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Statistical Estimation of Simple Regression Model with Nonstationary 1(d)

Regressor and Stationary Autoregressive Error Term

Soichi SUGIHARA*

We derive the asymptotic nonstandard distributions of OLS and GLS for
the simple regression model with nonstationary I(d) regressor (d >%) and
stationary AR(1) error term and show that these two estimators are
asymptotically equivalent. The asymptotic normality of these estimators is
also derived using certain normalizations.

1. Introduction

Since Granger and Joyeux[2] and Hosking [4] have proposed the idea of fractional
differencing, fractional process plays an important role in Econometrics and Finance area to
analyze the long memory time series. (In the present paper, fractional process of order d is
referred to as I(d) process.) Specifically, Kramer [5] and Phillips and Park[7] have shown the
asymptotic equivalence of OLS (Ordinary Least Squares estimators) and GLS (Generalized
Least Squares estimators) for the regression model with I(1) regressor(s) and stationary error
term (assuming to follow AR(1) or AR(p) process). In the pres’ent paper, we extend their
model to the one with nonstationary I(d) regressor (d >%), derive the limiting distributions of
OLS and GLS, and show the asymptotic equivalence of these two estimators.

In section 2, model and assumptions are given. In section 3, we derive the asymptotic
distributions of OLS and GLS for the simple regression model with nonstationary I(d)
regressor (d >%) and stationary AR(1) error term and show that OLS and GLS are
asymptotically equivalent. Asymptotic normality of the estimators is also derived using
certain normalizations. A brief summary is given in section 4.

2. The Model and Assumptions
Let us consider the following simple regression model with nonstationary I(d) regressor x,
and stationary AR(1) error term u,, where L is a lag operator.

* School of Business Administration, Kwansei Gakuin University

NI | -El ectronic Library Service



Kwansei Gakuin University

44 Soichi SUGIHARA

y=0+px,+u, t=12,.,T,
(-L¥x,=w, w,=wl)E,
oLyu,=v,.

We make the following Assumptions 1~3.
Assumption 1. d>—£—. w(L) = Syl (yy=1), Silyl{e andall roots of y(z) =0 are

i=0) i=0
outside the unit circle. x,=0 (r<0).

Assumption 2. ¢(L)=1-¢Land |¢I<1.

Assumption 3. (&, (O) (ng 0 D
(v,)NHD 0)> Lo o2))-

In particular, in Assumptlon 1 we assume d >-—. In the present paper, however, we
exclude the case when d—7 (i.e. jJust nonstatlonary case), which needs different
normalizations. As far as the author knows, there are several papers which treat the case
when d=1 (specifically, Kridmer [5] and Phillips and Park [7] among others), but little is
known about the case when d>~é—. We assume that w, follows a usual linear process. In
Assumption 2 we assume that the error term u, follows stationary AR(1) process, though the
extension to stationary AR(p) process can be easily done using Phillips and Park [7].
Extension of Assumption 3 to the correlated case can be done similarly to Phillips and
Durlauf [6] , for example, but the analysis is more complicated.

The model can be written in conventional matrix form as

y=X0+ u,
where y, X, u and 6 are given as follows.
Y= Y2 oo Y1) u=(Uy, Uyy ooy Ug)s
L1, ..., 1Y ,
X= ( ) 0= (a, p).
Xy Xy wevees X

3. Asymptotic Properties of OLS and GLS
Following Lemma is useful in the subsequent sequel.

Lemma

(1) xp(r)= F,_(r), where x;(r) is the partial sum process defined as

=1 t
() = A+ T =) —ps (=x) (G- =r=1=12,..7.

T I
@) am 2= | Fu(dr
=1 0

NI | -El ectronic Library Service



Kwansei Gakuin University

Statistical Estimation of Simple Regression Model with Nonstationary I(d)
Regressor and Stationary Autoregressive Error Term 45

0 g St J'F2
1 < o, (I
@ 77 Zmu= o jo Fy (AW, (r).

Here = signifies weak convergence of the associated probability measures as T — oo, F;_ (1)

is a (d-1) fold integrated Brownian motion defined as

v(l)o,
I'(d)

and W (r) and W,(s) are independent standard Brownian motions defined on the probability

space (L2, 3, P).

F, (r)= J;)r(r— s)‘l"dWS(s)

The above Lemma is an extension of Tanaka [8] to the case when d >%.
Now let ébe the OLS of @ given below,
&= (&, ﬁ)/ - (X,X)_]X/y,

and let D be the normalizer of 6

T1/2 0
D=
( 0 T")‘
Then D(8 — 6) can be written as D( — 8) = (D' X’XD~)y"'D~'X’u and using the Lemma we
can show that D~'X’XD~! and D~'X"u converge weakly to the following;

1 L 1

1 W Zx, 1 JO Fd_,(r)dr
D—IXlxD—l — | valz = L = H s

* o gxt * J;) F, (rdr

1 T

R 2R »
D' X'u= . = < = .
1) 1
e B B VY] B

Therefore as D(/é— 6) converges weakly to the following;
D(6- 6) L ik
-0 = —— .
o(1)

Let us now turn to the GLS of 6.
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Let X be the covariance matrix of u.
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X =E(uu’)
1 ¢ ¢!
2 o pT2
_ 9 ¢ Lo o7 52Q.
1-¢* | oo
¢T—l 1
As is well known, Q! can be decomposed as Q™! = M’M,
where
(1—¢?»)2 0 e 0
—¢ 1 e 0
M = 0 —¢ 1 ......
0 0 91

Let 0 be the GLS of 6 defined as
0=(a, By = (X' X)Xy
Then D(Z)—— 0) can be written as
D(O - 6) = (D' X’M’'MXD)"! D' X’M'Mu

and using the above Lemma, we can similarly show that D' X’M’MXD~" and D~'X’M’Mu

converge weakly to the following

a—&m+u—@iu—mm

A-PH+1-)A(T-1)
T
D' X'M’MXD™! =
*
= ¢XDH.
(1= @y +(1-9) S,
12
D' X’M Mu = T r
(1 - Pxu, + 22((1 — ¢L)x,)v,
Td
= (K.

