time-consuming.

The next method we will mention is finite different method (FDM). This method
solves the differential equation by approximating derivatives with finite differences.
The spatial domain is discretized and the solution at each grid point is obtained
by the solution of nearby points and the finite differences. The main advantage of
FDM is that it is easy to understand and implement. This method is often used
for rectangular or cubic shape objects. Compared with PWE method, FDM is less
time-consuming.

The third method is finite element method (FEM). To solve the problem, FEM
divides the large domain in to smaller and simpler parts, called finite elements. For
example, real space is discretized by space dimension. Each small mesh is called
a numerical domain for obtaining solution. The feature which makes this method
become attractive is that it can handle complicated geometries with relatively ease.
While other methods are restricted for some types of geometry, FEM can be applied
for all structures. The quality of approximation of FEM is often higher than FDM
because of the flexible mesh of FEM.

There are many commercial and open software using above methods to solve
the eigenvalue problem of PhCs, such as COMSOL Multiphysics [11] using FEM and
MIT Photonic Band (MPB) [12] using FDM. In this thesis, we used above three meth-
ods alternately depending on the convenience and the accuracy of each method.

1.6 The Organization of this Thesis

In this doctoral thesis, we theoretically study topological properties of 3D PhCs.
We pay more attention to the boundary states inside the photonic band gap, which
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are derived from topological transitions of bulk states. The numerical calculation
methods for topological invariants (Zak phase and Wilson Loop) of 3D PhCs is also
introduced and explained.

Before going to the main part of the thesis about higher order topological states of
3D PhCs, in chapter 2, we briefly review about topological PhCs and examine a new
2D topological PhCs. Starting from the definition of "topology" and the often-used
topological invariants, we introduce a new PhC structure following Biphenylene
(BPN) network. We numerically calculate Zak phase and examine several types of
ribbon structure by FDM and PWE methods. Our findings show that the first order
topological states as edge states are found in the photonic band gap due to the total
π Zak phase. The second order topological states as corner states are also obtained
as a results of non-zero product of Zak phase in two ribbon directions.

Chapter 3 is used for present the studies of simple cubic PhC. In this 3D PhC, the
inversion symmetry is preserved. Therefore, Zak phase is theoretically predicted to
be quantized to 0 or π values. We explain the calculation method then numerically
calculate Zak phase for the two lowest photonic bands of this structure. The results
are consistent with the prediction based on the parity of field distribution at high
symmetric points. Because of the π difference of Zak phase, the first order topology
as 2D interface states are numerically observed. Topological hinge states are also
numerically obtained by using FEM.

In chapter 4, we extend the studies to a 3D PhC structure which is in absence of
inversion symmetry, called Woodpile PhC. Due to this symmetry absence, Zak phase
does not have quantized values as in simple cubic PhC. It takes the value from −π
to π depending on each points. Therefore, we call it Wilson Loop instead of Zak
phase. Due to the geometry of lattice, the numerical calculation method need to be
slightly changed. The topological contrast are seen in this structure when the origin
of the unit cell is shifted, resulting in the emergence of boundary states between two
kinds of unit cell. In this woodpile structure, there is a selection rule for topological
hinge states since they do not exist at all positions of hinge. This selection rules will
be discussed at the end of this chapter.

We conclude in chapter 5 by summarizing all results of this thesis and providing
the suggestion for experiments and future researches.
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Chapter 2

Topological Photonic Crystals

In this chapter, we will explain about the concept of "topology" and the application of
topology to PhCs. Then, we explain about the topological invariants which are often
used in examining topological PhCs. A new PhC structure following Biphenylene
(BPN) network and its topological properties will be introduced and determined.

2.1 What is Topology?

"Topology" is a mathematical concept, which describes the a quantity of a geomet-
ric object that is preserved under a continuous deformation [13] such as shrinking,
stretching, bending and twisting. This can be understood as the number of hole on
the body of the object is remained unchanged during the deformation. Figure 2.1 is

FIGURE 2.1: An example of topological equivalent in objects. A soc-
cer ball and an egg have no hole on the body. A coffee cup and a

donut have one hole on the body.

an example of topological equivalent in objects. A soccer ball and an egg have no
hole on the body. By shrinking the shape of the soccer ball, shape of the egg can be
obtained. Therefore, they are topological equivalent. These two objects are topolog-
ically different from a coffee cup and a donuts since the coffee cup and the donut
have one hole on the body. Without creating a hole, a soccer ball and an egg can not
transform to a coffee cup or a donut. The number of hole is a factor to distinguish
topological properties of objects.

How to apply "topology" to the band theory? It was first applied to solid-state
physics [14–17] and has resulted in topological band theory. Figure 2.2 is the schematic
of band inversion in topological band theory. A trivial band gap is created by two
bands labeled in red and blue. These two bands touch each other at critical point
after a continuous deformation in (b), which close the trivial band gap. Then, by
cutting two bands at some points, the band gap is reopen with the inverted bands.
This is called discontinuous transformation.
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(a) (b) (c)

trivial band gap critical point band inversion

FIGURE 2.2: The schematic of band inversion between two bands.
The trivial band gap in (a) is closed at the critical point in (b) then

reopened and inverted in (c).

In topological band theory, band inversion is an important feature to distinguish
topological properties of electronic systems. Together with band structure, the cor-
responding Bloch states will also be inverted leading to many novel physical prop-
erties that do not exist in the trivial systems. Similarly, in photonic systems, band
inversion is also an remarkable signal of topological properties. Topological PhCs
were first-time theoretically studied by Raghu and Haldane [18], and experimentally
observed by Wang et al [19, 20]. These initial works has stimulated many researches
of topological PhCs [21–25].

2.2 Topological Invariants

To classify characteristics of topological systems, we used the topological invariants
which is remained unchanged during the electronic/photonic band evolution. In
the example in Fig. 2.1, topological invariant is the number of hole on each object.
In topological band theory, what is corresponding to the number of hole? It will be
explained in this section.

2.2.1 Berry Phase and Zak Phase

As mentioned in section 1.4, the frequency dispersion of PhC systems is separated
into lines called photonic band structure. This photonic band structure is defined in
the wave vector space. For continuous media or systems, it is infinite momentum
space, for periodic systems, it is restricted to the first BZ. Corresponding to each
point of photonic band structure, there is one or more eigenmodes. Here we present
Berry phase in PhC systems, means periodic systems. Berry phase is defined as
geometric phase that the eigenmode of the n-th band acquired during an adiabatic
evolution along a closed path in a momentum space. Because of the periodicity
of the crystals, the closed path we mentioned here is the first BZ. Berry phase is
mathematically defined as the integral of Berry connection over the first BZ. For
example, Berry phase in a PhC systems is written as follow

γn =
∮

1stBZ
An(k)dk, (2.1)
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where n is band index, An(k) is Berry connection, known as

An(k) = i⟨Un
k(r)|∇|Un

k(r)⟩, (2.2)

Here Un
k(r) is the periodic Bloch function of EM wave Un

k(r) =
[
un

k(r), vn
k(r)

]⊤.
Throughout this thesis, the integral over k is taken within the first BZ. Spatial pa-
rameter r is performed within the unit cell.

Since electric and magnetic fields of EM wave can be determined from each other
via Eq. (1.13). One of them is enough for Berry phase calculation. In other words,
Berry phase can be calculated by using periodic Bloch function of either electric field
or magnetic field. Eq. (2.2) is simplified to one in the following two equations

An(k) = i⟨un
k(r)|∇|un

k(r)⟩, (2.3a)
An(k) = i⟨vn

k(r)|∇|vn
k(r)⟩. (2.3b)

This Berry connection is gauge-dependent. However, Berry phase is gauge in-
variant in the unit of 2π because of the first and the last points of the integral are
coincided.

In the situation of 1D systems, Berry phase is denoted as Zak phase [26]. Making
the relation to electronic systems, Zak phase represents charge polarization in real
space. In 2D systems, Zak phase is determined for any in-plane directions [27–30].
For example, in a 2D squared lattice system, Zak phase on x-direction will depend
on kx and calculated by taking the integral over ky, −π ≤ kx, ky ≤ π. Similarly,
in a 3D system, Zak phase is determined as an integral of Berry connection over
one direction and depending on other two directions. In the presence of inversion
symmetry, Zak phase is quantized to π (nontrivial) and 0 (trivial) [26].

2.2.2 Berry Curvature and Chern number

Berry curvature is also an important gauge-invariant quantity when considering
topological properties of a system. In photonic systems, Berry curvature is known
as the local expression of geometric phase of wavefunction in the momentum space.
It is mathematically defined as

Ωn (k) = ∇× An(k), (2.4)

Berry phase is also expressed depending on Berry curvature Ωn (k) by using Stoke’s
theorem

γn =
∮

1stBZ
An(k)dk =

∫∫
S
(∇× An(k)) dS =

∫∫
S

Ωn (k) dS. (2.5)

where S is the surface area surrounded by the closed path of Berry phase integral.
Because S is a closed manifold surface, the integral of Berry curvature over S is
quantized in the unit of 2π according to Chern theorem [31]. This number is called
Chern number, which is essential for analyzing quantum effects in the broken time-
reversal symmetry (TRS) [32] or valley effects [33, 34]. In 2D systems, Chern number
of the n-th band is

Cn =
1

2π

∫∫
1stBZ

Ωn (k) dk2. (2.6)

In the presence or absence of TRS, Chern number is zero or non-zero, respec-
tively. However, in the systems with valley degree of freedom, Chern number can
be calculated for a part of the first BZ to see the contribution of each valley [33, 34] to
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the total Chern number. Therefore, the term "valley Chern number" appears. When
TRS is preseved, valley Chern number can be different from zero, but the total valley
Chern number in the first BZ is always zero, which equal to Chern number.

2.3 Topological States of Biphenylene Photonic Crystal

In this section, we study the topological properties of PhC system following BPN
network, so-call BPN PhC. Both FDM and FEM are used to evaluate photonic band
structure and topological invariants. The first order and second order topological
states of BPN PhC will be pointed out in this section. In the end, we will point out
the condition for the emergence of topological corner states.

2.3.1 Biphenylene Photonic Crystal

Following the successful applications of graphene and other nano-electronic ma-
terials, the searching of 2D carbon allotropes other than graphene, such as BPN
or graphenylene network, has stimulated and brought a new insight for electronic
transport properties in nanoscale materials. In recent research, Fan et al. has suc-
cessfully synthesized the 2D BPN network [35]. Motivated from this experimental
results, A. Bafekry et al. has performed the detailed of density functional theory-
based first-principles calculations to deeply study the electronic and optical proper-
ties of this material [36].

(b)

(c)

(a) unit cell
(d)

FIGURE 2.3: (a) Schematic of 2D BPN PhC. a1 = (a0, 0) and a2 =

(0, aT) = (0, 3a0√
3+1

) are primitive vectors. Here, a0 and aT are the
lattice constants in x- and y-direction, respectively. Red rectangle in-
dicates the primitive unit cell, which contains six equivalent dielectric
rods, colored with cyan. The radii for these rods are r0, distance be-
tween each rod to the center of unit cell is d. (b) The corresponding
first Brillouin zone of 2D BPN lattice with high symmetric points. (c)
Photonic band structure for 2D BPN PhC with d = a0√

3+1
, r0 = 0.2d.

(d) Photonic band structure for modified BPN PhC with d = 1.3a0√
3+1

,
r0 = 0.2d. The inset shows the schematic of one unit cell of modified

BPN PhC.

