Kwansei Gakuin University

Developing Software-as-a-Service

in the Rapidly Changing Environment

Masao KAKIHARA*

Abstract

This paper explores Software-as-a-Service (SaaS), an emerging model of
the software business in the Age of the Internet, from a strategic management
perspective. Software development is now faced with two dynamic innovation
streams: technological innovation and market innovation. Harshly shook by
rapid technological development and highly volatile market environment,
today’s software development is under the constant necessity for swift and
reliable development practices and market launch in appropriate timing.
Software development, especially on the SaaS model, has to be more and more
strategic. The paper suggests a strategic management framework for SaaS
development in rapidly changing environments. Through a brief case study of
online community services in Japan, the paper also suggests that dual roles of
beta versions, as a product and media, would play a critical role in making
strategic decisions in SaaS development in rapidly changing environments.

Keywords:
Software Development, Strategic Management, Software-as-a-Service

I. Introduction

All aspects of our social lives are now greatly dependent upon various kinds of software.
Ranging from common application software like spread-sheet to large information systems in
banking networks, software has become an irreplaceably critical part of our social systems. It
is obvious, however, that today’s software is now faced with rapid social transformation. For
software engineering, whose traditional research question has been how to technically build
reliable software, there is a strong need to offer social and managerial accounts of software
development practices. In short, software engineering must explain not only ‘how efficient’
but also ‘how effective’ the developing practices are in a given social and managerial context.
Thus software engineering is no longer a ‘closed’ research field staying within a highly
technical domain but must rather be ‘open,’ incorporating with broad research achievements
in social sciences such as economics, management, sociology, and so on.

* Masao Kakihara is Assistant Professor, School of Business Administration, Kwansei Gakuin University.
Email: kakihara@kwansei.ac.jp

NI | -El ectronic Library Service

Kwansei Gakuin University

2 Masao KAKIHARA

This paper explores an emerging model of the software business; namely, Software-as-a-
Service (SaaS). SaaS is a business model of delivering software functions and services to
customers via the World Wide Web (WWW). In the SaaS model, customers can use the
functions and services on demand and remotely through the Internet access. Nowadays, even
package software is constantly updated and modified by program patches distributed from
vendors via the Internet. This web-based software delivery model is now urging us to
reconsider traditional software development frameworks and approaches. In today’s turbulent
business environment, software development is not an isolated practice confined only in
technical fields; any software development needs to consider how to adapt to such
environmental changes and to launch into an appropriate market in an appropriate timing,.
Furthermore, managers have to consider not just whether software projects are ‘done
properly’ but also whether produced software makes expected results and returns. To put it
simply, today’s software development has to be more and more strategic. The more dynamic
and turbulent environmental changes facing software development are, the more strategic the
development practices have to be to cope with those changes efficiently and effectively. Such
strategic management is particularly important for the software business on the SaaS model
since the model drastically opens up software development practices toward dynamic
interaction with such rapidly changing environments.

The paper is structured as follows. Section 2 offers an outline of environmental changes
with which software development is now faced in the Age of the Internet. Section 3 discusses
the concept of SaaS and its implications. Section 4 briefly reviews strategic management
approaches and Section 5 particularly focuses on Eisenhardt’s framework of ‘Strategy as
Simple Rules.” Section 6 discusses a case study of online community services in Japan in
relation to the SaaS model. Finally, Section 7 summarizes the arguments and discusses
limitations.

II. Software Development in the Age of the Internet

Given its ubiquity in our social lives, software is now functioning as an important actor in
our society. In the dawn of the Computing Age, roughly from the 1940s to the 1950s, software
was a problem domain inseparably woven into hardware issues. Through commercialization
of computers in the 1960s, when epoch-making IBM’s System/360 was launched, people had
gradually realized the existence of software. Then, in 1975, Microsoft, the largest software
company in the world, was founded by Bill Gates and Paul Allen. Even at that time, few
could imagine that the software company would have succeeded tremendously in scale and
social impact. In concert with Microsoft’s gigantic success, we have seen during the last three
decades the dramatic evolution of software as research and business fields.

