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1 Introduction

How a principal encourages an agent to work hard is one of the main themes in organizational

economics. The main insight of the literature on moral-hazard problems is that the principal

pays a high wage to the agent if and only if his performance is high.1 In practice, however,

firms often pay bonuses to low-performance agents as well as high-performance ones. Recent

empirical studies on executive compensation show that CEOs are often paid for luck as well

as their performance (Bertrand and Mullainathan 2001; Garvey and Milbourn 2006). To

explain why firms sometimes reward both low- and high-performance agents, we focus on a

prominent behavioral aspect, loss aversion: people are more sensitive to losses than to same-

sized gains. We investigate a moral-hazard model with limited liability in which an agent

exhibits expectation-based loss aversion à la Kőszegi and Rabin (2006, 2007). Because the

agent has first-order risk aversion to wage uncertainty, the principal can reduce the agent’s

feeling of losses if she stochastically compensates for his low performance. This generates

a new trade-off on the agent’s incentive compatibility constraint, which leads to stochastic

compensation as an optimal contract: an agent is always rewarded when his performance is

high, and he is stochastically rewarded when his performance is low.

The agent’s utility consists of intrinsic consumption utility and psychological gain-loss

utility defined as the difference between his realized outcome and his reference point. The

agent is loss averse in both the wage dimension and the effort-cost dimension, and his ref-

erence point is determined by his recent expectations regarding his wage and effort cost.

For example, suppose that an agent expects to work hard and to receive either $0 or $30

with equal probabilities. Suppose that he actually works hard. In the wage dimension, his

expected gain-loss utility consists of a weighted average of the following four cases with equal

weights. There is no gain-loss in two cases: he expects to receive $0 and actually receives

$0, and he expects to receive $30 and actually receives $30. The agent feels a loss of $30 in

the case where he expects to receive $30 but actually receives $0. Similarly, the agent feels a

gain of $30 in the case where he expects to receive $0 but actually receives $30. Because the

agent is loss averse, his feeling of a $30 loss looms larger than that of a $30 gain. Therefore,

his expected gain-loss utility for wage is negative and represents his aversion to wage uncer-

tainty. In the effort-cost dimension, he feels neither gains nor losses because he expects to

work hard and actually works hard.

To determine the agent’s reference points endogenously, we assume that the agent’s

1We use male pronouns to refer to the agent and female pronouns to refer to the principal.
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reference points are determined by his rational expectations and that his expectations are

updated according to his chosen action before the outcome is realized. Because the agent

correctly anticipates that his belief will be adapted to his chosen action, he takes this into

account when he chooses his action. This solution concept is called the choice-acclimating

personal equilibrium (CPE), which is introduced by Kőszegi and Rabin (2007). CPE is

plausible when the action is determined long before the outcome is realized, and hence the

agent’s belief is acclimated before he observes the actual outcome.

We first analyze a single-agent moral-hazard model with limited liability and derive

the optimal contract. We highlight a key trade-off between the standard-incentive effect

in the intrinsic utility and the loss-reducing effect in the gain-loss utility on the agent’s

incentive compatibility constraint. On the one hand, the standard-incentive effect leads an

agent to work less under stochastic compensation than under non-stochastic compensation

because rewarding for the agent’s low performance weakens his incentive to work hard. On

the other hand, the loss-reducing effect can lead the agent to work more under stochastic

compensation because (i) the principal can reduce the agent’s expected loss when he works

hard and (ii) she can increase his expected loss when he works less. Hence, regarding the

gain-loss utility, the agent works more by stochastic compensation for his low performance.

As a result, stochastic compensation is optimal when the loss-reducing effect outweighs the

standard-incentive effect. Stochastic compensation is more likely to be adopted when the

probability of success in the project is small. We also show that the stochastic compensation

is optimal even when we additionally impose an individual rationality constraint as well as

the limited liability constraint. Specifically, if stochastic compensation is optimal when we

do not impose the individual rationality constraint, then—irrespective of the level of the

agent’s reservation utility—stochastic compensation is still optimal even when we impose

such a constraint. Importantly, the principal only partially compensates for the agent’s

low performance in the optimal contract. This is because if she compensates for his low

performance almost surely, then the standard-incentive effect dominates the loss-reducing

effect.

Even when the principal would like to adopt stochastic compensation, how she can cred-

ibly commit to such a scheme is an important issue in practice. By applying our insight to

multi-agent moral-hazard problems, we show that the principal adopts a team-based incen-

tive scheme even when each agent’s probability of success in a project is independent. In

the optimal contract, the principal rewards both high- and low-performance agents equally if

most agents accomplish their projects; otherwise she rewards only high-performance agents.
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Furthermore, such a team-based incentive scheme—based on joint performance evaluation—

arises even when the principal hires only two agents and the degree of loss aversion is not

large. Our result on team incentives helps explain why sometimes low-performance employ-

ees are rewarded as well as high-performance ones, especially when a company makes high

profits.