Inspired from the study of 2D BPN network, we introduce BPN PhC following
the BPN network structure. Our PhC consist of one type of circular dielectric rod,
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which are periodically arranged in 2D array. Figure 2.3(a) shows the lattice struc-
ture of BPN PhC, where the red rectangle indicates primitive unit cell. There are
six equivalent dielectric rods in one unit cell, colored by cyan. Radius for each rod
is r0. In this study, we assume that all the dielectric rods are made of silicon, with
dielectric constant are ε = 11.7. These rods are arranged periodically in BPN lattice
with periodic constant in x- and y-directions are a0 and aT = 3a0√

3+1
, respectively. Dis-

tance between two nearest dielectric rods is d, it equals to distance between each rod
to the center of unit cell. a1 = (a0, 0) and a2 = (0, aT) = (0, 3a0√

3+1
) are two primi-

tive lattice vectors. All the calculation for this BPN PhC will be done for transverse
magnetic modes where magnetic field is in the xy plane, electric field is perpendic-
ular to xy plane. Eigenvalue equation is given as Eq. (1.11). Figure 2.3(b) shows the
corresponding first Brillouin zone for 2D BPN lattice with high symmetric points.

The photonic band structure for d = a0√
3+1

and r0 = 0.2d are shown in Fig. 2.3(c).
As can be seen that, there is no band gap in this PhC structure, all bands connect
to others by linear dispersion at degenerate points. To examine topological proper-
ties in BPN PhC, we need to open a complete band gap in photonic band structure.
Therefore, we slightly modify the lattice structure by increasing the distance d be-
tween each rod and the center of unit cell. From here, the distance d will become
d′ = 1.3d and size of rods and of the unit cell is kept the same as original structure,
which can be seen in the inset of Fig. 2.3(d).

The new photonic band structure is shown in Fig. 2.3(d). A complete band gap,
labeled by shaded pink color, is found around normalized frequency 0.55 and it is
between the third and the fourth band. Band 1 and band 2 are still connected by a
degenerate point in S − Y line. Band 3 is now isolated from others. From here, we
will examine the modified BPN PhC and we only focus on three lowest photonic
band below the band gap.

2.3.2 Zak Phase and Topological Edge States

In this section, firstly, we explain about numerical calculation method used to evalu-
ate Zak phase for any in-plane directions. Then, we discuss about the localization of
EM wave at the edges of several ribbon structures. Since Zak phase of a ribbon is de-
fined by Zak phase on the direction paralleled to the ribbon. Therefore, we may mix
the words "Zak phase of ribbon" and "Zak phase on the direction" in the remaining
part of this section.

Here we assume that the ribbon structure is periodic under translation vector
T = T (m, n) = ma1 + na2, where a1 and a2 are two primitive lattice vectors, m and
n are coprime integers. If they are not coprime, the two vectors defined below do
not form the basis set in reciprocal space. Normally, the 2D BZ that is used to calcu-
lated Zak phase is the 1st BZ. In general cases, the 2D BZ is chosen as a rectangular
momentum area formed by two orthogonal vectors Γ∥ and Γ⊥. These two vectors
are defined as follows

Γ∥ =
2πT
|T|2 , (2.7)

This Γ∥ is parallel to ribbon orientation (parallel to T). It is also defined for the one-
dimensional first BZ of the ribbon structure. The second vector Γ⊥ is perpendicular
to Γ∥ and relates to Γ∥ by the following formula

Γ∥ × Γ⊥ = b1 × b2, (2.8)
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where b1 and b2 are two primitive vectors in reciprocal space and defined by aibj =
2πδij (i, j = 1, 2). Eq. (2.8) indicates that the area of the new BZ formed by Γ∥ and Γ⊥
equals to the area of the 1st BZ.

For the ribbon in any direction characterized by vector T, Zak phase of n-th band
is computed by integrating Berry connection over Γ⊥ as follow

Zn (k∥) = ∮
Γ⊥
⟨un

k (r) |i∂k|un
k (r)⟩dk⊥, (2.9)

where un
k (r) is the periodic part of Bloch wave function En

k (r) = un
k (r) eikr, k∥ and

k⊥ are momentum components that are parallel to Γ∥ and Γ⊥. For numerical calcu-
lation, we do an approximation for Eq. (2.9) by dividing Γ∥ and Γ⊥ into N0 segments
then taking sum of contribution of each segment. Then we obtain the discrete for-
mula as shown below

Zn (ki) = − Im

log ∏
k j

⟨un
ki ,k j

(r) |un
ki ,k j+1

(r)⟩

 , (2.10)

where ki is discrete k-point of Γ∥ and k j is discrete k-point of Γ⊥, (i, j = 1, ..., N0). The
Eq. (2.10) indicates that Zak phase can be calculated for each ki point in Γ∥ direc-
tion. Equation (2.10) is used for single band. For a group of degenerate bands, the
scalar products is replaced by overlap matrices. The overlap matrix S for group of
N degenerate bands between two k-point k1 and k2 is

Sk1k2 =


⟨u1

k1
(r) |u1

k2
(r)⟩ ⟨u1

k1
(r) |u2

k2
(r)⟩ ... ⟨u1

k1
(r) |uN

k2
(r)⟩

⟨u2
k1
(r) |u1

k2
(r)⟩ ⟨u2

k1
(r) |u2

k2
(r)⟩ ... ⟨u2

k1
(r) |uN

k2
(r)⟩

... ... ... ...
⟨uN

k1
(r) |u1

k2
(r)⟩ ⟨uN

k1
(r) |u2

k2
(r)⟩ ... ⟨uN

k1
(r) |uN

k2
(r)⟩

 , (2.11)

where the index l of ul
k indicates band index.

Total Berry connection in matrix form is shown below

Ŝ (ki) = − Im

log ∏
k j

Skik j,kik j+1

 , (2.12)

To evaluate Zak phase for n-th band, we need the n-th eigenvalues sn of the Berry
connection matrix Ŝ (ki). Then Zak phase for n-th subband is given by

Zn (ki) = − Im log (sn) . (2.13)

Now we apply the above method to calculate Zak phase of several type of BPN
PhC ribbons. Figure 2.4(a) is the schematic of three types of ribbon that we will
examine in this paper. The red line indicates zigzag ribbon. This kind of ribbon
is periodic under the translation vector T1 = T (1, 0) = a1. The green line de-
notes armchair ribbon which is periodic under translation vector T2 = T (0, 1) = a2.
The orange line shows the ribbon structure being periodic under translation vector
T3 = T (1, 1) = a1 + a2, so-call cross ribbon. In Fig. 2.4(b), we plot the momentum
areas, which are used to calculate Zak phase. Blue rectangle is momentum area for
calculating Zak phase of zigzag and armchair ribbons, which is overlapped with the
1st BZ. Red and green bold lines are the first Brillouin zones for zigzag and armchair
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FIGURE 2.4: (a) Schematic of investigated BPN PhC ribbon structures.
Red line indicates zigzag ribbon, which is periodic under translation
vector T1 = a1. Armchair ribbon is expressed as green line with trans-
lation vector T2 = a2. Orange line denotes the cross ribbon being
periodic under vector T3 = a1 + a2. (b) The momentum areas used
for calculate Zak phase of each type of ribbon. Blue rectangle is mo-
mentum area for Zak phase calculation of zigzag and armchair rib-
bon. Orange rectangle is momentum area for Zak phase calculation
of cross ribbon. Red, green and orange lines are the first Brillouin

zones for zigzag, armchair and cross ribbons, respectively.

ribbons, respectively. Orange rectangle is momentum area for computing Zak phase
of cross ribbon, orange bold line denotes the first Brillouin zone for cross ribbon.

As can be seen in photonic band structure in Fig. 2.3(d), the first and the second
band are connected by one degenerate point, the third band is isolated. To calculate
Zak phase for each type of ribbon, we use Eq. (2.12) for the first and second bands,
Eq. (2.10) for band 3.

For the zigzag ribbon structure which is parallel to x-axis, Γ∥ =
(

2π
a0

, 0
)

, Γ⊥ =(
0, 2π

aT

)
, then we choose k∥ =

(
− π

a0
, 0
)
→
(

π
a0

, 0
)

, k⊥ =
(

0,− π
aT

)
→
(

0, π
aT

)
. Fig-

ure 2.5(a) is schematic of zigzag ribbon, which is periodic along x-direction and finite
in y-direction. Therefore, in numerical calculation, x-direction is applied periodic
boundary condition and y-direction is applied perfect magnetic conductor (PMC)
boundary condition. Zak phase in x-direction for the first three bands and the zigzag
ribbon photonic band structure are shown in Fig. 2.5(b) and (c), respectively. The 1st
and the 2nd bands have k-dependent Zak phase due to the degenerate point in S−Y
line. Total Zak phase for these two bands is π leading to the topological edge states
in between the 2nd and the 3rd band as denoted by the red lines in Fig. 2.5(c). Edge
states should appear at all k points in the 1st BZ, but in this structure, the band gap
between band 2 and 3 is not a complete band gap, edge states in the center of the
1st BZ are mixed with bulk states, they are somewhere in the bulk region that can
not be detected by numerical calculation. Zak phase for band 3 is 0. So, the com-
plete band gap becomes topologically-nontrivial because total Zak phase is π. The
isolated edge states in between band 3 and band 4 should appear at all k points.
However, it emerge only at the center of the first BZ because of the PMC boundary
condition. To realize the topological edge states in the whole first BZ, later we will
change the boundary condition by creating the interface between zigzag ribbon and
a trivial PhC.



18 Chapter 2. Topological Photonic Crystals

Za
k 

ph
as

e

(a)

(c)

(1)

(2)

(3)

Za
k 

ph
as

e

(1)

(2)

(3)

Za
k 

ph
as

e

(1)

(2)

(3)

(b)

(d)

(e)

(g)

(h)

(i)(f )

FIGURE 2.5: (a) The schematic of supercell used for determining
zigzag edge states, which is periodic along x-direction and finite in y-
direction. (b) Zak phase of the first three band of BPN PhC in zigzag
direction. (c) Photonic band structure for the zigzag ribbon. The red
lines indicate topological edge states. (d) The schematic of supercell
used for determining armchair edge states, which is periodic along
y-direction and finite in x-direction. (e) Zak phase of the first three
band of BPN PhC in armchair direction. (f) Photonic band structure
for the armchair ribbon. (g) The schematic of supercell used for de-
termining cross edge states, which is periodic along T3-direction and
finite in x-direction. (h) Zak phase of the first three band of BPN PhC
in T3-direction. (i) Photonic band structure for the cross ribbon. The

orange lines indicate topological edge states.

The armchair ribbon is parallel to y-direction with Γ∥ =
(

0, 2π
aT

)
, Γ⊥ =

(
2π
a0

, 0
)

,

then we choose k∥ =
(

0,− π
aT

)
→
(

0, π
aT

)
, k⊥ =

(
− π

a0
, 0
)
→
(

π
a0

, 0
)

. Figure 2.5(d) is
the schematic of armchair ribbon structure. Contrary to zigzag ribbon, this armchair
ribbon structure is periodic along y-direction and finite in x-direction. Therefore,
periodic boundary condition is applied in y-direction and PMC boundary condition
is applied in x-direction. Zak phase in y-direction is shown in Fig. 2.5(e). Band 1 and
3 are topologically non-trivial because Zak phase is π. The value of Zak phase for
the 2nd band is 0. Total Zak phase for the first 3 bands is 0. So, the complete band
gap between the 3rd and the 4th band becomes topologically trivial. Figure 2.5(f)
is photonic band structure for armchair ribbon. There is no topological edge states
in the complete band gap which is consistent with Zak phase calculation. Similar
to zigzag ribbon, topological edge states should appear in between the band 1 and
2. However, because of the overlapping frequency of these two bands, we can not
distinguish the topological edge states by numerical calculation.