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 3

During the last three decades, software has experienced a wide range of environmental
changes, which can be summarized as follows:

1. Rapid evolution of hardware

Hardware systems have evolved rapidly: rapid increase of CPU performance, sharp
decline of price of memory and storage devices such as HDD, diversification of input/output
devices, etc. Moore’s Law, the empirical observation that the complexity of an integrated
circuit, with respect to minimum component cost, will double in about 18 months, seems still
continue, and such rapid evolution of hardware inevitably affects the ways of developing and
operating software.

2. Widespread usage of software in society

It is since the 1980s that computers have been used not only in quite limited situations
such as research laboratories and governments but also in ordinary people’s social lives.
Personal computers have been diffused in households and people use a variety of software in
their PC. Moreover, software systems embedded in electronic appliances such as mobile
phones and TV displays are required to perform stably and correctly in diverse contexts, from
seas to deserts. Such widespread usage of software inevitably demands unprecedented levels
of quality and reliability of software.

3. Diversification of stakeholders in software development

The scale of software development projects has become larger than ever, and this resulted
in rapid diversification of stakeholders in the projects. For example, whereas the number of
lines of the source code of the Windows 3.1 launched in 1992 is about 3 million, that of
Windows 2000 launched in 2000 has been increased into 35-60 million (METI, 2004). In
order to cope with such a rapid increase in scale and complexity of software development,
recent software engineering research has invented component-based development approaches
facilitating more distributed development practices across organizational boundaries
(Heineman and Councill, 2001). As a result, diverse stakeholders can participate In a
particular software development project.

4. Continuous revision of software functions

Today’s software can and has to evolve even after its market launch. Rapid and continuous
changes of software usage as described above have brought forth an increasing demand for
continuous revision of software systems. Diffusion of the Internet has further energized this
trend, enabling post-launch distribution of program patches for update. Even package
software is not be ‘finished,” frequently revised by update patches via the Web. Such never-
ending revision processes create new triggers for malfunctions and makes ROI evaluation of
software development projects more and more difficult.

NI | -El ectronic Library Service

Kwansei Gakuin University

4 Masao KAKIHARA

To summarize these rapid environmental changes, software development in the Age of the
Internet must take account of two innovation streams: technological innovation and market
innovation (Kakihara, 2005). Based on these two streams, three schematic models of software
innovation can be identified (see Figure 1).

The first model of software innovation is one that actively takes full advantage of
functional capability enabled by rapid technological innovation for new software
development. Here it could be called the ‘technology-push’ model. As discussed above, the
pace of technological innovations is still quite rapid. Only within a year, many technological
impossibilities turn to be possible thanks to new technological innovations. Technological
innovations are not just limited to hardware innovations such as increase of CPU power and
network speed but can be also software innovations such as new programming language and
supporting programming techniques. Strongly ‘pushed’ by these innovations, functionalities
and quality of software will be continuously innovated as well.

(1) The ‘technology-push’ model (2) The ‘market-pull’ model

Technological innovation >

(3) The ‘interactive’ model

Technological innovation

vivtetit

vyttt

Figure 1: Three schematic models of software innovation
(Kakihara, 2005)

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 5

The second model is one that software innovation is ‘pulled’ by changing market
environments such as demand levels and user preferences. This could be called the ‘market-
pull’ model. In general, any software is developed for fulfillment of certain market needs. For
instance, spread-sheet applications are made to meet user’s needs of efficiency and
convenience in data handling in various business scenes. Likewise, embedded software
installed in mobile phones enables much higher and more complex functionalities than a
simple talking function. Strongly ‘pulled’ by such market demands, software development
practices will also be innovated.

In reality these two schematic models of software innovation are not discrete or
antithetical but rather interrelated and interactive. Software development in reality should be
conducted in dynamic interaction with both technological and market innovations. This is the
third model which can be called the ‘interactive’ model. As the broad-band Internet access has
been widely diffused, the interaction with technology and market has become much more
dynamic and intense than ever. As a supply chain and communication media, the Internet can
connect software vendors to a wide range of stakeholders, particularly other business partners
and their customers. Unprecedented forms of collaboration that support software development
practices have become possible. Today’s software development can and should dynamically
adapt its processes and frameworks to both innovation streams. Such a ‘dialogue’ with both
environmental changes would be critical for today’s software innovation.

For software development in the Age of the Internet, it is critically important to realize the
fact that software development is no longer a craft isolated from the real-world and done by
‘geeks’ but rather has now become highly strategic conduct under the intense pressure of
rapidly changing environments. Software development is now in the midst of dynamic
environmental changes induced by rapid technological and market innovations.