The study most closely related to ours is Herweg, Müller and Weinschenk (2010), who

analyze a single-agent moral-hazard model where the agent is loss averse. Their main finding

is that the optimal contract is a binary bonus scheme even under a rich performance mea-

sure. They also show that even when the principal faces an implementation problem under

non-stochastic wage schemes as first pointed out by Daido and Itoh (2007), the principal

can still induce the agent to take the desired action if she compensates for the agent’s low

performance. By imposing the individual rationality constraint but not imposing the limited

liability constraint, Herweg, Müller and Weinschenk (2010) show that the principal wants

to compensate for the agent’s low performance almost surely if the agent is sufficiently loss

averse; otherwise, she never compensates for the agent’s low performance. Although their

result is prominent, two sensitive issues arise. First, in their model the optimal compen-

sation probability for low performance approaches one, and hence the optimal contract is

not well-defined. Second, the optimal wage received by the agent for low performance goes

to negative infinity. In contrast, by imposing the limited liability constraint we shed light

on a new trade-off between the standard-incentive effect and the loss-reducing effect on the

incentive compatibility constraint. With focusing on the trade-off, we extensively analyze

the properties of stochastic compensation and derive a new insight for team incentives.

Some recent literature also applies expectation-based reference-dependent preferences to

moral-hazard problems.2 Daido and Itoh (2007) examine a single-agent model with limited

liability and study the Pygmalion and Galatea effects as self-fulfilling prophecies. Gill and

Stone (2010) analyze a rank-order tournament under agent loss aversion.3 Macera (2011)

extends Kőszegi and Rabin’s (2009) dynamic loss aversion model to a repeated moral-hazard

situation and studies the intertemporal allocation of incentives.

Recent empirical and experimental research finds the importance of expectation-based

reference-dependent preferences. Crawford and Meng (2011) estimate cab drivers’ labor

2For the literature which applies expectation-based reference-dependent preferences to other problems,
see Heidhues and Kőszegi (2008), Lange and Ratan (2010) and Herweg and Mierendorff (2013).

3In Gill and Stone (2011), they analyze a team production problem in which the output is equally shared
among agents. They examine how the agents’ reference points, which are different from CPE, affect the
agents’ equilibrium efforts.
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supply decisions based on the model of Kőszegi and Rabin (2006), and reconcile the findings

between Camerer, Babcock, Loewenstein, and Thaler (1997) and Farber (2005, 2008). Fehr

and Goette (2007) conduct a randomized field experiment among bike messengers, and find

that loss aversion explains well the labor-supply decisions of the bike messengers. Abeler,

Falk, Goette, and Huffman (2011) design a real-effort experiment in which the subjects choose

how long they work on a simple repetitive task. They confirm the validity of expectation-

based reference-dependent preferences; the higher the subjects’ expectations are, the longer

they work and the more they earn. Gill and Prowse (2012) conduct real-effort sequential-

move tournament experiments. Their results are consistent with the theoretical prediction

of expectation-based reference-dependent preferences under CPE.

The rest of this paper is organized as follows. Section 2 sets up the model and explains

the concept of CPE. Section 3 analyzes the optimal wage schemes in a single-agent model.

Section 4 examines the multi-agent moral-hazard problems and shows that a principal may

adopt team-based incentive schemes. Section 5 concludes. All proofs are provided in the

Appendix.

2 The Model

Suppose the following moral-hazard model in which a risk-neutral principal hires an agent.

The agent makes a binary-effort decision a ∈ {0, 1} at the cost of d · a where d > 0. Actions

a = 1 and a = 0 mean that the agent works and shirks, respectively. The performance of

the agent is either high or low, which is denoted by Q ∈ {H,L}. The probability of realizing

Q = H is q1 if a = 1 and q0 if a = 0, where 0 ≤ q0 < q1 < 1. Let Δq ≡ q1 − q0. The agent is

subject to limited liability. To highlight the main results in a simple manner, we now assume

away the agent’s individual rationality constraint; we analyze the model with the individual

rationality constraint in Section 3.4.

Wage payment schemes from the principal to the agent can depend on the performance of

the agent and the outcome of a lottery. To analyze the possibility of stochastic compensation,

suppose that before setting the wage levels the principal can use and commit to any kind of

a finite-outcome lottery.4 Let n ∈ {1, · · · , N} be the outcome of the reduced lottery with

associated probability pn > 0; for any given two lotteries, we can construct a new lottery.

The wage vector for the agent can be expressed asw ≡ (wH1, · · · , wHN ;wL1, · · · , wLN) where

wQn ≥ 0 is the wage when the performance of the agent is Q and the outcome of the lottery

4Section 4 analyzes a multi-agent model where the principal can adopt a team-based incentive scheme in
order to credibly commit to such stochastic compensation.
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is n. The agent’s expected wage under w is represented by

π(a,w) =
N∑

n=1

pn[qawHn + (1− qa)wLn].