We put ac =
√

a2
0 + a2

T, which is the periodic constant of BPN PhC in T3 direction.
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Two orthogonal vectors which form 2D Brillouin zone are Γ∥ =
2π
a0

(
4+2

√
3

13+2
√

3
, 3+3

√
3

13+2
√

3

)
,

Γ⊥ = 2π
a0

(
1,− 1+

√
3

3

)
. Then we choose discrete k-points for Zak phase calculation

are k∥ = − π
a0

(
4+2

√
3

13+2
√

3
, 3+3

√
3

13+2
√

3

)
→ π

a0

(
4+2

√
3

13+2
√

3
, 3+3

√
3

13+2
√

3

)
and k⊥ = − π

a0

(
1,− 1+

√
3

3

)
→

π
a0

(
1,− 1+

√
3

3

)
. In Fig. 2.5(g), we show the cross ribbon structure, which is periodic

along T3 direction. The two edges which are parallel to x-direction have periodic
boundary condition. Two other edges is applied PMC boundary condition.

Zak phase for the first three band of BPN PhC in the cross-direction are shown in
Fig. 2.5(h). Here we put kc∥ = π

a0

(
4+2

√
3

13+2
√

3

)
. While Zak phase for the first two band

is 0, it is π for the third band. The complete band gap becomes topologically non-
trivial because total Zak phase of bands below it is π. Photonic band structure for
cross ribbon is shown in Fig. 2.5(i). The orange line indicates topological edge states,
which are consistent with Zak phase calculation in Fig. 2.5(g). This topological edge
states is in a complete band gap and isolated from other states.

(a) (b)

FIGURE 2.6: (a) A schematic of a supercell containing interface be-
tween zigzag ribbon and a trivial PhC. (b) Photonic band structure for
the supercell in (a). Red lines denote topological edge states, where
EM wave is highly localized at the interface between zigzag ribbon

and the trivial PhC.

To confirm the existence of topological zigzag edge states at all k points, we cre-
ate another structure containing BPN PhC and a trivial PhC. The trivial PhC has a
band gap at the same frequency range as the band gap of BPN PhC. Fig. 2.6(a) is
the schematic of a supercell, which has an interface between zigzag ribbon and the
trivial PhC. Applying periodic boundary condition in both x and y directions, we
calculate and obtain photonic band structure for the supcell as shown in Fig. 2.6(b).
The red lines denote topological edge states, where EM wave is localized at the inter-
face. These edge states emerge at all k points in the first BZ and double degenerate
because the supercell contains 2 interfaces.
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2.3.3 Topological Corner States

In this section, we examine the localization of EM wave at different corner structures
in BPN PhC lattice.

solution number

(a) (b)

(c)

FIGURE 2.7: (a) The schematic of corner structure which are formed
by cross ribbons. (b) Frequency spectrum for BPN PhC corner struc-
ture in (a). The red dots indicate topological corner states. The fre-
quency range of corner states is in the complete gap region. (c) Field
profile for four corner states from low to high frequencies. These
profiles show that topological corner states is isolated from bulk and

edge states.

In Fig. 2.7(a), we show a rhombus shape of BPN PhC. Four outer boundaries
have cross ribbon structure. The two opposite corners have the same structure and
they are different from two other ones. The PMC boundary condition is applied for
all edges in this rhombus structure.

Fig. 2.7(b) is the frequency spectrum for the PhC structure in Fig. 2.7(a). In the
complete band gap of BPN PhC, there are four isolated states labeled by red dots.
The states are corner states where EM wave is highly localized at the corners and
exponentially decay as shown in Fig. 2.7(c). Two ribbons which form the corner are
topologically non-trivial because of π Zak phase. Therefore, these corner states are
really topological corner states similar to the condition of topological corner states
observed in other topological PhCs [28].

From this point of view, we also construct and examine another corner structure
that formed by zigzag and cross ribbon as shown in Fig. 2.8. Left and right edges are
cross ribbons, upper and lower edges are zigzag ribbons. Because both zigzag and
cross ribbons are topologically non-trivial at the complete band gap, the topological
corner states are expected in this structure. Figure 2.8(a) is photonic band structure
for corner structure containing zigzag and cross ribbons. The states below band gap
(labeled by red stars) are zigzag edge states, the states above band gap (labeled by
green stars) are cross edge states. Their field distributions are shown in Fig. 2.8(b).
From the left side to the right side, the frequencies are increasing. This is consistent
with the frequency range of zigzag and cross ribbon edge states shown in Fig. 2.5(f)
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(a)

(b)

FIGURE 2.8: (a) Photonic band structure for the corner structure
formed by zigzag and cross ribbons. Red stars indicate zigzag rib-
bon edge states, green stars denote cross ribbon edge states. (b) The
field distribution for the states labeled in red and green from low to

high frequencies.

and (i). Corner states do not exist in this structure. The reason for this absence is that
the frequency range of armchair and cross ribbons edge states are totally different,
EM wave can not be confined at the boundary between two edges.

Other corner structures involved in armchair ribbon such as corners between
zigzag and armchair ribbons or corners between armchair and cross ribbons can also
be constructed. However, topological corner states do not exist in these structures
due to the trivial properties in the complete band gap of armchair ribbon.

2.4 Summary and Discussion

In this chapter, we have explained about the topological band theory and the topo-
logical invariants. Then, we numerically studied EM wave in BPN PhC structure
by using FDM and FEM. The original photonic analog of BPN network has no band
gap. Linear dispersion of frequency can be observed in this PhC. When the struc-
ture is modified by increasing the distance from each rod to the center of unit cell,
a complete band gap opens in between band 3 and band 4. We examine topolog-
ical properties of BPN PhC in this band gap by numerically calculating Zak phase
in several directions. The topological edge states are observed in the photonic band
gap due to the non-trivial Zak phase, which are localized at the edge of zigzag and
cross ribbon structures. The Zak phase calculation method will work for not only
photonic systems but also any other 2D systems. The higher order topology as cor-
ner states are found at the corner formed by two cross ribbons because of non-zero
product of Zak phase in two directions. We also point out that the topological cor-
ner states emerge only when topological edge states of two ribbon structures which
form the corner are completely overlapped to each other.

Compared with graphene-like PhCs, the topological edge states in BPN-like struc-
ture can be found without breaking the symmetry of the crystals. Similar to valley
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PhCs, the Z-shape waveguide, resulted from topological edge states of cross ribbons,
is also a potential application. Our results suggest a possible way to design in-gap
topological waveguide and topological confinement of EM wave.
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Chapter 3

Simple Cubic Photonic Crystal

This Chapter is spent for examining higher order topological states in a 3D PhC
having complete photonic band gap by numerical method. The 3D structure follows
simple cubic lattice. We calculate Zak phase of this PhC and make the relation of Zak
phase to the topological surface states observed in the gap. Then, the explanation of
hinge states based on Zak phase will be pointed out.

3.1 Simple Cubic Lattice

(a) (b)

(c)

Ty
pe

 A
Ty

pe
 B

FIGURE 3.1: (a) A schematic of simple cubic lattice, which consists of
dielectric blocks (blue color) and air. (b) Unit cell type A. (c) Unit cell
type B, obtained by shifting unit cell type A one half of a period in all

three directions.

We start from a simple cubic structure as shown in Fig. 3.1(a), which consists
of dielectric blocks and air. Lattice constant is a0 in all three directions. The cross
section size of each dielectric blocks is 0.25a0 × 0.25a0. Refractive index of blocks
is 3.5. There are many ways to define unit cell for this structure. Here we point
out two types of unit cell which are highly symmetric: unit cell type A as shown in
Fig. 3.1(b) and unit cell type B as shown in Fig. 3.1(c). One of these two unit cell can
be obtained by shifting the origin of the other unit cell one half of the lattice constant.
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Both inversion symmetry (IS) and time-reversal symmetry (TRS) are preserved in
this simple cubic PhC.

3.2 Photonic Band Structure and Polarization

Since the two types of unit cell represent the same structure. Photonic band struc-
ture calculated by using unit cell type A and type B will be identical as shown in
Fig. 3.2(b). In this photonic band structure, a complete band gap is observed in be-
tween band 2 and band 3, around the normalized frequency 0.4, which is denoted
by the shaded region. Two lowest modes are colored in blue and red, respectively.
These two modes are completely degenerate in Γ − X and Γ − R regions. In this
study, we only focus on the two lowest modes and the complete band gap above
these two modes.

(a) (b)

FIGURE 3.2: (a) The first BZ of simple cubic lattice with high symmet-
ric points. The red line denotes the high symmetric path that the pho-
tonic band structure will be calculated. (b) Photonic band structure
of simple cubic PhC. Two lowest modes are labeled in blue and red,
respectively. A complete band gap (shaded region) is found around

normalized frequency 0.4.

By checking the polarization of the two lowest modes, we found that they have
orthogonal polarization at all k points in the first BZ. Especially, at the k points where
kz = 0, the two modes are well separated into in-plane and out-of-plane polariza-
tion. For example, At X point, the magnetic field of blue mode has only y compo-
nent and the electric field has only z component. For the red mode, magnetic field
has only z component and electric field has only y component. Similarly, at Y point,
the blue mode has Hx and Ez components, the red mode has Hz and Ex components.
At M point, the blue mode has Hx, Hy and Ez components, where Hx and Hy have
almost equal amplitude. The red mode has Hz and Ex, Ey components, where am-
plitude of Ex and Ey is almost the same. In general, at the k points where kz = 0, the
lowest mode, which is colored in blue, has mainly Hx, Hy, Ez components. The sec-
ond lowest mode, colored in red, has mainly Hz, Ex, Ey components. If considering
for magnetic field separately, the blue mode has in-plane polarization and red mode
has out-of-plane polarization. This is opposite for electric field. The polarization
of bulk modes will be inherited by the surface and hinge modes in the following
sections.

Figure 3.3 represents field distribution at X point of two types of unit cell. The
field distribution of unit cell type A is shown on the left side. The first row is for the
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Type A Type B

Band 1

Band 2

(+)

(+) (+)

(+)(-)

(-)

(-)

(-)

FIGURE 3.3: Field distribution at X point of unit cell type A (left side)
and unit cell type B (right side). The first row present for the lowest
mode (band 1). The second row present for the second lowest mode
(band 2). The +/− sign in the parenthesis represent for parity of each

field distribution.

lowest mode (band 1), the second row is for the second lowest mode (band 2). The
+/− sign in the parenthesis represent for parity +1/ − 1 of each field distribution.
It is easily seen that parity of magnetic field is +1 and that of electric field is −1. On
the right side, field distribution and the corresponding parity of unit cell type B are
presented. Contrary to unit cell type A, parity is −1 for magnetic field and +1 for
electric field.

3.3 Numerical Calculation of Zak Phase

In this section, we perform the numerical calculation of Zak phase in 3D PhCs. As
written in section 2.2, Berry phase of n-th band is obtained by the closed path integral

γn =
∮

1stBZ
An (k) dk, (3.1)

where An (k) is known as Berry connection and defined as

An (k) = i ⟨un
k(r)|∇k|un

k(r)⟩ . (3.2)

Here un
k(r) is periodic part of Bloch wave function.