III. Software-as-a-Service: An Emerging Model

This rise of the Internet in the software business is bringing forth a radically new trend:
service-orientation of software.

The diffusion of the Internet is radically transforming the ways of distributing, selling, and
maintaining software. In pre-Internet time, software, a set of digital codes, was dealt with as if
it had been a physical product. In order to distribute it through the existing supply chains and
exchange it in price-based market mechanisms, the digital codes had to be molded into some
physical media such as floppy disks, CD, and DVD. Such institutional bottlenecks of the
market systems forced software to be ‘physical.” The diffusion of the broad-band Internet
since the late 1990s transformed it dramatically. On the Web, the digital codes become freed.
Since the broad-band Internet access is becoming ubiquitous in our social lives, software, in

NI | -El ectronic Library Service

Kwansei Gakuin University

6 Masao KAKIHARA

theory, can be distributed, sold, and maintained through the Web. Software no longer has to
cling to the traditional market institutions built for physical products.

This clearly means that the software business is transforming itself from ‘product-based’ to
‘service-based.” The vital point for today’s software users is not how to ‘own’ it but to ‘use’ it.
In the ubiquitous information environments, digital goods become from possessed products to
contract-based services like car rental. Looking at this service-orientation of the software
business, Rust and Kannan (2003) argue:

In changing the software product to a rentable software service, firms are forced to
understand how the customer uses a piece of software. The design of the software
becomes more customer-centric. By providing a software service in addition to selling
it as a product, the firm learns more about the usage of its software and becomes more
attuned to the needs of the customer, which contributes toward a competitive
advantage. (p. 40)

This type of web-based software distribution is not new at all. The Application Service
Provider (ASP) model has been used since 1990s particularly by the business service
operators. However, the bandwidth of the Internet access at the time was quite limited for
effective usage of the software service on the ASP model. Nowadays, the broad-band Internet
access enabled by xDSL and optical fiber technologies have made the service-oriented
software model truly ‘working’ in real business settings where a vast amount of data is
constantly transacted.

This technological innovation especially in networking technologies transformed the
somewhat outdated concept of ASP into a new concept with wider implications: Software-as-
a-Service (SaaS). IDC (2005) defines the key characteristics of SaaS as follows:

- Network-based access to, and management of, commercially available (e.g., not
custom) software

- Activities that are managed from central locations rather than at each customer’s site,
enabling customers to access applications remotely via the Web

- Application delivery that typically is closer to a one-to-many model (single instance,
multi-tenant architecture) than to a one-to-one model, including architecture, pricing,
partnering, and management characteristics

SaaS is not just a technological option that enables a firm to deliver software to its
customers; it i1s a broader concept of business model that interactively connects software
venders to customers on the ubiquitous information environment. It frees the software
business from traditional constraints rooted in the physical-based, possession-oriented market
mechanism. IDC points out that there are two types of provider in the SaaS model: hosted

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 7

application management and software on demand. The former is based on the ASP model,
making software available to subscribed customers through the Web for normally monthly
fees. The latter is a model that provides customized functions of software service with
customers on a one-to-many basis. IDC also states that there are three underlying trends
supporting the SaaS model: from traditional license to subscription; from one-to-few to one-
to-many; and from private infrastructure to public infrastructure. These are all enabled by the
diffusion of the Internet, a flexible supply chain and interactive communication media for
virtually everyone (see Figure 2).

Software as a Service

Software
on Demand

Hosted Application
Management

Traditional License P Subscription
One-to-Few P One-to-Many
Private Infrastructure P Public Infrastructure

Figure 2: Software-as-a-Service coverage
(IDC, 2005)

IV. Strategic Management of Service-oriented Software Development

It is obvious that the emergence of SaaS as a new software business model inevitably
changes the ways of developing software. In short, development of service-oriented software
needs much more strategic approaches than ever, since it has to be conducted in dynamic
interaction with technological and market innovations.