A key assumption of our model is that the agent’s overall utility consists of intrinsic

consumption utility and psychological gain-loss utility. We assume that each agent has

expectation-based reference-dependent preferences à la Kőszegi and Rabin (2006, 2007). In

our model, the agent has two consumption dimensions: effort cost and wage. For each

consumption dimension, the agent feels psychological gain-loss by comparing his realized

outcome with his reference outcomes. We assume that the agent has the same gain-loss

function for each consumption dimension. For deterministic reference point cases, let the

agent’s reference point for his effort and his wage be â and ŵ, respectively. If he actually

exerts effort a and receives wage w, his overall utility is

w − ad+ μ(w − ŵ) + μ(−ad+ âd),

where μ(·) is a gain-loss function that satisfies the assumptions introduced by Bowman et

al. (1999), which correspond to Kahneman and Tversky’s (1979) value function. In what

follows, we assume that μ(·) is piecewise linear in order to focus on the effect of loss aversion.

Then, when the consumption is x and reference point is r, we can simply define the gain-loss

function as

μ(x− r) =

{
η(x− r) if x− r ≥ 0,

ηλ(x− r) if x− r < 0.

where η ≥ 0 represents the weight on the gain-loss payoff, and λ ≥ 1 is the degree of the loss

aversion.

Following Kőszegi and Rabin (2006, 2007), we assume that the reference point is deter-

mined by rational beliefs about outcomes and that the reference point itself is stochastic if

the outcome is stochastic. The agent feels gain-loss by comparing each possible outcome

with every reference point. For example, suppose that an agent with η > 0 and λ > 1

had been expecting to receive $100, $150, or $200 with equal probabilities. If he actually

receives $150, then he feels a gain of $50 relative to $100, no gain-loss relative to $150 and

a psychological loss of $50 relative to $200. Because the loss of $50 looms larger than the

gain of $50, his gain-loss utility is negative in this case.

Note that the agent’s expected intrinsic utility is π(a,w) − ad. To define the expected

gain-loss utility formally, let â be the agent’s reference point for his own effort decision. That

is, â represents the agent’s belief of the action he will choose. Similarly, denote ŵ as the
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agent’s reference wage based on â. Then, the agent’s expected gain-loss utility in the wage

dimension is

π(a,w|â, ŵ) ≡
N∑

n=1

N∑
m=1

pnpm
[
qaqâμ(wHn − ŵHm) + (1− qa)qâμ(wLn − ŵHm)

+ qa(1− qâ)μ(wHn − ŵLm) + (1− qa)(1− qâ)μ(wLn − ŵLm)
]
, (1)

and the agent’s expected gain-loss utility in the effort-cost dimension is μ(−ad + âd). To

explain Equation (1) clearly, suppose that the agent expects that the outcome of the lottery

is m, but the actual outcome is n with probability pnpm. When the agent expects to succeed

with probability qâ, he compares his reference wage ŵHm to his actual wage for success wHn

(resp. for failure wLn) with probability qaqâ (resp. (1 − qa)qâ). Conversely, when the agent

expects to fail with probability 1−qâ, he compares his reference wage ŵLm to his actual wage

wHn (resp. wLn) with probability qa(1 − qâ) (resp. (1 − qa)(1 − qâ)). The agent’s expected

overall utility is denoted by

U(a,w|â, ŵ) ≡ π(a,w)− ad+ π(a,w|â, ŵ) + μ(−ad+ âd).

We derive the optimal wage schemes according to the equilibrium concept defined by

Kőszegi and Rabin (2007): the choice-acclimating personal equilibrium (CPE). Under CPE,

the agent’s reference point is acclimated to the action taken by him. This is plausible when

the action is determined long before the outcome and payment occur, and hence he updates

his belief to the action he took before the outcome is realized. Because the agent knows

that his belief will change on the basis of his chosen action before the outcome and payment

occur, he takes this change into account when he decides what action to take. Therefore,

each agent’s action itself determines his reference point under CPE, and the condition to

choose working under CPE is represented by

U(1,w|1,w) ≥ U(0,w|0,w). (CPE-IC)

(CPE-IC) is the incentive compatibility constraint under CPE: the agent’s overall utility

when his reference action is 1 and he actually chooses 1 is greater than or equal to that when

his reference is 0 and he actually chooses 0.

The timing is as follows:

1. The principal picks up a lottery that can be tied to a wage payment scheme.

2. The principal offers a wage payment scheme subject to the limited liability.
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3. The agent chooses his action.

4. The performance signal and the outcome of the lottery are realized, and the wage is

paid.

3 The Optimal Wage Scheme

This section analyzes the optimal wage schemes in the model described in Section 2. Note

that if the principal wants to implement low effort, then setting wQn = 0 for all Q and n is

obviously the optimal wage scheme even under agent loss aversion. Therefore, throughout

this paper, we assume that the project is so valuable that the principal wants to make the

agent work. In what follows, we set wHn ≥ wHn′ for any n ≥ n′ without loss of generality.