Since Zak phase is an 1D integral in the first Brillouin zone, in any 3D systems,
it will depend on a 2D surface that is perpendicular to the integral direction. In this
section, we will show the calculation for Zak phase in kykz surface, it means that the
integral will be taken along kx direction. The method can be applied for calculating
Zak phase on other surfaces such as kxky and kxkz surfaces. Equation (3.1) can be
rewritten as

Zn (ky, kz
)
=
∫ π

−π
⟨un

kx ,ky,kz
(r) |i∂kx |un

kx ,ky,kz
(r)⟩ dkx. (3.3)
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The integral of Berry connection over −π ≤ kx ≤ π can be obtained by dividing
the first Brillouin zone into small segments then approximating the integral by sum-
ming the contributions of each segment. For example, if the kx direction in the first
Brillouin zone is divided into N0 segments (δkx = 2π

N0a ), in each small segment from
ki to ki+1 (i = 1, ..., N0), the Zak phase Zn(ki) is obtained by

e−iZn(ki) = ⟨un
ki
|un

ki+1
⟩ , (3.4)

In the above equation, we have used the following relation:

⟨un
ki
|un

ki+1
⟩ = 1 + ⟨un

ki
|
(
|un

ki+1
⟩ − |un

ki
⟩
)

= 1 − i2
⟨un

ki
|
(
|un

ki+1
⟩ − |un

ki
⟩
)

δkx
δkx

= 1 − iZn(ki)δkx

≈ e−iZn(ki)δkx ,

(3.5)

The total Zak phase is given by the summation of all Zn(ki) with i = 1, ..., N0, i.e.,

Zn =
N0

∑
i=1

Zn(ki)

=
N0

∑
i=1

[
− Im

(
log ⟨un

ki
|un

ki+1
⟩
)]

= − Im

(
log

N0

∏
i=1

⟨un
ki
|un

ki+1
⟩
)

.

(3.6)

From the above expression, we can approximate Eq. (3.3) by the following discrete
equation

Zn (k j, kl
)
= − Im

(
log

N0

∏
i=1

⟨un
ki ,k j,kl

(r) |un
ki+1,k j,kl

(r)⟩
)

. (3.7)

where ki, k j, kl are the discrete k-points of kx, ky, kz directions, respectively. Equa-
tion (3.7) indicates that Zak phase can be calculated for each

(
k j, kl

)
point on the kykz

surface. It is noted that Eq. (3.7) can be used if a band is isolated.
For a group of N connected bands, the scalar products are replaced by over-

lap matrices as shown in Eq. (2.11), where k1 and k2 containing three components:
k1 = (ki, k j, kl) and k2 = (ki+1, k j, kl). Total Berry connection (in matrix form) for kx
direction can be obtained by

Ŝ
(
k j, kl

)
=

N0

∏
i=1

S(ki ,k j,kl)(ki+1,k j,kl). (3.8)

To evaluate Zak phase for each band, we need the eigenvalues of the above Berry
connection matrix. Then Zak phase for n-th subband is given by

Zn (k j, kl
)
= − Im log (sn) , (3.9)

where sn is n-th eigenvalue of matrix Ŝ
(
k j, kl

)
.

In our simple cubic PhC, two bands below the complete gap are connected by the
degeneracies in Γ − X and Γ − R lines. Hence, we use overlap matrices to evaluate
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Zak phase for these two bands. In Fig. 3.4(a), left panel is the schematic of unit
cell type 1, middle and right panels are numerical results of its Zak phase on kykz
surface for band 1 and band 2, respectively. ky and kz axis are taken in the first BZ
−π/a ≤ ky, kz ≤ π/a. Yellow and purple colors indicate the π and 0 values of Zak
phase. Similarly, Fig. 3.4(b) is the schematic of unit cell type 2 (left), Zak phase on
kykz surface of the first band (middle), Zak phase on kykz surface of the second band
(right).

0

Band 1 Band 2
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Type A

Type B

(a)

(b)

FIGURE 3.4: Numerical calculation of Zak phase on kykz surface of
3D simple cubic PhC. (a) Unit cell type 1 (left), Zak phase of the first
band (middle), Zak phase of the second band (right). (b) Unit cell
type 2 (left), Zak phase of the first band (middle), Zak phase of the
second band (right). In both (a) and (b), yellow and purple colors

indicate that Zak phase is π and 0, respectively.

For the unit cell type A, Zak phase is π for the first band and 0 for the second
band at all points on kykz surface. For the unit cell type B, the value is 0 for the
first and and π for the second band at all points on kykz surface. These results are
consistent with the parity of the z component of EM waves at X point shown in the
Fig. 3.3. π or 0 values of Zak phase means that the photonic band is topological or
trivial, respectively. At each band, these two kinds of unit cell have opposite topo-
logical properties leading to the localization of EM field at the boundary between
them.

3.4 Topological Interface States

In this section, we examine an interface structure between two types of unit cell.
Figure 3.5(a) is the schematic of a supercell containing 8 unit cells type A and 8 unit
cells type B. Size of this supercell is 16a0, a0, a0 in x, y and z directions, respectively.
The corresponding first BZ of this super cell is shown in Fig. 3.5(b). To calculate
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projected photonic band structure, FEM is used and periodic boundary condition is
applied in all three direction.

(a)
(b)

(c)

FIGURE 3.5: (a) A schematic of a supercell of interface structure. It
consists of 8 unit cells type A and 8 unit cells type B. (b) The corre-
sponding first BZ of the supercell in (a). (c) Projected photonic band
structure of supercell. Grey lines denote bulk states, red lines indi-
cate interface states. The inset shows field distribution of the interface

state labeled by green arrow.

The calculation results for projected photonic band structure is shown in Fig. 3.5(c).
Grey lines indicate bulk states. Red and blue lines denote topological interface states,
where EM wave is highly localized at the interface and exponentially decays. They
are doubly degenerate because there are two equivalent interfaces in a supercell. The
inset shows magnetic field distribution of the interface state labeled by green arrow
(the top view from z direction).

Now we discuss about polarization of these interface states. The magnetic field
of red mode has mainly x component. It means that this modes has linear polariza-
tion in the direction perpendicular to the interface plane (out-of-plane polarization).
On the other hand, the magnetic field of blue mode has mainly Hy and Hz compo-
nents, which means that this mode has linear polarization in the direction paralleled
to the interface (in-plane polarization).

From the calculation of Zak phase in the previous section and the discussion
of polarization, we find that the red interface modes are derived from the second
lowest bulk modes (red bulk modes). They are the results of π difference in Zak
phase of band 2 between two types of unit cell. Similarly, the blue interface modes
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are derived from the lowest bulk modes (blue bulk mode), which are also due to the
π difference in Zak phase of band 1 between two types of unit cell. These topological
interface states are known as the first order topological states, being robust against
the defect and disorder.

3.5 Topological Hinge States

Since the x and y directions are equivalent in both unit cell type A and type B, Zak
phase on kxkz surface are the same as Zak phase on kykz surface. Therefore, the sec-
ond order topological states as hinge states are expected to be formed at the bound-
ary between two interfaces xz and yz.

(a) (b)

FIGURE 3.6: (a) Schematic top view of supercell containing 4 hinges.
Blue color indicates unit cell A, red color indicates unit cell B. (b) Pho-
tonic band structure for supercell in (a). Bulk, interface and hinge

states are colored in grey, blue and red, respectively.

To examine the dispersion of hinge states, we calculate photonic band structure
for the super cell in Fig. 3.6(a) by FEM. In the center of the supercell, 6 × 6 unit cells
type B are embedded. They are surrounded by unit cells type A. The supercell size is
12a0, 12a0, a0 in x, y and z directions, respectively. Figure 3.6(b) is the projected pho-
tonic band structure for the supercell. We label the bulk, interface and hinge states
in grey, blue and red color, respectively. The hinge states are four-times degenerate
because the supercell contains 4 equivalent hinges.

Figure 3.7 is the spatial field distribution of hinge states at normalized frequency
0.32. At each state, EM wave is highly localized at the hinge and exponentially
decays. However, bulk and interface states are slightly mixed with hinge states.
This is because the frequency range of bulk, interface and hinge states are over-
lapped. These localized hinge states have mainly Hx and Hy components with ap-
proximately the same amplitude. From this numerical result, we can confirm the
existence of second order topological states as hinge states in 3D simple cubic PhC.
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FIGURE 3.7: Magnetic field distribution of hinge states at normalized
frequency 0.32. The dash lines denote the interface between two type

of unit cell.

3.6 Summary and Discussion

In this Chapter, we have numerically studied EM wave states in 3D simple cubic
PhC by using FEM and FDM. The system contains dielectric blocks and air. The
IS and TRS are preserved in this structure. We observed a complete band gap in
between the second and the third band, which is around normalized frequency 0.41.
Below the complete band gap, there are two photonic bands, which are completely
degenerate in Γ − X and Γ − R lines. These two bands have orthogonal polarization
at all k points in the BZ.

We explained a numerical calculation method based on FDM to determine Zak
phase for two lowest bands. Since the simple cubic PhC is a 3D structure, Zak phase
is defined for each plane in the first BZ. The numerical results of Zak phase on kykz
plane are presented. For unit cell type A, band 1 is topological due to the π value of
Zak phase. The second band is trivial because Zak phase is 0. On the contrary, unit
cell type B has 0 Zak phase for the first band and π Zak phase for the second band.

The topological interface states are observed in the complete band gap due to
the π difference in Zak phase of each band. By checking the polarization of interface
states, we found out that each interface state corresponds to a bulk state below the
gap. These topological interface states are the first order topological states in 3D
simple cubic PhC.

Since x and y directions are equivalent in this simple cubic structure, Zak phase
on kxkz plane and on kykz plane are identical. Because both planes have π difference
in Zak phase at each band, topological hinge states are expected to be formed at
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the boundary between xz and yz plane (means hinge states in z direction). The
numerical results by FEM have confirmed this existence. These topological hinge
states are called sencond order topological states in 3D simple cubic PhC.

Our description of numerical calculation method for Zak phase in 3D PhC is a
priori not only restricted for photonic systems, but it is also applicable for other 3D
systems. The results of topological states in 3D simple cubic could be applied to 3D
control of wave propagation for communication and be essential for realizing robust
3D photonic circuits.
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Chapter 4

Woodpile Photonic Crystal

In this Chapter, we study EM wave propagation in 3D woodpile PhC. This structure
has a large complete band gap. The first order and second order topological states
are examined in this structure. Wilson loop in a photonic system without IS will
be presented. The selection rule for hinge states will also be pointed out based on
Wilson loop.

4.1 Woodpile Lattice

Diamond Cubic Lattice 1st layer

2nd layer

3rd layer

4th layer

(a)
(b)

FIGURE 4.1: (a) A schematic of diamond cubic lattice. (b) Separated
four layers of diamond cubic lattice which have the same thickness
(left). The top view of each layer (middle). The arrangement of di-
electric blocks in each layer, which follow the top view (right). Differ-

ent colors indicate different layer.

Figure 4.1(a) is the schematic of a unit cell of diamond cubic lattice. Lattice size
is a0, red dots represent for atoms. Woodpile PhC is inspired from the diamond
cubic lattice by dividing diamond cubic lattice into 4 layers, which have the same
thickness, as shown in Fig. 4.1(b) (left panels). Then, by looking at the top view of
each layer (middle panels), the dielectric blocks are arranged following the projected
position of atoms onto layers (right panels). The different colors of blocks indicate
different layers. The thickness of each block is 0.25a0, their width is 0.198a0. Refrac-
tive index of dielectric blocks is 3.6.

A conventional unit cell of woodpile PhC is a cubic containing 4 layers. The
top view is shown in Fig. 4.2(a). By repeating this conventional unit cell infinitely
in all x, y and z directions, we obtain the woodpile PhC. However, the diamond
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top view of conventional unit cell

primitive unit cell(a) (b)

FIGURE 4.2: (a) A schematic top view of conventional unit cell of
woodpile PhC. (b) A schematic of conventional unit cell (green lines).

a1, a2, a3 are 3 primitive lattice vectors of primitive unit cell.

cubic lattice has a primitive unit cell (smallest unit cell) labeled by green lines in
Fig. 4.2(b). Therefore, we can also define the primitive unit cell of woodpile PhC in
the same way as primitive unit cell of diamond cubic lattice. Three primitive vectors
of primitive unit cell are

a1 =

(
1
2

, 0,
1
2

)
a0,

a2 =

(
1
2

,
1
2

, 0
)

a0,

a3 =

(
0,

1
2

,
1
2

)
a0.