Traditionally, formal processes of software development are structured from ‘requirements
analysis’ to ‘architecture and design’ to ‘coding’ to ‘test’ to ‘deployment and maintenance.’
This process model is generally labeled the ‘waterfall’ model. Based on this linear process
model, many modified models have been devised, such as ‘incremental’, ‘spiral’,
‘concurrent’, and ‘evolutional’ models (Pressman, 2004). However, the waterfall model is still
widely used as a reference model in real software development practices mainly because
sequential ordering of the development phases and inhibition of backtrack are particularly
convenient for project management (Tamai, 1993).

NI | -El ectronic Library Service

Kwansei Gakuin University

8 Masao KAKIHARA

In software engineering research, it has been often argued that strategically important is
‘up-front” phases in the development process, namely, ‘requirements analysis, and
‘architecture and design.” These ‘up-front’ phases are the ‘human-intensive’ processes in
which managerial and business intent and technological possibilities are strategically
negotiated to define core features of developed software (Ibid.). It is also often argued that the
more dynamic and ambiguous the environment in which software is launched is, the more
detailed and deliberate the ‘up-front” phases of software development should be in order to
decrease operational risks in the lower phases.

This ‘Big Design Up Front’ approach, however, is often criticized since the approach
would be quite unrealistic particularly for software development in rapidly changing
environments. Rapid environmental changes inevitably create unexpected changes in
requirements for software in the course of development processes. Given the above
discussion of software innovation models, software development processes are constantly
faced with two rapid innovation streams: technological innovation and market innovation.
New technological innovations can drastically change technological assumptions for software
development. Likewise, new market innovations can greatly transform targets to be reached
by developed software. These rapid and constant environmental changes make ‘up-front’
planning and design seriously difficult or even problematic. McConnell (2004) is one of the
main proponents who criticize such a ‘Big Design Up Front’ approach. He stresses the
importance of ‘construction’ of software, rather than planning or design. He argues that
software construction, focusing on coding and debugging, is “the central activity of software
development” (p. 7). Supported by this kind of argument, software engineering researchers
have creates more flexible and adaptable development approaches and models such as ‘agile’
and ‘adaptive’ software development (Cockburn, 2001; Highsmith, 1999).

Yet it can be argued that these recent software development approaches and models put
‘too much’ emphasis upon technical skills of coding and debugging and largely ignore the
strategic importance of planning and design. To be sure, the ‘Big Design Up Front” approach
is in fact problematic in rapidly changing environments and it is understandable that recent
software engineering research is pursuing cultivation of feasible construction skills for
adaptive development for efficient and effective software development. However, this over-
reaction against ‘Big Design Up Front’ is also problematic since it tends to result in the praise
of ‘No Design Up Front.” Such an all-or-nothing discussion would be quite unproductive for
fruitful development of software engineering research.

As discussed above, strategic management of software development is increasingly crucial
for efficient and effective management of software development. The diffusion of the Internet
has opened up ever-isolated software development practices into dynamic interaction with
technological and market innovation streams. Furthermore, the Internet has also facilitated

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 9

service-orientation of software, transforming the software business from product-based to
service-based. In particular, software businesses on the SaaS model are driven in a highly
customer-centric manner. In such a dynamic environment, a ‘good’ strategy for software
development would be located in the realm between two extremes: ‘excessive design’ and ‘no
design.” What software development in rapidly changing environments needs is a strategic
framework that link design, construction, and implementation together to cope with such
dynamic environmental changes. And so far, software engineering research poorly refers to
vast research achievements of business studies in general and the strategic management field
in particular. Whereas some management scholars are studying software development
practices from a strategic perspective (e.g. Cusumano, 2004; Cusumano and Selby, 1995;
MacCormack, 2001), research endeavor of software engineering research looking at strategic
management issues is scarce.

V. Strategy as Simple Rules for Software Development

This section offers a brief outline of recent achievements of strategic management research
and tries to apply them to software development practices.

Strategic management as a research field is one of the youngest among business and
management studies. There must be little doubt on the opinion that it is Porter’s study on
competitive strategy (Porter, 1980; Porter, 1985) that first systematized various strategic
management issues for modern firms and started the contemporary strategic management
research. Based on industrial organization economics, Porter argues that firms need to realize
industry structure that determines the profitability for a firm in the industry and hence the
firm’s competitive strategy. Based on the analysis of industry structure, firms need, he argues,
to determine their unique strategic positioning to gain competitive advantages.