3.1 The Optimal Contract without Loss Aversion

First, we examine a benchmark case in which an agent is not loss-averse before analyzing

the optimal wage scheme under agent loss aversion. Given a lottery, the principal’s problem

is to minimize her expected payment given that the agent works as follows:

min
w

N∑
n=1

pn[q1wHn + (1− q1)wLn]

subject to

N∑
n=1

pn(wHn − wLn) ≥ d

Δq

, (IC)

wQn ≥ 0 for all Q, n, (LL)

where (IC) is the incentive compatibility constraint to induce the agents to exert high effort,

and (LL) is the limited liability constraint. Because the left hand side of (IC) is decreasing

in wLn, the optimal contract scheme satisfies wLn = 0 for all n. To minimize the expected

payment, the principal reduces wHn to hold (IC) with equality. As a result, any wage scheme

that satisfies wLn = 0 for any n and (IC) with equality is optimal.

To confirm the robustness of the result, we also examine an alternative case where an

agent is risk averse. Suppose that the agent has a utility function m(·) in the wage dimension

such that m(0) = 0, m(·) is twice differentiable, m′(·) > 0 and m′′(·) < 0. Then, (IC) is
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replaced by:

N∑
n=1

pn (m(wHn)−m(wLn)) ≥ d

Δq

. (IC’)

Note that the left hand side of (IC’) is still decreasing in wLn. Because m(·) is strictly

concave, wHn is constant across n in the optimal contract. Hence, the unique optimal wage

scheme specifies that wHn = m−1
(

d
Δq

)
> 0 and wLn = 0 for all n. These results are

summarized as follows:

Proposition 1. Suppose an agent is not loss averse (λ = 1). Then, a non-stochastic com-

pensation scheme is optimal.

Proposition 1 demonstrates that a non-stochastic compensation scheme (N = 1) is always

optimal under standard concave utility.

3.2 The Optimal Contract with Loss Aversion

Now we examine the optimal wage schemes under agent loss-aversion. We first show that if

the principal can use only non-stochastic compensation (N = 1), then high effort may not

be implementable. In this case, π(a,w|a,w) = −qa(1 − qa)η(λ − 1)|wH − wL|. Note that

−q1(1− q1) + q0(1− q0) = −Δq(1− q0 − q1). Hence, the principal’s problem is represented

by

min
wH ,wL≥0

q1wH + (1− q1)wL

s.t. wH − wL − (1− q0 − q1)η(λ− 1)|wH − wL| ≥ d

Δq

, (2)

where (2) is the CPE-IC condition in this case. Notice that if (1− q0− q1)η(λ− 1) ≥ 1, then

(2) is never satisfied.

Proposition 2. Suppose (1 − q0 − q1)η(λ − 1) ≥ 1. Then, high effort (a = 1) is not

implementable by any non-stochastic compensation scheme.

The implementation problem in Proposition 2 is first pointed out by Daido and Itoh

(2007) and is examined by Herweg, Müller and Weinschenk (2010). Intuitively, when the

degree of loss aversion is not small and the probability of success in the project is small, the

agent is more likely to suffer from losses because it is difficult to achieve his project even if
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he works hard. In order to make the agent work hard, the principal needs to alleviate his

feeling of losses; but she cannot do so without employing stochastic compensation.5

Even when high effort is not implementable by non-stochastic incentive schemes, the

principal can induce the agent to work hard by stochastically compensating for the agent’s

failure. In the following analysis, we assume away negative-bonus wage schemes:

Assumption 1. wHn ≥ wLn for all n.

Assumption 1 holds for most wage schemes in practice. Notice that Assumption 1 is justified

if each agent can secretly dispose his output: the agent’s performance would deteriorate if

he prefers reporting low performance to reporting high performance.6

The next lemma shows that (i) the principal can always implement high effort, (ii) the

agent receives a positive wage whenever he accomplishes his project, and (iii) the principal

offers a binary payment scheme generically.

Lemma 1. (i) High effort (a = 1) is implementable.

(ii) In the optimal wage scheme, wHn = w > 0 for all n.

(iii) A binary payment scheme is optimal: wLn ∈ {w,wL} for all n. Generically, it is the

unique optimal wage scheme.

Lemma 1 (i) shows that, as Herweg, Müller and Weinschenk (2010) point out, the prin-

cipal can always implement high effort by stochastic compensation. In addition, Lemma 1

(ii) shows that the principal sets a positive constant wage when the agent accomplishes the

project. Intuitively, because the agent dislikes wage uncertainty, the principal can always

encourage him to work hard by paying a positive constant wage when the agent succeeds.

Lemma 1 (iii) comes from the fact that the principal’s problem becomes a linear programming

problem owing to the assumptions of linear consumption utility and piecewise-linear gain-

loss utility. Then, the problem has a unique solution at an extreme point of the constraint

set generically.7 Note that even when the agent’s performance is low, he may stochastically

receive the positive wage. In addition, the proof of Lemma 1 (iii) shows that wL = 0 holds

in the optimal contract when we do not impose the individual rationality constraint. In-

5Relatedly, Spiegler (2012) shows that if a principal does not face moral-hazard problems (without the
incentive compatibility constraint), in the optimal contract she randomizes the transfer to an agent in order
to relax the individual rationality constraint.