(4.1)

In the following sections of this chapter, we will use both conventional and prim-
itive unit cells to examine woodpile PhC.

4.2 Photonic Band Structure and the Symmetry of Lattice

Photonic band structure for woodpile PhC is calculated by using FEM. In Fig. 4.3(a),
we give a schematic of the first BZ of conventional unit cell. This BZ is a cubic and
similar to the BZ of simple cubic PhC. The red path indicate irreducible BZ. Photonic
band structure obtained by using conventional unit cell are shown in Fig. 4.3(b). A
complete band gap is observed around normalized frequency 0.38. This gap is much
larger than the complete band gap in simple cubic PhC. Below the band gap, there
are 8 photonic bands, which are connected by the degenerate points. Figure 4.3(c)
is the first BZ of primitive unit cell. Three primitive vectors in reciprocal space of
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primitive unit cell are

b1 =
2π

a0
(1,−1, 1) ,

b2 =
2π

a0
(1, 1,−1) ,

b3 =
2π

a0
(−1, 1, 1) .

(4.2)

The red path is irreducible BZ. Photonic band structure calculated by using primitive
unit cell is shown in Fig. 4.3(d). A complete band gap is also observed in the same
frequency range as in Fig. 4.3(b). Below this band gap, there are only 2 photonic
bands, while it has 8 bands in conventional unit cell. This is because conventional
unit cell is four times bigger than primitive unit cell.

(a)

(b)

(c)

(d)

FIGURE 4.3: (a) The first BZ of conventional unit cell. The red path in-
dicates irreducible BZ. (b) Photonic band structure of woodpile PhC,
calculated by using conventional unit cell. A large complete band
gap is observed around the normalized frequency 0.38. (c) The first
BZ of primitive unit cell. The red path indicates irreducible BZ. (d)
Photonic band structure of woodpile PhC, calculated by using primi-
tive unit cell. A complete band gap is observed in the same frequency

range as in (b).

This woodpile PhC is examine in the presence of TRS. However, even though the
mirror symmetry is still preserved, the IS is broken in this structure. Therefore, Zak
phase of this PhC will not be quantized to π and 0 [26]. In this case, the integral of
Berry connection over one direction in the first BZ will take the value from −π to π,
the set of all values on a plane in 3D systems is called Wilson loop. By determining
the evolution of Wilson loop, we can find out other topological invariants of 3D PhC.



36 Chapter 4. Woodpile Photonic Crystal

4.3 Wilson Loop on an Arbitrary Plane

In this section, we will explain the numerical method for calculating Wilson loop on
arbitrary planes in 3D Woodpile PhC. Similar to Zak phase, Wilson loop is also de-
fined for each photonic band. For woodpile PhC, if the conventional unit cell is used
to calculate Wilson loop, the situation will become similar to simple cubic lattice,
where the first BZ is a cubic. However, in this case, because there are 8 connected
photonic bands below the complete band gap, the overlap matrix in Eq. (2.11) will be
an 8 × 8 matrix. The numerical code will be very time-consuming and complicated.
Therefore, we will calculate Wilson loop by using primitive unit cell.

Here we note that three primitive vectors in real space are not perpendicular
to each other. Three vectors in reciprocal space are also not perpendicular to each
other, the first BZ is not a cubic or rectangular. Equation (3.3) can not be calculated
in the normal way. To generalize the Zak phase calculation of 3D woodpile PhC to
any arbitrary plane, the integral Eq. (3.3) should be taken on a volume of 3D BZ in
the direction that is transverse to the definite plane. In particular, if the arbitrary
2D plane in a 3D woodpile PhC is assumed to be invariant under translation in two
directions by two vectors T1 and T2. Their corresponding vectors in reciprocal space
are Γ1 and Γ2, respectively. The relationship between T and Γ is TiΓj = 2πδij, where
i, j = 1, 2. The plane that Zak phase will be calculated is formed by Γ1 and Γ2. The
integral direction will be defined as a vector Γ3 that is transverse to the (Γ1, Γ2) plane
and satisfy the following equation

Γ1 · (Γ2 × Γ3) = b1 · (b2 × b3) (4.3)

Equation 4.3 indicates that volume of the BZ formed by three vectors Γ1, Γ2, Γ3 is
equal to the volume of the original first BZ.

Now we will explain the calculation of Wilson loop on kykz surface of woodpile
PhC by using primitive unit cell. Figure 4.4 is the side view in yz plane of woodpile

FIGURE 4.4: Side view in yz plane of woodpile PhC. T1 and T2 are
two primitive vectors of yz plane (translation vectors of yz plane).
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PhC. This yz plane is periodic under two translation vectors

T1 =(0,
1
2

,
1
2
)a0

T2 =(0,−1
2

,
1
2
)a0

(4.4)

The corresponding vectors of T1 and T2 in reciprocal space are

Γ1 =
2π

a0
(0, 1, 1)

Γ2 =
2π

a0
(0,−1, 1)

(4.5)

The third vector Γ3 is perpendicular to Γ1, Γ2 and satisfy Eq. 4.3. So Γ3 is

Γ3 =
2π

a0
(2, 0, 0) (4.6)
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FIGURE 4.5: Wilson loop on kykz surface of woodpile PhC. The upper
panels present for Wilson loop of before shifting unit cell. The lower
panels present for Wilson loop of after shifting unit cell. The numbers
on each part of Wilson loop results represent for winding number.
"1" represents for the winding from −π to π, "-1" represents for the

winding from π to −π, 0 means there is no winding point.

Wilson loop in yz plane of woodpile PhC will be calculated depending on the
closed surface formed by Γ1 and Γ2. The 1D integral will be taken along Γ3 direc-
tion. Beside the original primitive unit cell that is defined in Fig. 4.2(b), we will also
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examine another primitive unit cell by shifting the origin of original primitive unit
cell by a0

4 , a0
4 , a0

2 in x, y and z direction, respectively. We call two types of unit cell are
before shifting unit cell and after shifting unit cell.

The results for Wilson loop on kykz surface of two lowest bands are shown in
Fig. 4.5. The upper panels present for before shifting unit cell. The lower panels
present for after shifting unit cell. Band 1 is on the left side and band 2 is on the right
side. Red and blue colors denotes the negative values (−π to 0) and positive values
(from 0 to π), respectively. Take the Γ point as origin, in the clock-wise direction, Wil-
son loop is varied from −π to π. At some points, it jumps from −π to π or from π to
−π which are called winding points. If the 2D BZ is devided into 4 parts as denoted
by the green lines, we can count the number of winding in each part. The number
1, −1 represent for the winding from −π to π, π to −π, respectively. 0 means that
there is no winding in this region. In Fig. 4.5, we show the winding number for
each band of woodpile PhC and for both before shifting and after shifting unit cell.
Making the comparison between two types of unit cell, winding numbers are always
opposite (zero and non-zero) in each corresponding part of 2D BZ. Therefore, if we
create an interface between two types of unit cell which is parallel to yz surface, the
topological interface states at the boundary can be expected.

4.4 Topological Interface States

In this section, we create the interface structure between before shifting and after
shifting unit cell which is parallel to yz surface. Figure 4.6(a) is a schematic of a

(a) (b) (c)

FIGURE 4.6: (a) A schematic of a supercell containing the interface
parallel to yz surface. This supercell contains 8 before shifting unit
cells and 8 after shifting unit cell. (b) Photonic band structure for the
supercell in (a) with periodic boundary condition in three directions.
The inset shows the first BZ for interface structure. Gray and red
lines indicate bulks states and boundary states. (c) Field profile of the

interface state denoted by green arrow.
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supercell containing 8 before shifting unit cells and 8 after shifting unit cells. The
interface between them is parallel to yz surface. By applying periodic boundary
condition in three directions, we calculate and obtain photonic band structure for
the supercell as shown in Fig. 4.6(b). Gray lines indicate bulk states, red lines present
interface states where EM wave is localized at the boundary between two types of
unit cell and decay exponentially. A field distribution at the interface state denoted
by green arrow is shown in Fig. 4.6(c).

In the photonic band structure, we obtain 8 interface states in the complete band
gap of woodpile PhC. They are doubly degenerate in almost k-points except in Γ− M
region. This is because of the broken IS in woodpile PhC. In between the interface
states, we also see a complete band gap around the normalized frequency 0.36. The
number of interface states can be explained by total winding number of each band
as shown in Fig. 4.5. For before shifting unit cell, total winding number for band 1 is
2, for band 2 is −2. It is similar for after shifting unit cell. Winding number is proved
to be equal to Chern number in ref [37]. Therefore, in both types of unit cell, Chern
number for band 1 is 2 and for band 2 is −2. Because the number of interface states
is equal to Chern number, each type of unit cell cause 4 interface states. That is why
there are 8 interface states inside the complete band gap of woodpile PhC.

The topological interface states are confirmed to be formed in woodpile PhC due
to the difference in winding numbers between two types of unit cell.

4.5 Topological Hinge States

In this section, we examine 1D hinge formed by woodpile PhC, which is parallel to
z direction. Figure 4.7(a) is the schematic of investigated supercell. The supercell

(a)
(b)

FIGURE 4.7: (a) A schematic of investigated supercell. The supercell
size is 12a0, 12a0, a0 in x, y and z directions, respectively. In the center,
6× 6 before shifting unit cells are embedded, which is surrounded by
3 layers of after shifting unit cell. (b) Photonic band structure of the
supercell in (a). Gray lines indicate bulk states, green and blue lines

are interface states, red lines denotes hinge states.
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size is 12a0, 12a0, a0 in x, y and z directions, respectively. In the center, 6 × 6 before
shifting unit cells are embedded, which is surrounded by 3 layers of after shifting
unit cell. This supercell contains 4 hinges, in which 2 opposite hinges are equiva-
lent. We calculate photonic band structure for the supercell with periodic boundary
condition in 3 directions by FEM. Result is shown in Fig. 4.7(b). The gray lines are
bulk states, interface states are labeled by green and blue lines. In the band gap, we
obtain 2 hinge states (red lines), each state is doubly degenerate. These hinge states
are in between the interface states and isolated from bulk states.

FIGURE 4.8: Magnetic field distribution of hinge states at k =
(0, 0, 0.4). The dash lines indicate the boundary between two types
of unit cell. Two upper panels are degenerate and two lower panel

are degenerate.

Figure 4.8 is the magnetic field distribution of hinge states at k = (0, 0, 0.4). From
these field profiles, we see that the double degeneracy of hinge states is because the
two opposite hinges in the supercell are equivalent. However, hinge states only
appear for upper right and lower left corners. There is no hinge states at other two
corners. Because the hinges are formed by two interfaces parallel to yz and xz plane,
this hinge states selection rule can be explained by the Wilson loop on kykz surface
and kxkz surface.

Similar to the calculation of Wilson loop on kykz surface in the previous section,
we can also calculate Wilson loop on kxkz surface and determine winding number for
each part of 2D BZ by the same method for both before shifting and after shifting unit
cells. The results are presented in Fig. 4.9. Γ′

1, Γ′
2, Γ′

3 are three vectors in reciprocal
space used to calculate Wilson loop on kxkz surface. The values of Wilson loop have
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FIGURE 4.9: Wilson loop on kxkz surface of woodpile PhC. The upper
panels present for Wilson loop of before shifting unit cell. The lower
panels present for Wilson loop of after shifting unit cell. The numbers
on each part of Wilson loop results represent for winding number.
"1" represents for the winding from −π to π, "-1" represents for the

winding from π to −π, 0 means there is no winding point.

opposite sign at all k-points in 2D BZ compared with Wilson loop on kykz surface.
To explain for the hinge states selection rule, we create matrices which represent the
condition of each interface between two types of unit cell. As shown in Fig. 4.7(a),
6× 6 before shifting unit cells are arranged in the center of the supercell, surrounded
by three layers of after shifting unit cells. The matrix represented for each interface

is a 2 × 1 matrix
[

L
R

]
. If we go along the propagation direction of injection light,

L presents for winding number of the unit cell on the left side and R presents for
winding number of the unit cell on the right side.