There has been some criticism to such a position-based framework of strategic
management. Porter’s framework rests upon the S-C-P (Structure-Conduct-Performance)
paradigm of industrial organization economics, which demonstrates that a firm’s competitive
advantage is determined a priori by ‘structure,” an outside environment that surrounds the
firm. However, some scholars critically argue that a firm’s competitiveness can be also
determined by unique resources held inside the firm. Thus firms’ resources, such as unique
technological advantages and tacit organizational capability and knowledge, are gradually
focused as a source of sustainable competitive advantage. Barney (2002), one of the main
proponents of this Resource-Based View (RBV) of the firm, proposes the VRIO framework,
namely, value, rarity, imitability, and organization, to systematically analyze capability of the
firm.

Although many other strategy frameworks and approaches have been proposed so far

NI | -El ectronic Library Service

Kwansei Gakuin University

10 Masao KAKIHARA

(Mintzberg et al., 1998), these two frameworks, position-based and resource-based, are
widely accepted as the mainstream of the contemporary strategic management research.
However, both frameworks are apparently questionable in applicability to software
development, particularly that for service-oriented software. That is to say, the presupposed
time-scale in strategic decision making in both frameworks is extremely dull. Both
frameworks assume a relatively static environment for strategy settings, being with slow
technological and market innovations and stable industry structure. Today’s business
environments, however, are so dynamic and shaky that no one can foresee them even half a
year ahead. Harshly shook by rapid technological development and highly volatile market
environment, today’s software development is under the constant necessity for swift and
reliable development practices and market launch in appropriate timing. Given these dynamic
settings, the time-scale that the position-based and the resource-based frameworks presuppose
is too coarse to make swift and sound strategic decisions. In software development practices
in rapidly changing environments, there is virtually no time margin to determine strategic
positioning against potential and/or existing competitors or to build unique resources that can
serve as effective barriers for potential new entrants.

Here, there is another approach worth giving careful consideration in this context:
Eisenhardt and her colleagues’ study on competitive strategy in high-velocity markets
(Eisenhardt, 1989; Eisenhardt and Brown, 1998; Eisenhardt and Sull, 2001; Eisenhardt and
Tabrizi, 1995). She has been focusing on business strategy and product development in
rapidly changing environments, especially the computer industry and the internet business.

Her recent study (Eisenhardt and Sull, 2001) particularly looks at strategic management in
the internet business with a case study of Yahoo!. Yahoo! is without doubt one of the most
successful service-oriented internet companies since the late 1990s. Starting as a portal site,
Yahoo! is continuously developing and launching many novel services such as Yahoo!
Calendar, Yahoo! Messenger, My Yahoo!, Yahoo! Music, Yahoo! Shopping, and many more.
Analyzing Yahoo!’s success from position-based and resource-based frameworks of strategic
management, she argues that both cannot offer firm reasoning.

Everyone recognizes the unprecedented success of Yahoo!, but it’s not easily explained
using traditional thinking about competitive strategy. Yahoo!’s rise can’t be attributed to
an attractive industry structure, for example. In fact, the Internet portal space is a
strategist’s worst nightmare: it’s characterized by intense rivalries, instant imitators, and
customers who refuse to pay a cent. Worse yet, there are few barriers to entry. Nor is it
possible to attribute Yahoo!’s success to unique or valuable resources — its founders had
little more than a computer and a great idea when they started the company. As for
strategy, many analysts would say it’s not clear that Yahoo! even has one. If Yahoo!

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 11

has a strategy, it would be very hard to pin down using traditional, textbook notions. (p.

108)

Based on this analysis, she argues that Yahoo! has a distinct strategy for competition in
high-velocity markets; namely, Strategy as Simple Rules. The essence of this strategy is in the
sentence “when business becomes complicated, strategy should be simple” (p. 116). Whereas
the strategic logic of the position-based approach is “establish position” and that of the
resource-based approach is “leverage resources,” the main implication of strategy as simple

rules is the importance of capturing “unanticipated, fleeting opportunities” (see Table 1).