6See Innes (1990) and Matthews (2001) for the detailed discussion.
7This method is developed by Herweg, Müller and Weinschenk (2010). In Section 3.5, we discuss the case

of which the agent’s consumption utility is concave.
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tuitively, if wL > 0 then the principal can reduce w and wL by the same amount without

violating constraints.8

Let α denote the probability of which the agent gets a positive wage when his performance

is low: α ≡ Prob(wQn = w|Q = L). The principal compensates for the agent’s failure with

this probability. We refer to α as the compensation rate. By Lemma 1, the principal’s

problem can be reduced to choose a wage w > 0 and a compensation probability α ∈ [0, 1]

so as to minimize her expected payment. In this setting, α = 0 means that the agent’s wage

depends only on his own outcome. On the other hand, α = 1 means full compensation: the

principal offers a flat-wage contract.

The principal’s problem becomes:

min
w>0,α∈[0,1]

[q1 + α(1− q1)]w

s.t. (1− α)︸ ︷︷ ︸
(SI)

w + (1− α)[1− (1− α)(2− q0 − q1)]η(λ− 1)︸ ︷︷ ︸
(LR)

w ≥ d

Δq

. (CPE-IC’)

(CPE-IC’) exhibits a sharp trade-off between standard-incentive effect (SI) and the loss-

reducing effect (LR). (SI) is derived from the intrinsic utility: increasing the compensation

rate α reduces the incentive to work hard. (LR) is derived from the gain-loss utility by

comparing a positive wage of w with a base wage of zero. This means increasing the com-

pensation rate α encourages the agent to work hard because it reduces wage uncertainty

when working, provided α is not too large.9 Notice that (SI) does not depend both on η and

λ, while the effect of (LR) increases as η or λ increases. Hence, in contrast to the concave

utility case, if the agent is loss averse, he is more likely to work hard when his low perfor-

mance is stochastically compensated (α > 0) than when low performance always leads to a

low wage (α = 0). Furthermore, full compensation (α = 1) is never optimal because it does

not satisfy (CPE-IC’). Also, if α = 0, then (CPE-IC’) is equivalent to (2) with wL = 0.

Because (CPE-IC’) holds with equality in the optimal contract, the optimal amount of

w is determined as a function of α:

w(α) ≡ d

Δq(1− α){1 + [1− (1− α)(2− q1 − q0)]η(λ− 1)} .

By plugging w(α) into the objective function and solving it, we characterize the optimal

wage schemes as follows:

8Note that wL in the optimal contract may be positive if we additionally impose the individual rationality
constraint. See Section 3.4.

9Note that (LR) is increasing in α if α < 3−2q1−2q0
4−2q1−2q0

.
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Proposition 3. The optimal wage scheme under loss aversion is to pay a wage w(α∗) > 0

with probability one when an agent’s performance is high and with probability α∗ when his

performance is low. The optimal compensation rate α∗ is determined by:

α∗ =

⎧⎪⎨
⎪⎩
0 if 1

η(λ−1)
≥ (2− q0 − q1)(1 + q1)− 1,

1
1−q1

(√
1−

[
1 + 1

η(λ−1)

]
· 1−q1
2−q0−q1

− q1

)
if 1

η(λ−1)
< (2− q0 − q1)(1 + q1)− 1.

Proposition 3 shows that even when the agent fails in his project the principal may pay

the same amount of wage as the agent succeeds. If the loss-reducing effect outweighs the

standard-incentive effect in (CPE-IC’), then the stochastic compensation becomes optimal.

The optimal compensation probability is increasing in η(λ− 1): the principal is more likely

to adopt the stochastic compensation as the agent is more loss averse. Also, the principal

increases the compensation rate, as it is harder for the agent to accomplish his project when

he shirks (q0 decreases).

Note that two of our results—that binary payment schemes are optimal and that com-

pensating for the failure can be optimal if λ is not small—come from the insights of Herweg,

Müller and Weinschenk (2010). They show that without the limited liability constraint and

with the individual rationality constraint, the optimal compensation rate α∗ is either zero

(no compensation for the failure) or arbitrarily close to one (full compensation for the fail-

ure). The logic of their result is that the principal can decrease the agent’s expected loss

by increasing the compensation rate and decreasing the base wage, without violating both

the incentive compatibility and individual rationality constraints. Although their logic is

important, two sensitive issues arise. First, the optimal compensation rate in their model

approaches one, and hence the optimal contract is not well-defined. Second, more impor-

tantly, a base wage goes to negative infinity in their optimal contract. In contrast, we impose

the limited liability constraints to focus on the effect of loss aversion on (CPE-IC’), and shed

light on the trade-off between the standard-incentive effect and loss-reducing effect. By this

trade-off, the principal adopts a stochastic compensation even when the individual ratio-

nality constraint does not bind.10 This is because stochastic compensation for the failure

encourages the loss-averse agent to work hard even though it makes the agents more likely

to shirk if they are loss-neutral.

10Herweg, Müller and Weinschenk (2010) mention that if the agent is subjected to limited liability, then
the optimal compensation probability may be well defined.
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3.3 The Effect of Loss Aversion on the Principal’s Payment

This subsection discusses how the degree of loss aversion affects the principal’s expected

payment in the optimal contract. Notice that if 1
η(λ−1)

≥ (2− q0 − q1)(1 + q1)− 1, then the

optimal compensation rate is α∗ = 0, and hence the principal’s expected payment is:

W0 ≡ q1d

Δq[1− (1− q1 − q0)η(λ− 1)]
.