In Fig. 4.10(a), we assume that light propagating forward or backward x/ y direc-
tions will have positive and negative kx/ ky, respectively. Fig. 4.10(b) is the schematic
of light propagating from interfaces to 4 hinges of the supercell with positive k vec-

tors (blue text) and negative k vectors (red text). In band 1, the
[

L
R

]
matrices for

each interface of the supercell when kz > 0 and kz < 0 are shown in Fig. 4.10(c) and

(d), respectively. For both kz > 0 and kz < 0, we take the dot product of two
[

L
R

]
matrices, which form the hinges. For upper right and lower left hinges, the product
are 0. For upper left and lower right hinges, the products are non-zero. Therefore,
the condition for the emergence of topological hinge states in this woodpile PhC is
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FIGURE 4.10: (a) Coordination of real space. Assuming that light
propagating forward and backward x/y directions will have positive
and negative kx/ ky, respectively. (b) Schematic of light propagating

to the hinges from two surfaces. (c)
[

L
R

]
matrix of each interface when

kz > 0. (d)
[

L
R

]
matrix of each interface when kz < 0. In both (c) and

(d), the matrices are for band 1.

that the product of
[

L
R

]
matrices of two interface forming the hinges is equal to 0.

To make this statement more coherent, we also present another case, where light is
injected to the hinge from one interface, then reflected to other hinge as shown in
Fig. 4.11.

Similar to the previous case, we also assume that the wave vector is positive or
negative when the propagation direction of EM wave is forward or backward each
axis as shown in Fig. 4.11(a). The schematic of propagation direction of EM wave

at each hinge are shown in Fig. 4.11(b). We also point out the
[

L
R

]
matrix of band 1

for each interface where kz > 0 (Fig. 4.11(c)) and kz < 0 (Fig. 4.11(d)). The product
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FIGURE 4.11: (a) Coordination of real space. Assuming that light
propagating forward and backward x/y directions will have positive
and negative kx/ ky, respectively. (b) Schematic of light propagating

to the hinges from one surface then reflected to other surface. (c)
[

L
R

]
matrix of each interface when kz > 0. (d)

[
L
R

]
matrix of each interface

when kz < 0. In both (c) and (d), the matrices are for band 1.

of two
[

L
R

]
matrices which form the hinges are also 0 for upper right, lower left

hinges and non-zero for upper left, lower right hinges. Therefore, the condition for
the emergence of hinge states is similar to the previous case.

For both two case in Fig. 4.10 and Fig. 4.11, we obtain the same selection rule for

the hinge states. When the product of
[

L
R

]
matrices is 0, hinge states appear. When

it is non-zero, hinge states are absence. Considering the dot products, if it is 0, for
example [

0
−1

]
·
[

1
0

]
= 0 ∗ 1 + (−1) ∗ 0 = 0 (4.7)
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it indicates the boundary between a topological interface (winding number is 1/− 1)
and a trivial interface (winding number is 0). On the other hand, if the products is
non-zero, for example, [

0
−1

]
·
[

0
1

]
= 0 ∗ 0 + (−1) ∗ 1 = −1 (4.8)

it denotes the boundary between two topological interface (winding number 1 and
−1) or two trivial interface (winding number 0).

We have presented the conditions for the emergence of hinge states in band 1. In
band 2, doing similar manners, we also got the same conditions as in band 1.

4.6 Summary and Discussion

In this Chapter, we have numerically studied EM wave states in 3D woodpile PhC by
using FEM and FDM. The systems contains dielectric blocks and air, which follows
the diamond cubic lattice. TRS is preserved in this photonic structure. However, IS is
broken. We obtain a large complete band gap in this woodpile PhC, which is around
the normalized frequency 0.38. Below the complete band gap, there are 8 connected
photonic bands for conventional unit cell and there are 2 connected photonic bands
for primitive unit cell. This is because the volume of conventional unit cell is 4 times
bigger than the volume of primitive unit cell.

We used the primitive unit cell to numerically calculate Wilson loop on different
2D surfaces of woodpile PhC. Compared with simple cubic PhC, woodpile PhC’s
primitive unit cell is not a cubic or rectangle. Three primitive vectors are not orthog-
onal to each other. Therefore, the original first BZ can not be used to determined
Wilson loop. A new BZ is redefined to calculate Wilson loop for each band of wood-
pile PhC. Since IS is broken in this structure, Wilson loop is varied from −π to π,
forming the winding number. For both types of unit cell, Wilson loop on kykz sur-
face of each band is different in each part of the 2D BZ. This causes the topological
transition at the interface between two types of unit cell.

Topological interface states is observed in the complete band gap of woodpile
PhC. The number of interface states is explained by the winding number of each
photonic band. We also obtain a complete band gap in between the interface states
of bulk-interface correspondence. Topological hinge states in z direction is observed
in the gap between interface states. These hinge is formed by an interface paralleled
to yz surface and an interface paralleled to xz surface. Wilson loop on xz surface is
also involved in the formation of topological hinge states.

The selection rule for topological hinge states is pointed out by a mathematical
representation of each interface. Hinge states emerge when the product of 2 matrices
represented for two interfaces which form the hinge is 0. If the product of these two
matrices is non-zero, topological hinge states are absent. These topological hinge
states are isolated from other states and inside the band gap between interface states.

Our numerical results of wave propagation in 3D woodpile PhC are essential
and put a step toward the experimental realization of topological waveguide in 3D
PhCs. They are applicable in the communication technology.
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Chapter 5

Conclusions and Outlooks

Crystals are an important class of natural or artificial materials that can be utilized to
manipulate variety of physical waves by their interference in periodic structures. In
crystals, waves can propagate through, be reflected, confined or guided in specific
ways. The behaviours of waves, therefore, are very complicated. There are still many
queries about the topic of wave in crystals that remain unanswered. In this doctoral
thesis, we numerically and theoretically analyze the propagation and confinement
of EM waves in PhC structure, which allow us to better understand about waves
behaviour in crystals. Although our results are illustrated on and applied for EM
wave in specific 2D and 3D PhCs, many of them are applicable for other types of
wave in general crystals. Here I make a summary, present the conclusions for this
thesis and outlooks for future studies.

In chapter 1, we introduce the topic of EM wave propagation in PhC and the
mathematical demonstration of EM waves in PhC. We also make a brief review of
photonic band structure and photonic band gaps. We conclude this chapter by ex-
plaining the numerical methods which are used to determine propagation of EM
wave in PhC.

In chapter 2, we introduce about the mathematical concept of "topology" and the
application of "topology" in physics. The topological invariants are mentioned in this
chapter, which are the essential physical quantities to examine topological properties
of systems. In the end of this chapter, we examine a 2D topological PhC following
BPN network structure. The topological edge states and topological corner states
are found in this BPN PhC due to the non-trivial Zak phase. To our knowledge, the
topological edge states surpass any other candidates in the application to waveguide
devices by their low-loss energy property. The topological confinement of EM wave
at corners is also a strong candidate among many wave confinements methods. By
examining different corner structures in BPN PhC, we point out the condition for the
emergence of topological corner states based on Zak phase and the frequency range
of topological edge states. Compared the results with graphene-like PhCs, our PhC
structure can exhibit topological properties without breaking the IS.

In chapter 3, we extend our studies to a 3D simple cubic PhC, which is in the
presence of TRS and IS. A numerical methods for calculating Zak phase in 3D PhC is
introduced in this chapter. The numerical results are consistent with the polarization
of EM wave in the crystal. Due to non-trivial Zak phase, we examined and obtained
2D topological interface states in simple cubic PhC. The second order topological
states as hinge states are also numerically observed in this structure. The numerical
method that we develop for calculating Zak phase is a priori not restricted for only
photonic systems, but it can also be applied for other systems. Our calculation will
also help us deeply under stand the topological invariants in 3D systems. Because
this simple cubic structure is highly symmetric, the third order topological states
as the 0D corner states are expected to be observed. However, since the frequency
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ranges for bulk and interface states almost overlap the complete band gap, hinge
states are found to be mixed with other states. The 0D corner states are also be mixed
with other states, which are very difficult to be detected by numerical calculation.

Chapter 4 is spent for the studies of topological states in 3D woodpile PhC, where
TRS is preserved but IS is broken. Unlike simple cubic lattice, Zak phase in wood-
pile PhC is not quantized to π and 0, it is varied from −π to π and exhibit winding
properties. Therefore, the topological invariants in this structure is not Zak phase, it
is winding number, which can be determined via Wilson loop. When winding num-
ber is 0 or non-zero, the systems is topologically trivial or non-trivial, respectively.
The topological interface states are numerically observed in woodpile PhC due to
the finite difference in winding number. In the end of this chapter, we present the
numerical observation of second order topological states as hinge states in wood-
pile PhC. Because the IS is absence, there is a selection rule for the emergence of
topological hinge states in this structure. We pointed out this selection rule by a
mathematical description. The 0D corner states in this woodpile PhC are not found
in this woodpile structure due to the non-equivalent of hinges in 3 directions.

We have several propositions for extension and continuation of our studies. It
would be very interesting if we can apply our Zak phase calculation method to a
continuum media instead of periodic structure. From this point of view, we can
examine the topological wave confinement in the continuum media.

For the BPN PhC, there are several ways to modify the original BPN structure.
We have examined one of them in this thesis and obtained topological edge states
in several ribbon structures. It is possible to try other modification ways. We may
obtained topological waveguide in other ribbon structures. This will be very useful
for guiding light in several directions.

It will be interesting if we can observe 0D corner states in 3D PhCs. An obvious
extension here is to optimize the 3D simple cubic structure to look for the 0D corner
states. Beyond that, we will also investigate other PhC structure in the same manner
as we did for simple cubic and woodpile PhCs.

Beside the studies of topological wave functions we did in this thesis, the topo-
logical properties of complex eigenvalues can also be studied in non-hermitian sys-
tems. The complex eigenvalues indicate gain and loss of the systems. By studying
the topological properties of complex eigenvalues, we can pave the way to the opti-
cal devices where the gain and loss are controllable.
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Appendix A

Zak phase of 1D Photonic Crystal

A.1 One-dimensional Photonic Crystal

A.1.1 Eigenvalue problem in 1D photonic crystal

unit cell
FIGURE A.1: One-dimensional photonic crystal. Dielectric slabs are
arranged periodically along z direction. Width of each slab is d, lattice

constant is a. The red dash line denote a unit cell.

The simplest example of PhCs is an 1D dielectric slabs penetrating in air back-
ground, where electromagnetic waves are assumed to propagate along z-axis. We
consider that electric field and magnetic field are polarized along x and y direction,
respectively. There are two basic polarizations, in this case, transverse electric (TE)
modes and transverse magnetic (TM) modes become essentially identical.

Figure 1.4 is the schematic of one-dimensional photonic crystal. Dielectric slabs
with ε > 1 and air slabs with ε = 1 are arranged periodically in z direction. In x and
y direction, dielectric constant is homogeneous. Lattice constant is a, air slab width
is d, dielectric slab width is a − d. Electric field propagates along z direction.