Through dozens of case studies on companies in fast-moving markets, she and her colleagues

identify five simple rules that guide core strategic processes:

e How-to rules: Spelling out key features of how a process is executed

e Boundary rules: Focusing managers on which opportunities can be pursued and

which are outside the pale

Table 1: Three approaches to strategy

(Eisenhardt and Sull, 2001)

Position

Resources

Strategic logic

Establish position

Leverage resources

Identify an attractive market;

Establish a vision;

Stt(:'a:eglc Locate a defensible position; | Build resources;

P Fortify and defend Leverage across markets
Strat?glc Where should we be? What should we be?
question

i luabl iti .
Source of Uplqu.e’ va l{ab © position Unique, valuable, inimitable
with tightly integrated
advantage .. resources
activity system
Works best in Slowly changing, well- Moderately changing, well-
structured markets structured markets
Duration of Sustained Sustained
advantage
It will be too difficult to Company will be too slow
Risk alter position as conditions to build new resources as
change conditions change
;’::;formance Profitability Long-term dominance

NI | -El ectronic Library Service

Kwansei Gakuin University

12 Masao KAKIHARA

e Priority rules: helping managers rank the accepted opportunities

e Timing rules: synchronizing managers with the pace of emerging opportunities and
other parts of the company

e Exist rules: helping managers decide when to pull out of yesterday’s opportunities

Yahoo!, for example, clearly holds four simple rules in developing and executing their
services: 1) know the priority rank of each product in development, 2) ensure that every
engineer can work on every project, 3) maintain the Yahoo! look in the user interface, and 4)
launch products quietly. Sticking to these simple rules, Yahoo! succeeded in growing and
surviving in the highly turbulent internet business market. The case of Yahoo! tells us that in
high-velocity markets, firms must quickly find out unanticipated, fleeting opportunities and
shrewdly seize them to grow faster than competitors. And yet they should not act in disorder.
They must focus their strategy upon several important simple rules that swiftly guide
significant business processes.

Each of the three frameworks of strategic management discussed above, has its own
strengths and weaknesses. It would be clear that for developing service-oriented software,
which constantly interact with rapid flux of technological and market innovations, the
framework of strategy as simple rule can work more effectively. Moreover, the framework
can also provide us with guiding principles for the ‘agile’ and ‘adaptive’ software
development models, which well balance development practices between ‘excessive design’
and ‘no design.’

VI. A Case Study: Online Community Services in Japan

This section discusses a brief case study of three online community services in Japan.
Through analysis of the services, a potential framework for SaaS development is addressed
based on Eisenhardt’s strategy as simple rules.

A variety of services on the SaaS model have been already launched and they are normally
used on web browsers without installing particular software packages. On the B2C (business-
to-consumer) side, portals, search engines, e-commerce platforms, auction services, banking
agents, all are now converging to the realm of SaaS. On the B2B (business-to-business) side,
the traditional ASP model is transforming itself into the SaaS model particularly in Supply
Chain Management (SCM) and Customer Relationship Management (CRM) fields. Although
the SaaS model has been normally discussed in B2B contexts so far, three cases of SaaS in
B2C, or rather to say C2C (consumer-to-consumer) contexts are particularly taken here. The
reason is that, as discussed above, the essence of SaaS is its customer-centricity. Development
and operation of SaaS is driven by dynamic interaction with customers that bring the firm
valuable feedback to revise and update the service. In this sense, B2C/C2C would be a more

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 13

(1) Hatena (2) mixi (3) GREE

&

&

Figure 3: Online community services in Japan

appropriate context for the analysis of SaaS than B2B.

Three cases to be taken here are all online community services developed and operated in
Japan: Hatena, mixi, and GREE (see Figure 3).

Hatena,! starting in 2001, is a set of online services that help users search, gather, and
organize a wide range of information on the Web. It consists of Hatena Search, Hatena Diary,
Hatena Antenna, Hatena RSS, Hatena Bookmarks, etc. The most fascinating feature of
Hatena’s service would be its development policy: developing services together with users.
Hatena employs just about 15 members of staff including part-time. Mr. Junya Kondo, CEO
of Hatena Inc., states that “[we] release our new service in a semi-finalized form and
2 By taking full
advantage of hundreds of thousands of users’ knowledge, Hatena can develop and revise their

continuously revise and update them through a dialogue with users.”

services efficiently and effectively. Mr. Kondo also argues that “In Hatena’s services, there is
no distinction between prototypes and final products, and it can be seen both as ever-lasting
prototypes and as final products from the first moment of market launch.”® In fact, Hatena is
perhaps the first provider of social bookmark service, Hatena Bookmark. This service has
been frequently revised based on user feedback and, as a result, quickly become the de facto
standard in this domain in Japan.