If q1 + q0 < 1, the expected payment increases as the degree of loss aversion increases. More

interestingly, if q1 + q0 > 1, the expected payment decreases as the degree of loss aversion

increases so that the principal may decide to hire a loss-averse agent rather than a loss-

neutral agent. The comparative statics of the latter case sharply contrasts with that of the

concave-utility case. The intuition is simple: if the probability of success is high, then a

loss-averse agent works harder than a loss-neutral agent because a loss-averse agent has a

much stronger incentive to minimize his expected loss.

Similarly, if 1
η(λ−1)

< (2−q0−q1)(1+q1)−1, then by the envelope theorem the principal’s

expected payment is decreasing in η(λ− 1) if and only if:

1− (1− α∗)(2− q1 − q0) > 0.

As in the case α∗ = 0, if the probabilities of success in the project are not small, then the

expected payment can decrease as the degree of loss aversion increases.

3.4 The Optimal Wage Scheme with the Individual Rationality
Constraint

This subsection examines the robustness of Proposition 3 by additionally imposing the indi-

vidual rationality (IR) constraint. Suppose that in addition to the above setting, each agent

does not accept the contract if his overall utility is less than his reservation utility ū ∈ R.

In the Appendix, we show that Lemma 1 holds even when the IR constraint is binding.

Particularly, a binary payment scheme is still optimal in the optimal contract because we

can reduce the principal’s problem to a linear programming. However, wL may be not equal

to zero in this case. The CPE constraint also binds in the optimal contract; otherwise, the

principal offers a flat-wage contract. As a result, IR constraint can be written as:

[q1 + α(1− q1)] [1− (1− α)(1− q1)η(λ− 1)]w(α) + wL ≥ d. (IR)

In the proof, we show that there exists α ∈ [0, 1) that satisfies (IR) with equality. Define

the value of α that satisfies (IR) with equality by αIR if αIR is unique. If it is not unique,
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then define the value of α that minimizes the principal’s expected payment among such

values by αIR. In the proof, we constructively show how to find this value. We characterize

the optimal wage schemes as follows:

Proposition 4. In the optimal wage scheme, a principal pays w(α∗∗) > 0 with probability

one when an agent’s performance is high, whereas she pays w(α∗∗) > 0 with probability

α∗∗ and wL < w(α∗∗) with probability 1 − α∗∗ when his performance is low. The optimal

compensation rate α∗∗ is determined by α∗∗ = max
{
α∗, αIR

}
. Also, wL = 0 if α∗∗ > 0.

Proposition 4 shows that even when we take the IR constraint into account, the main prop-

erties of the optimal contract in Proposition 3 are still valid: the agent always receives a high

wage if his performance is high, whereas he stochastically receives the high wage if his per-

formance is low. This result contrasts with that of Herweg, Müller and Weinschenk (2010):

when η(λ − 1) > 1, the agent receives a high wage almost surely even if his performance is

low; otherwise, the agent never receives a high wage if his performance is low. In addition,

we show that when the principal uses a stochastic compensation scheme (α∗∗ > 0), the LL

constraint always binds (wL = 0) irrespective of the level of the agent’s reservation wage.

This result highlights the importance of taking the LL constraint into account under agent

loss aversion.

When ū = 0, we obtain the following result:

Corollary 1. Suppose ū = 0. Then, wL = 0 for all parameters. The optimal compensation

rate α∗∗ is determined by

α∗∗ = max

{
α∗, 1− 1

(1− q0)η(λ− 1)

}
.

Figure 1 describes the optimal compensation rates α∗∗ when q0 = 0.1. When the degree

of loss aversion is modest such that η(λ− 1) = 1, the IR constraint never binds. Then, the

trade-off between the standard-incentive effect and the loss-reducing effect on the CPE-IC

constraint determines the optimal compensation rate. The principal adopts a stochastic

compensation scheme if q1 takes middle values (the thick line in Figure 2). As the degree

of loss aversion increases, however, the IR constraint is more likely to bind in the optimal

contract. When η(λ − 1) = 1.5, the principal adopts a stochastic compensation scheme for

any q1, and the IR constraint binds in the optimal contract if and only if q1 ≥ 0.55 (the thin

line in Figure 1). When the degree of loss aversion becomes large such that η(λ − 1) = 2,
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Figure 1: The optimal compensation rates when ū = 0 and q0 = 0.1. Thick line when
η(λ− 1) = 1, Thin line when η(λ− 1) = 1.5, Dashed line when η(λ− 1) = 2.

the IR constraint always binds, and hence the optimal compensation rate does not depend

on q1 (the dashed line in Figure 1). In summary, the IR constraint becomes relevant for

determining the optimal wage scheme if the degree of loss aversion is large.

Finally, Proposition 4 has an implication on executive compensation. As Murphy (1999)

summarizes, most stock options do not adjust for market-wide common shocks, and there

is little empirical evidence of relative performance evaluation in executive compensation.