From Eq. (1.11), and the use of the relationship

∇×∇× E (r) = ∇ (∇ · E (r))−∇2E (r) , (A.1)
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we obtain wave equation for transverse magnetic field as follow

− 1
ε (r)

∇2 E (r) =
ω2

c2 E (r) . (A.2)

Especially, for 1D PhCs

− 1
ε (z)

∂2

∂z2 E (z) =
ω2

c2 E (z) , (A.3)

Similarly, the eigenvalue equation for magnetic field of 1D PhC can be derive
from Eq. (1.12) and be written as

(
∂

∂z
1

ε (z)

)(
− ∂

∂z
H (z)

)
− 1

ε (z)
∂2

∂z2 H (z) =
ω2

c2 H (z) (A.4)

with z is propagating direction.
Now, we apply Fourier series expansion and Bloch theorem for wave function

and dielectric constant.

Ekz (z) =
∞

∑
n=−∞

κe
nei 2πn

a zeikzz, (A.5)

1
ε (z)

=
∞

∑
m=−∞

κε
mei 2πm

a z. (A.6)

After Fourier expansion, we substitute the above two equations back to Eq. (A.3)

∞

∑
n=−∞

∞

∑
m=−∞

(
kz +

2πn
a

)2

κe
nκε

mei 2πm
a zei 2πn

a zeikzz =
ω2

c2

∞

∑
n=−∞

κe
nei 2πn

a zeikzz, (A.7)

To simplify, both sides of above equation are divided by eikzz then multiplied with

the orthogonal function e−i 2πp
a z and integrated over the whole unit cell

∫ a/2

−a/2
dz.

∞

∑
n=−∞

∞

∑
m=−∞

(
kz +

2πn
a

)2

κe
nκε

mei 2πm
a zei 2πn

a ze−i 2πp
a z =

ω2

c2

∞

∑
n=−∞

κe
nei 2πn

a ze−i 2πp
a z (A.8)

∞

∑
n=−∞

∞

∑
m=−∞

(
kz +

2πn
a

)2

κe
nκε

me−i 2π(p−n−m)
a z =

ω2

c2

∞

∑
n=−∞

κe
ne−i 2π(p−n)

a z (A.9)

∞

∑
n=−∞

∞

∑
m=−∞

(
kz +

2πn
a

)2

κe
nκε

mδp−n−m=0 =
ω2

c2

∞

∑
n=−∞

κe
nδp−n=0 (A.10)

∞

∑
n=−∞

(
kz +

2πn
a

)2

κε
p−nκe

n =
ω2

c2 κe
p, (A.11)

We define a matrix M by
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Mpn =
∞

∑
n=−∞

(
kz +

2πn
a

)2

κε
p−n. (A.12)

This matrix is Hermitian:

Mpn = M∗
pn. (A.13)

The eigenvalue equation takes the final form of Eq. (A.11). Both indices p, n can
be positive or negative integers. To solve this eigenvalue equation, we need to know
Fourier expansion coefficients of dielectric constant κε

m.
The dielectric function for 1D PhC is

ε (z) =

{
1 |z| < d/2,
ε1 d/2 < |z| < a/2.

(A.14)

To calculate Fourier expansion coefficients of dielectric constant, we divide the
unit cell into three parts. From −a/2 to −d/2, ε = ε1 > 1; from −d/2 to d/2,
ε = ε0 = 1; from d/2 to a/2, ε = ε1 > 1. Depending on where we define z = 0, the
result is a little bit different, but the difference has no effect on energy dispersion. By
using inverse Fourier transform, we obtained coefficients κε

m as following

κε
m =

1
a

∫ a/2

−a/2

1
ε (z)

e−i 2πm
a zdz

=
1
a

∫ −d/2

−a/2

1
ε (z)

e−i 2πm
a zdz +

1
a

∫ d/2

−d/2

1
ε (z)

e−i 2πm
a zdz +

1
a

∫ a/2

d/2

1
ε (z)

e−i 2πm
a zdz

=
1
a

−a
i2πm

(
1
ε1

e−i 2πm
a z
∣∣∣∣−d/2

−a/2
+ e−i 2πm

a z
∣∣∣∣d/2

−d/2
+

1
ε1

e−i 2πm
a z
∣∣∣∣a/2

d/2

)

=
1
a

−a
i2πm

(
1
ε1

ei πmd
a − 1

ε1
eiπm + e−i πmd

a − ei πmd
a +

1
ε1

e−iπm − 1
ε1

e−i πmd
a

)
=

1
a

a
i2πm

[
1
ε1

(
e−i πmd

a − ei πmd
a

)
− 1

ε1

(
e−iπm − eiπm

)
+
(

ei πmd
a − e−i πmd

a

)]
=

1
a

a
i2πm

[
−2i

1
ε1

sin
πmd

a
+ 2i

1
ε1

sin (πm) + 2i sin
πmd

a

]
=

1
πm

[
− 1

ε1
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πmd
a

+
1
ε1

sin (πm) + sin
πmd

a

]
=

1
ε1

sinc (πm) +

(
1 − 1

ε1

)
d
a

sinc
πmd

a

=
1
ε1

δm,0 +

(
1 − 1

ε1

)
d
a

sinc
πmd

a
,

where sinc (x) = sin(x)
x .

Now we have enough information to diagonalize matrix M numerically. Af-
ter diagonalization, the eigenvalue ω2

c2 and the eigenvectors κe
n can be known. The

squared root of eigenvalues give the information about energy dispersion, eigenvec-
tors give information about field distribution in the PhC. The calculation here was
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done by using plane wave expansion method and the computational language used
is Python.

A.1.2 Numerical results

The result of solving eigenvalue equation (A.11) is shown as photonic band structure
as in Fig. A.2(b) with d = 0.2a, ε1 = 12.25. x-axis is wave vector k, y-axis is frequency
ωa
2πc

. This frequency is called normalized frequency because it is only depend on the
period of structure. As a results, it remains unchanged if we change the scale of PhC.

If a 1D homogeneous structure is considered, the result for eigenfrequencies is
ck as shown in Fig. A.2(a). Eigenfrequencies fill from 0 and there is no band gap for
this structure. However, it can be easily see that eigenfrequencies of 1D PhC also
starts from 0 at k = 0, the bands and band gaps appear alternately. Wave can not
propagate into the PhC in the frequency range of band gap.

(a) (b)

FIGURE A.2: Photonic band structure for wave propagate in uniform
material ε = 1 (a) and in a 1D PhC with d/a = 0.2 (b) in the first BZ.

The shaded regions are band gap.

A.2 Zak Phase of 1D Photonic Crystal

In 1D PhC, Zak phase is determined for each individual band by integrating Berry
connection over the first BZ. In this section, we show the numerical calculation re-
sults for Zak phase of 1D PhC, which is mentioned in previous section.

In Fig. A.3, Zak phase for eight lowest bands of 1D PhC are labeled green. They
are quantized to π and 0 because IS is preserved in this PhC structure [26]. π val-
ues indicate topologically non-trivial bands. 0 values mean that photonic bands are
topologically trivial.
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FIGURE A.3: Zak phase of 1D PhC, where d/a = 0.2, ε = 12.25, are
shown by green text in each band.





53

Appendix B

Topological States of Honeycomb
Photonic Crystal

In this appendix we will consider a photonic structure following honeycomb lattice
where IS is broken. We examine two inversed structures where their topological
invariants are opposite. Then we numerically examine topological interface states
which emerge at the boundary between two inversed structures.

B.1 Honeycomb Photonic Crystal and Berry Curvature

Figure B.1 shows a example of 2D honeycomb PhC with broken inversion symmetry,
where two dielectric rods in unit cells (call rod A and rod B) have different radii. We
assume that the rods are made of YIG, i.e., the dielectric constant is ε = 15. The
lattice constant is a0 = 500nm and radius size is rA = 0.1a0 and rB = 0.0825a0,
respectively.

FIGURE B.1: 2D honeycomb PhC with broken inversion symmetry,
where two rods in unit cells have the different radii.

The eigenvalue equation for TM modes is calculated by using COMSOL Multi-
physics and the results of photonic band structure is shown in Fig. B.2(b). Compared
to photonic band structure of the normal honeycomb PhC in Fig. B.2(a) where IS is
preserved, it is found that the degeneracies of Dirac cones at K and K′ points are
lifted owing to the broken inversion symmetry. Thus, a photonic band gap between
the first and the second band is opened around normalized frequency 0.4 together
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with some gaps at higher frequency of 0.58, 0.80 and 0.96. In this part, we will focus
on the properties of lifting the Dirac cones at two valleys K and K′.

(a) (b)

FIGURE B.2: (a) Photonic band structure for honeycomb PhC, where
IS is preserved. (b)Photonic band structure for honeycomb PhC in

broken IS with parameters rA = 0.1a0, rB = 0.0825a0, ε = 15.

FIGURE B.3: The radius size dependence of eigenfrequency for the 7
lowest EM modes at high symmetric points.

To examine the first band gap, we will determine how the band structure change
when the rods size rA and rB are tuned. Fig. B.3 shows the radius size dependence of
eigenfrequency for the 7 lowest EM modes at high symmetric points Γ, K, M, where
the summation of rA and rB is kept constant rA + rB = 0.183. When rA = rB, band
inversion appears at K point. We can also confirm from Fig. B.3 that if rA and
rB value are interchanged, photonic band structure remains unchanged but some
states at K point are interchanged due to the band inversion. Because of this prop-
erty, we consider two inverted PhC structures, which have the unit cell as shown in
Fig. B.4(a). PhC1 has two rods in each unit cell with radii size rA and rB placed in
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the air medium. PhC2 can be obtained by interchanging the position of two dielec-
tric rods in PhC1. These two PhC structures share the same photonic band structure
given in Fig. B.2(b).

A A

B B

A A

B B

PhC1 PhC2

FIGURE B.4: Two inverted photonic structure which share the same
photonic band structure in Fig. B.2(b).

Fig. B.4(b) gives the Berry curvature distribution in the first BZ of PhC1 and
PhC2. Due to the broken inversion symmetry, the Berry curvature around two val-
leys K and K′ have different distribution. For PhC1, Berry curvature distribution
around K point have positive value, that around K′ point have the same magni-
tude but opposite sign. PhC2 has reversed Berry curvature distribution compared
to PhC1.

B.2 Topological Interface States

Total Chern number of the first band of the two PhCs is 0 because of preserved time
reversal symmetry. We can also calculate valley-Chern number around K and K′

point by integrating Berry curvature over one half of BZ around each point. The
valley-Chern number C of PhC1 for two valleys are C1

K = 1/2, C1
K′ = −1/2, while

for PhC2, C2
K = −1/2, C2

K′ = 1/2. Because of this property, it will promise a phase
transition at the interface between PhC1 and PhC2 when we make a connection be-
tween them.

The valley-Chern number difference at the interface is quantized as

∆CK1→2 = 1/2 − (−1/2) = 1, (B.1)
∆CK′

1→2
= −1/2 − 1/2 = −1, (B.2)

∆CK2→1 = −1/2 − 1/2 = −1, (B.3)
∆CK′

2→1
= 1/2 − (−1/2) = 1. (B.4)

where ∆CK1→2 or ∆CK2→1 indicate the interface formed by PhC1 stands below or
above PhC2. As a result of quantized Chern number, phase transition occurs at
the interface between two PhCs leading to the highly localization of electric field at
the domain wall. This is called the interface states with frequencies in the common
gap region. How the electric field distribute at the domain wall depends on the in-
terface structure. There are two possible zigzag interface structure. As can be seen
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in Fig. B.5(b), interface type 1 is defined as big dielectric rods couple together at the
interface. Interface type 2 is the structure where small dielectric rods couple together
at the domain wall.

Type 1 Type 2

Type 1

Type 2

FIGURE B.5: (a) Bulk-edge correspondence around the first band gap
of interface structure. The blue dot line is the interface states for the
supercell structure where PhC1 is placed under PhC2 (interface type
1). The red dot line is the interface states for the supercell structure
where PhC2 is placed under PhC1 (interface type 2). (b)Two inter-
face structures and their corresponding field distribution at the mid-

dle and the edge of first BZ.