mixi* is the largest social networking service (SNS) in Japan. Just like other popular SNSs,
mixi is a semi-closed SNS whereby only the existing users can invite new users. There are a
vast number of user communities for specific topics. Since its service launch in February
2004, it has gathered over 2.6 million subscribed users just in two years. mixi’s dramatic

http://www.hatena.ne.jp/
http://blog.japan.cnet.com/kondo/archives/002446.html
http://blog.japan.cnet.com/kondo/archives/002408.html
http://mixi.jp/

B R S R

NI | -El ectronic Library Service

Kwansei Gakuin University

14 Masao KAKIHARA

expansion of its user base resulted not only from its highly user-friendly interface but also the
pursuit of a better communication that makes users stayed in the site for a longer time. Mr.
Kenji Kasahara, CEO of mixi Inc., says that “There are three important points to plan our new
service: better communication, usability in gathering interesting information, and expanding
human networks.” All these points relate to facilitation of communication among users. In
this sense, mixi’s core policy of service development is user-communication-centricity.

GREE.,® is another successful SNS in Japan. Mr. Yoshikazu Tanaka started his own SNS,
named GREE, in February 2004 as a completely private project. Starting with just 4 users at
its launch, it gathered over 10 thousands registered users only within a month. As of July
2005, the user base expanded into more than 200 thousands. Currently, GREE is operated by
a company, GREE Inc., that Mr. Tanaka founded in December 2004. From a strategic point of
view, the most distinctive characteristic of GREE’s service development is that when they
upgraded the alpha version of the service in October 2005, they defined their service as the
perpetual beta. Mr. Tanaka said’ that “We are actively taking advantage of various new
technologies by continuously caring about user benefits and usability.” He as the founder also
stated that in order to seize unexpectedly rising opportunities in the field, “swift decision
making moment by moment is crucial.” He also said that he always paid great attention to
“efficiency in decision making” and that “short time-span for launch of new services and/or
functions” holds great impacts upon the whole operation. Moreover, in order to operate the
service so swiftly, he insisted that “adaptive organizational structure against sudden
environmental changes” is of paramount importance.

The brief case study of the three online community services tells us that all of them have
been developed and operated in quite simple rules: launch new services swiftly and listen
users’ voices. This is exactly the strategy as simple rules. In rapidly changing environments,
‘big design’ or ‘big plan’ does not work well. Rather, the desired strategy of service
development and operation would be a simple and adaptive strategy that quickly tailors the
services to user requirements.

In such a simple and adaptive strategy, there is a unique feature that is strikingly different
from traditional package software model; namely, the dual roles of beta versions. The original
purpose of releasing beta versions is to evaluate and finalize the software’s usability and
functions and to make final bug-fixing smooth through feedback from beta testers. For Saa$S,
which will never be finalized, a beta version is not only an actual product delivered to users
but also media through which the next beta version is devised with dynamic negotiation with

http://japan.cnet.com/interview/story/0,2000050154,20096000-2,00.htm

http://gree.jp/

The excerpts of the conversation with Mr. Tanaka were drawn from a 1-hour semi-structured interview
with him conducted in September 16, 2005 at his office in Tokyo, Japan.

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 15

both technological and market innovations (see Figure 4). This duality of roles of beta
versions is a totally unprecedented notion for software development and would be a critical
factor affecting the quality of service, relational structure among stakeholders, and hence final
profits of the software business on the SaaS model.

As seen in the above-discussed cases, recent competition in service-oriented software is
unfolding in rapidly changing environments. The SaaS model of software development and
operation will considerably transform the existing frameworks and approaches for software
development. In order to cope with this rising reality, software development of today must
deal with various new development practices from a strategic management perspective.

... Technological innovation

R

Figure 4: Dual roles of beta versions in the SaaS model

VII. Conclusion

The main objective of this paper was to explore today’s service-oriented software
development from a strategic management perspective. In summary, faced with increasingly
dynamic and turbulent environments, software development practices must be managed
through a constant ‘dialogue’ to technological and market innovations. Based on a review of
the existing strategic management frameworks, Eisenhardt’s framework of ‘Strategy as
Simple Rules’ was discussed in terms of applicability to software development especially on
the SaaS model. And with a brief case study of three online community services in Japan, the
framework was proved to be well fit to SaaS development in rapidly changing environments.
Moreover, the analysis of the cases suggested that beta versions could play dual roles in SaaS

NI | -El ectronic Library Service

Kwansei Gakuin University

16 Masao KAKIHARA

development, as a product and media, and that the duality would be a critical factor for
strategy making in the service-oriented software business.