Bertrand and Mullainathan (2001) find that executives are often paid for luck.11 Importantly,

Garvey and Milbourn (2006) highlight that executives are rewarded for good luck but do not

suffer from bad luck. Proposition 4 implies if an executive is loss averse, then his wage is not

sensitive to his performance when the profits are high; on the other hand, the executive’s

wage depends on his performance when the profits are low. This result gives an insight into

why stock options are widely used as executive compensation even though the stock options

do not remove industry-wide shocks.

3.5 Loss Aversion and Concave Consumption Utility

This subsection briefly discusses the case in which the agent has concave consumption utility

as well as gain-loss utility. Suppose that the agent is both risk and loss averse. Even in this

case, stochastic compensation can still reduce the agent’s expected losses and encourage

him to work hard by stochastically compensating for his failure. However, the optimal

wage scheme may not be binary under concave consumption utility. When the agent has

linear consumption utility, the principal pays the same amount of wage for low performance

11Oyer (2004) shows such “pay for luck” can be an optimal contract when a manager’s reservation utility
is market-sensitive.
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stochastically as that for high performance in order to reduce the agent’s expected loss.

When the agent has concave consumption utility, such a wage scheme may be too costly

for the principal. In this case, the wage when the agent fails in the project and when the

principal compensates for it may be less than that when he succeeds in the project. If the

degree of loss aversion is more crucial than the concavity of the intrinsic utility, the principal

still adopts a binary payment scheme to reduce the agent’s expected loss in gain-loss utility.12

4 Multi-Agent Moral Hazard and Team Incentives

This section examines team-based incentive schemes as an application of stochastic com-

pensation. We first discuss when the principal ties her employees’ wages to the company’s

profits. We then analyze the optimal wage schemes when the principal can hire only two

agents and ties an agent’s wage to the other agent’s performance.

4.1 The Many-Agent Moral-Hazard Model

So far, we have assumed that the principal can credibly commit to any lottery. How the prin-

cipal can commit to such stochastic compensation, however, is an important issue in practice.

For example, if the lottery used for the stochastic compensation is not verifiable, then the

principal cannot commit to pay according to the result of the lottery. This casts doubt on

the credibility of stochastic compensation schemes. Indeed, such stochastic compensation

does not seem prevalent in practice.13

Even in this case, the principal can credibly commit to team-based incentive schemes: an

agent’s wage depends not only on his own performance but also others’ performance. Suppose

that the principal hires sufficiently many identical agents. Then, by the same derivation as

in Proposition 3, in an optimal contract, the principal pays a high wage to both high- and

low-performance agents if most agents (more than a fraction α∗ of all agents) accomplish

their projects; otherwise, she pays the high wage only to high-performance agents. This may

help explain why firms often use team-based incentive schemes (Chiappori and Salanié 2003;

Lazear and Oyer 2012). In particular, our results can explain why companies sometime pay

high wages not only to high-performance employees but also to low-performance employees

when the companies earn high profits.

12Herweg, Müller and Weinschenk (2010) extensively discuss this issue.
13Herweg, Müller and Weinschenk (2010) also doubt the plausibility of a stochastic compensation:

“[r]estricting the principal to offer nonstochastic wage payments is standard in the principal-agent liter-
ature and also in accordance with observed practice.”
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In addition, if we take into account additional managerial aspects, then team-based

incentive schemes can be better than stochastic compensation in a single-agent case. For

example, suppose the principal faces a credit constraint. In a single-agent case, if the agent

fails in the project, then the principal may not be able to pay a high wage to the agent. On

the other hand, if the principal adopts a team-based incentive scheme, then she needs to

pay high wages to low-performance agents only when most agents succeed in their projects.

Because of the profits from other agents’ high performance, the principal can pay high wages

to low-performance agents and hence she can adopt team incentives even under the credit

constraint.

4.2 The Two-Agent Moral-Hazard Model

In Section 4.1, we discussed how team incentives can be effective to implement stochas-

tic compensation. To see the intuitions and properties of such team incentives more pre-

cisely, we examine a model in which the principal hires only two loss-averse agents instead

of using the outside lottery. The characteristic of a wage scheme is determined by how

each agent’s wage is related to his colleague’s performance. For agent i, a wage scheme

wi = (wi
HH , w

i
HL, w

i
LH , w

i
LL) exhibits joint performance evaluation (JPE) if (wi

HH , w
i
LH) >

(wi
HL, w

i
LL): given an agent’s performance, his wage increases in his colleague’s perfor-

mance.14 A wage scheme exhibits relative performance evaluation (RPE) if (wi
HH , w

i
LH) <

(wi
HL, w

i
LL): given an agent’s performance, his wage decreases in his colleague’s performance.

Finally, if (wi
HH , w

i
LH) = (wi

HL, w
i
LL), a wage scheme exhibits independent performance eval-

uation (IPE): an agent’s wage does not depend on his colleague’s performance.

In the following analysis, we assume away negative-bonus wage schemes as in Assumption

1.

Assumption 2. wHH ≥ wLH and wHL ≥ wLL.