Figure B.5(a) shows bulk-edge correspondence of the supercell structure contain-
ing both PhC1 and PhC2 as indicated in Fig. B.5(b), which is calculated for zigzag
edge. The structure is periodic in both a1 and a2 directions. Grey lines represent
bulk states around the gap between the first and the second band. The blue dot
line is the interface states for the interface structure type 1. On the other hand, the
red dot line is the interface states for the interface structure type 2. Electric field is
highly localized at the domain wall between two PhCs at k = π

a0
and much more

penetrate into the bulk at k = 0 as shown in Fig. B.5(b).While in the former case,
electric field profile expresses as a node at the interface, the latter case’s electric field
profile manifests as an anti-node.

B.3 Topological Corner States

In Fig. B.5(b), we indicate that the interface is parallel to a1. If we rearrange the su-
percell structure as PhC1 or PhC2 is on the left side and the remaining PhC is on the
right side, the interface becomes parallel to a2. The black bold lines in Fig. B.6 indi-
cate the 1D first BZ in each direction. As can be seen in Fig. B.6(a), for the interface
type 1, if we project all the k-points to the first BZ, at the side of negative k-value,
valley K is projected (blue dot) leading to Chern number for this side is 1, while at
opposite side, valley K′ is projected (red dot) and the corresponding Chern number
is −1. Similarly, if the interface is parallel to a2 axis, as shown in Fig. B.6(b), the pro-
jection of K (blue dot) and K′ points (red dot) are at positive and negative k value,
respectively. Therefore, Chern number for the negative and positive side is −1 and
1, respectively. For interface type 2, the explanation is similar to for interface type 1.

The two interfaces in Fig. B.6 can formed two types of corner, which are 60◦ cor-
ner and 120◦ corner. For the 60◦ corner, two interfaces have opposite Chern number.
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interface parallel to interface parallel to

FIGURE B.6: If the common interface of two PhCs is parallel to ai
direction (i = 1, 2), the first BZ of the interface structure will parallel
to ai. (a) interface direction is parallel to a1. (b) interface direction
is parallel to a2. In both (a) and (b), the 1D first BZ is described by
black bold line, blue (red) dots indicate the projection of K(K′) points

on to the first BZ.

For the 120◦ corner, two interface have the same Chern number. Because of the fi-
nite difference in Chern number between two interface, we expect the emergence of
topological corner states in 60◦ corner.

Solution number

FIGURE B.7: (a) Frequency spectrum for the case of PhC2 surrounded
by PhC1. The red dots indicate frequencies for corner states. (b) Field

distribution in the three 60◦ corner states.
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Solution number

FIGURE B.8: (a) Frequency spectrum for the case of PhC1 surrounded
by PhC2. The red dots indicate frequencies for corner states. (b) Field

distribution in the three 60◦ corner states.

Here we propose a PhC structure where the triangular shape of PhC1 is sur-
rounded by PhC2 and vice versa. These structure have three 60◦ corners and three
common interfaces.

The two figures above are frequency spectrum and field profile for the corner
states. Fig. B.7 shows the corner states for PhC structure where three type 1 interfaces
form equilateral triangle. Three corner states were observed with their frequencies in
the gap region. Electric field in each state is localized at the sub-lattice at the corner
then decay exponentially. On the contrary, when PhC1 is surrounded by PhC2, the
interface is type 2 as shown in Fig. B.8. The number of corner state is the same as the
former case and their frequencies are also in the gap. However, electric field now is
localized at the sub-lattice next to the corner then also exponentially decay.

We have numerically observed topological corner states at 60◦ corner for two
types of structure. These states are useful for the confinement of EM wave.



59

References

[1] W. H. BRAGG. “X-rays and Crystals”. In: Nature 90.2243 (1912), pp. 219–219.
DOI: 10.1038/090219a0. URL: https://doi.org/10.1038/090219a0.

[2] William Henry Bragg and William Lawrence Bragg. “The reflection of X-rays
by crystals”. In: Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character 88.605 (1913), pp. 428–438. DOI:
10.1098/rspa.1913.0040. eprint: https://royalsocietypublishing.org/
doi/pdf/10.1098/rspa.1913.0040. URL: https://royalsocietypublishing.
org/doi/abs/10.1098/rspa.1913.0040.

[3] Eli Yablonovitch. “Inhibited Spontaneous Emission in Solid-State Physics and
Electronics”. In: Phys. Rev. Lett. 58 (20 May 1987), pp. 2059–2062. DOI: 10 .
1103/PhysRevLett.58.2059. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.58.2059.

[4] Sajeev John. “Strong localization of photons in certain disordered dielectric
superlattices”. In: Phys. Rev. Lett. 58 (23 June 1987), pp. 2486–2489. DOI: 10.
1103/PhysRevLett.58.2486. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.58.2486.

[5] J.D. Joannopoulos et al. Photonic Crystals: Molding the Flow of Light (Second Edi-
tion). Princeton University Press, 2011. ISBN: 9781400828241. URL: https://
books.google.co.jp/books?id=QrTNslcjlZEC.

[6] Lord Rayleigh Sec. R. S. “XVII. On the maintenance of vibrations by forces of
double frequency, and on the propagation of waves through a medium en-
dowed with a periodic structure”. In: The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science 24.147 (1887), pp. 145–159. DOI: 10 .
1080/14786448708628074. eprint: https://doi.org/10.1080/14786448708628074.
URL: https://doi.org/10.1080/14786448708628074.

[7] E. Yablonovitch, T. J. Gmitter, and K. M. Leung. “Photonic band structure: The
face-centered-cubic case employing nonspherical atoms”. In: Phys. Rev. Lett.
67 (17 Oct. 1991), pp. 2295–2298. DOI: 10.1103/PhysRevLett.67.2295. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.67.2295.

[8] N. David Mermin Neil W. Ashcroft. Solid State Physics. New York: Holt, Rine-
hart and Winston, 1976. ISBN: 978-0-03-083993-1. URL: https://books.google.
co.jp/books/about/Solid_State_Physics.html?id=1C9HAQAAIAAJ&redir_
esc=y.

[9] John David Jackson. Classical Electrodynamics, 3rd edition. New York: Wiley,
1998. ISBN: 978-0-471-30932-1. URL: https://books.google.co.jp/books/
about/Classical_Electrodynamics.html?id=FOBBEAAAQBAJ&redir_esc=y.

[10] Felix Bloch. “Über die Quantenmechanik der Elektronen in Kristallgittern”. In:
Zeitschrift für Physik 52.7 (1929), pp. 555–600. DOI: 10.1007/BF01339455. URL:
https://doi.org/10.1007/BF01339455.

https://doi.org/10.1038/090219a0
https://doi.org/10.1038/090219a0
https://doi.org/10.1098/rspa.1913.0040
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1913.0040
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1913.0040
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1913.0040
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1913.0040
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://link.aps.org/doi/10.1103/PhysRevLett.58.2059
https://link.aps.org/doi/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://link.aps.org/doi/10.1103/PhysRevLett.58.2486
https://link.aps.org/doi/10.1103/PhysRevLett.58.2486
https://books.google.co.jp/books?id=QrTNslcjlZEC
https://books.google.co.jp/books?id=QrTNslcjlZEC
https://doi.org/10.1080/14786448708628074
https://doi.org/10.1080/14786448708628074
https://doi.org/10.1080/14786448708628074
https://doi.org/10.1080/14786448708628074
https://doi.org/10.1103/PhysRevLett.67.2295
https://link.aps.org/doi/10.1103/PhysRevLett.67.2295
https://books.google.co.jp/books/about/Solid_State_Physics.html?id=1C9HAQAAIAAJ&redir_esc=y
https://books.google.co.jp/books/about/Solid_State_Physics.html?id=1C9HAQAAIAAJ&redir_esc=y
https://books.google.co.jp/books/about/Solid_State_Physics.html?id=1C9HAQAAIAAJ&redir_esc=y
https://books.google.co.jp/books/about/Classical_Electrodynamics.html?id=FOBBEAAAQBAJ&redir_esc=y
https://books.google.co.jp/books/about/Classical_Electrodynamics.html?id=FOBBEAAAQBAJ&redir_esc=y
https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455


60 References

[11] COMSOL, Inc. COMSOL Multiphysics. Version version 6.1. URL: www.comsol.
com.

[12] Steven G. Johnson and J. D. Joannopoulos. “Block-iterative frequency-domain
methods for Maxwell’s equations in a planewave basis”. In: Opt. Express 8.3
(2001), pp. 173–190. URL: http://www.opticsexpress.org/abstract.cfm?
URI=OPEX-8-3-173.

[13] N.F. Mott and H. Jones. The theory of the properties of metals and alloys. 2nd edition.
Oxford University Press, 1958.

[14] A. Bansil, Hsin Lin, and Tanmoy Das. “Colloquium : Topological band theory”.
In: Rev. Mod. Phys. 88 (2 June 2016), p. 021004. DOI: 10.1103/RevModPhys.88.
021004. URL: http://link.aps.org/doi/10.1103/RevModPhys.88.021004.

[15] M. Z. Hasan and C. L. Kane. “Colloquium : Topological insulators”. In: Rev.
Mod. Phys. 82 (4 Nov. 2010), pp. 3045–3067. DOI: 10.1103/RevModPhys.82.
3045. URL: http://link.aps.org/doi/10.1103/RevModPhys.82.3045.

[16] Xiao-Liang Qi and Shou-Cheng Zhang. “Topological insulators and supercon-
ductors”. In: Rev. Mod. Phys. 83 (4 Oct. 2011), pp. 1057–1110. DOI: 10.1103/
RevModPhys.83.1057. URL: http://link.aps.org/doi/10.1103/RevModPhys.
83.1057.

[17] Yoichi Ando. “Topological Insulator Materials”. In: Journal of the Physical So-
ciety of Japan 82.10 (2013), p. 102001. DOI: 10.7566/JPSJ.82.102001. eprint:
https://doi.org/10.7566/JPSJ.82.102001. URL: https://doi.org/10.
7566/JPSJ.82.102001.

[18] S. Raghu and F. D. M. Haldane. “Analogs of quantum-Hall-effect edge states
in photonic crystals”. In: Phys. Rev. A 78 (3 Sept. 2008), p. 033834. DOI: 10.
1103/PhysRevA.78.033834. URL: https://link.aps.org/doi/10.1103/
PhysRevA.78.033834.

[19] Zheng Wang et al. “Reflection-free one-way edge modes in a gyromagnetic
photonic crystal.” In: Phys. Rev. Lett. 100.1 (Jan. 2008), p. 013905. ISSN: 0031-
9007. DOI: 10.1103/PhysRevLett.100.013905. URL: http://journals.aps.
org/prl/abstract/10.1103/PhysRevLett.100.013905.

[20] Zheng Wang et al. “Observation of unidirectional backscattering-immune topo-
logical electromagnetic states.” In: Nature 461.7265 (Oct. 2009), pp. 772–5. ISSN:
1476-4687. DOI: 10.1038/nature08293. URL: http://dx.doi.org/10.1038/
nature08293.

[21] Mohammad Hafezi et al. “Robust optical delay lines with topological pro-
tection”. In: Nature Phys. 7.11 (Aug. 2011), pp. 907–912. ISSN: 1745-2473. DOI:
10.1038/nphys2063. URL: http://dx.doi.org/10.1038/nphys2063.

[22] Alexander B Khanikaev et al. “Photonic topological insulators.” In: Nature
Mater. 12.3 (Mar. 2013), pp. 233–9. ISSN: 1476-1122. DOI: 10.1038/nmat3520.
URL: http://dx.doi.org/10.1038/nmat3520.

[23] Scott A. Skirlo, Ling Lu, and Marin Soljačić. “Multimode One-Way Waveg-
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