There are some limitations in the discussions of this paper. Most of the discussions
unfolding in the paper are still hypothetical and clearly need empirical validation with both
quantitative and qualitative methods. Furthermore, the paper only addresses SaaS
development as a case of today’s software development. Actual software development widely
varies in its scale and settings. More detailed categorization of software development is
clearly needed in future research.

REFERENCES

Barney, J.B. (2002). Gaining and Sustaining Competitive Advantage. (2nd edition) Pearson Education, New
Jersey.

Cockburn, A. (2001). Agile Software Development. Addison-Wesley, Reading, MA.

Cusumano, M.A. (2004). The Business of Software: What Every Manager, Programmer, and Entrepreneur
Must Know to Thrive and Survive in Good Times and Bad. Free Press, New York, NY.

Cusumano, M.A. and R.W. Selby (1995). Microsoft Secrets: How the World's Most Powerful Software
Company Creates Technology, Shapes Markets and Manages People. Free Press, New York, NY.

Eisenhardt, K.M. (1989). Making Fast Strategic Decisions in High-Velocity Environments. Academy of
Management Journal. Vol.32, No.3, pp. 543-576.

Eisenhardt, K.M. and S.L. Brown (1998). Time Pacing: Competing in Markets That Won’t Stand Still.
Harvard Business Review. Vol.76, No.2, pp. 59-69.

Eisenhardt, K.M. and D.N. Sull (2001). Strategy as Simple Rules. Harvard Business Review. Vol.79, No.1
(January-February), pp. 107-116.

Eisenhardt, K.M. and B.N. Tabrizi (1995). Accelerating Adaptive Processes: Product innovation in the
Global Computer Industry. Administrative Science Quarterly. Vol.40., No.1, pp. 84-110.

Heineman, G.T. and W.T. Councill eds. (2001). Component-Based Software Engineering. Addison Wesley,
Reading, MA.

Highsmith, J.A. (1999). Adaptive Software Development: A Collaborative Approach to Managing Complex
Systems. Dorset House Publishing, New York, NY.

IDC (2005). Worldwide and U.S. Software as a Service 2005-2009 Forecast and Analysis: Adoption for the
Alternative Delivery Model Continues. Doc #33120.

Kakihara, M. (2005). Software Development and the ‘Simple-Rule’ Strategy. (In Japanese) Shogaku Ronkyu
(Journal of Business Administration, Kwansei Gakuin University). Vol.53, No.3, pp. 75-96.

MacCormack, A.D. (2001). Product-Development Practices That Work: How Internet Companies Build
Software. Sloan Management Review. Vol.42, No.2, pp. 75-84.

NI | -El ectronic Library Service

Kwansei Gakuin University

Developing Software-as-a-Service in the Rapidly Changing Environment 17
McConnell, S. (2004). Code Complete. (2nd edition) Microsoft Press, Redmond, WA.

METI (2004). A Report of the Field Study on Embedded Software Industry in 2004. (In Japanese) Ministry
of Economy, Trade, and Industry, Japan, Tokyo.

Mintzberg, H., B. Ahlstrand and J. Lampel (1998). Strategy Safari: A Guided Tour Through the Wilds of
Strategic Management. Free Press, New York, NY.

Porter, M.E. (1980). Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free
Press, New York, NY.

Porter, MLE. (1985). Competitive Advantage: Creating and Sustaining Superior Performance. Free Press,
New York, NY.

Pressman, R.S. (2004). Software Engineering: A Practitioner’s Approach. McGraw-Hill, New York, NY.

Rust, R.T. and PK. Kannan (2003). E-Service: A New Paradigm for Business in the Electronic
Environment. Communications of the ACM. Vol.46, No.6, pp. 37-42.

Tamai, M. (1993). Current Practices in Software Processes for System Planning and Requirements Analysis.
Information and Software Technology. Vol.35, No.6-7, pp. 339-344.

NI | -El ectronic Library Service