Tl 12+d

u—@ﬁ+ém~mmﬁ

T2d
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In the derivation above, we use the Beveridge-Nelson decomposition ¢(L) = (1 —¢L) = ¢(1) +
¢(1 —L) and we can neglect those terms that converge to zero in probability as T — co.
Therefore after canceling ¢(1) once, we get

~ 1
D(6-6) = WH IK.

To the summary, we get the next Theorem.

Theorem 1. As T — oo, D(é— 6) and D(é— 0) have the same limiting distribution, that is,

A 1
— 0= —— H!
D(6-6) = a0 K

- 1
D(6-6)= w H'K.

Notice that each element of D(é— 0) and D(é — 0) converges weakly to the following.

1
A - Fd’il(r)de(r)
T(o—- ) and T"(a- o) = 9, JO 1
(?(1) _[0 Fd":l(r)zdr

b4

o [ P(raw ()

oD ['Prar
0

T4B-B) and T4B-B) =

2

where

Fr(n=F, (- J‘Olefl(r)dr,

J]Fd_l(r)dr
Pir)=1- (012—) Fy(n),
_[) F, (rdr

and Fj(r) isthe demeaned F, (r).

We see that Theorem 1 is an extension of Krdmer [5] and Phillips and Park [7] to the case

when d >%. We also see that it is an extended version of Grenander and Rosenblatt [3],

where the asymptotic equivalence of OLS and GLS of 8 are shown under the following
- Grenander’s conditions (1)~(3).
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(1) lim a;(0) = where a,(h) = Z xx,., (h=0,1, Z X Xpyp (h=0, -1, ).
T—>o0 =1
2
X
2 l T+1
@ im0 -
@) tim I oy exists for h=0, 41, ... .
T—oo aT(O)

If ¢ is unknown, 9 is not a feasible estimator. ¢ can be consistently estimated by the usual
two step procedure based on the OLS residuals.

Although Theorem 1 is useful, the limiting distributions are nonstandard. We can also get
the limiting normal distributions after certain normalizations described below. For this
purpose, let us first consider (D*IX’XD*I)”zD(é— 0) and (D !X’ Q' XD1)1”2 D(AG— 6). Similar
arguments as above derive that

A 1
~lyrv-1\172 _ 12 _
(D'X'XDHY'"“*D(O6—-6)=> H o) = &)

\ 1
(D X' QXD DO~ 6) = ($X(DH)'? s H™'K = H™'PK .

Now let 3, denote the sub o-field generated by {We(r)IO <r < 1}. Conditionally upon S,

2],) respectively, but

¢(1) ¢(1)

these distributions do not depend on the realization of W, (r). Therefore we can see that these

1
are also the unconditional distributions of —— H~!2K and H~'?K respectively.

&(1)
Similar arguments show that, as T — oo, (D'IX’XD"‘)”2 D@ - 0 and

(DX’ Q' XD )2 D(6 - 6) also converge weakly to 2 1) and N(0, 6’1,

¢(1)
respectively. Therefore we get the following Theorem
Theorem 2.
() (D'X'XD" b)),

¢(1)
(DX’ QXD Y2 D(O - 6) = N(0, 621,).

(2) (1) remains true if ABis replaced with 0.

We see that Theorem 2 is an extension of Phillips and Park [7] to the case when d >%.
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4. Summary

In the present paper, extending Kramer [5] and Phillips and Park [7], we derive the
limiting nonstandard distributions of OLS and GLS of the regression parameters for the
simple regression model with nonstationary I(d) regressor (d >%) and stationary AR(1) error
term. We show the asymptotic equivalence of OLS and GLS. We also derive the limiting
normal distributions after certain normalizations of the estimators. The results in this paper
are asymptotic ones and the comparison in finite samples is a task that remains for the future.

References

[1] Billingsley, P. (1968), Convergence of Probability Measures, John Wiley, New York.

[2] Granger, C.W.J. and Joyeux, R.(1980) “An Introduction to Long-range Time Series Models and
Fractional Differencing,” Journal of Time Series Analysis, 1, 15-30.

[3] Grenander, U. and Rosenblatt, M. (1957) Analysis of Stationary Time Series, John Wiley, New York.

[4] Hosking, J.R.M. (1981) “Fractional differencing,” Biometrica, 68, 165-176.

[5] Krdamer, W. (1986), “Least Squares Regression When the Independent Variable follows an ARIMA
Process,” Journal of the American Statistical Association, 81, 150-154.

[6] Phillips, P.C.B. and Durlauf, S.N. (1986), “Multiple Time Series Regression with Integrated Process,”
Review of Economic Studies, 53, 473-495.

[7] Phillips, P. C. B. and Park, J.Y. (1988), “Asymptotic Equivalence of Ordinary Least Squares and
Generalized Least Squares in Regressions with Integrated Regressors,” Journal of the American
Statistical Association, 83, 111-115.

[8] Tanaka, K. (1996), Time Series Analysis; Nonstationary and Noninvertible Distribution Theory, John
Wiley, New York.

NI | -El ectronic Library Service