Assumption 2 holds for virtually any wage schemes in practice. Moreover, Assumption 2 is

justified if each agent can secretly dispose his output, as discussed in Section 3.15

14The inequality means weak inequality for each component and strict inequality for at least one compo-
nent.

15We can also characterize the optimal wage scheme under CPE without imposing Assumption 2. The
optimal contract does not change when η(λ− 1) ≤ 1, but unlike in Herweg, Müller and Weinschenk (2010)
our optimal contract is well-defined even when η(λ− 1) > 1. If Assumption 2 is not imposed and the degree
of loss aversion is sufficiently large, then the negative bonuses can be adopted if q0 is small and if q1 is either
very large or very small. The full characterization is available upon request.
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By Assumption 2, the smallest possible wage is either wLH or wLL. First, if the smallest

wage is strictly positive, then the principal can reduce the payment without changing the

CPE-IC constraint by decreasing the same amount of money from each wage. Thus, the

smallest wage must be zero in the optimal contract. Second, due to loss aversion the agent

is less willing to work hard if he faces wage uncertainty when he succeeds in his own project.

Hence if wHH �= wHL, then the principal can encourage him to work hard by reducing the

wage variation when he succeeds. Therefore, we have the following properties of the optimal

wage scheme.

Lemma 2. The optimal wage schemes under CPE satisfy (i) min{wLH , wLL} = 0 and (ii)

wHH = wHL.

Lemma 2 implies that team incentives in our model would have different forms from those in

the existing literature like Itoh (1991), Che and Yoo (2001), and Kvaløy and Olsen (2006),

which show the optimality of team incentives. These studies find that the agent’s wage is

zero regardless of his colleague’s outcome when he fails (wLH = wLL = 0), whereas his wage

may depend on his colleague’s outcome when he succeeds. In contrast, Lemma 2 implies

that under loss aversion team incentives become only relevant when the agent fails in his

own project: either wLH or wLL can be positive whereas wHH = wHL. In what follows, we

denote by wHH = wHL ≡ w.

By Lemma 2 and Assumption 2, we have two possible types of wage schemes: (i) w ≥
wLH ≥ wLL = 0 and (ii) w ≥ wLL ≥ wLH = 0. We examine the optimal wage scheme in

each case. Then, we compare these two cases and derive the optimal wage scheme.

First, we examine case (i): w ≥ wLH ≥ wLL = 0. The principal’s problem is to minimize

her expected payment given that each agent works:

min
w,wLH

q1w + q1(1− q1)wLH

subject to

q1w + q1(1− q1)wLH − d− η(λ− 1)
[
q1(1− q1)

2w + q1(1− q1)
3wLH + q21(1− q1)(w − wLH)

]
≥ q0w + q1(1− q0)wLH − η(λ− 1)

[
q0(1− q0)(1− q1)w + q1(1− q0)

2(1− q1)wLH

+ q0q1(1− q0)(w − wLH)
]
, (CPEJ)

w ≥ 0 and wLH ∈ [0, w], (LLJ)

where (CPEJ) is the CPE-IC constraint and (LLJ) is the limited liability constraint in this

case.
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Note that (CPEJ) can be rewritten as:

[1− (1− q1 − q0)η(λ− 1)]w

+
[ −q1︸︷︷︸
(SI)

+ q1(1− q1 − q0)η(λ− 1)︸ ︷︷ ︸
(LR1)

+ q1(1− q1)(2− q1 − q0)η(λ− 1)︸ ︷︷ ︸
(LR2)

]
wLH ≥ d

Δq

.

There are three effects for increasing wLH . We call the effect of (SI) the standard-incentive

effect, and the effects of (LR1) and (LR2) the loss-reducing effect. (SI) comes from the

intrinsic utility: increasing wLH reduces the incentive to work hard. (LR1) comes from

the gain-loss utility comparing wLH with w. This means increasing wLH encourages the

agent to work hard because it reduces wage uncertainty when working, provided q1 + q0 <

1. (LR2) comes from the gain-loss utility comparing wLH with wLL. This implies that

increasing wLH encourages the agent to work hard because it adds wage uncertainty when

shirking. Notice that (SI) does not depend on η, λ, while the effects of (LR1) and (LR2)

increase as η or λ increases. Hence, in contrast to a classical concave utility, if the agent

is sufficiently loss averse he is more likely to work hard when his wage depends on the

other’s performance (wLH > wLL = 0) than when his wage does not (wLH = wLL = 0).

The loss-reducing effect becomes more crucial than the standard-incentive effect if ΩJ ≡
[1− q1 − q0 + q1(1− q1)(2− q1 − q0)] η(λ − 1) ≥ 1; hence the principal prefers wLH > 0

rather than wLH = 0 if and only if ΩJ ≥ 1.

The analysis and the trade-off between the standard-incentive effect and the loss-reducing

effect are similar in the case of (ii): w ≥ wLL ≥ wLH = 0. The principal prefers wLL > 0

rather than wLL = 0 if and only if ΩR ≡ [1− q1 − q0 + q21(2− q1 − q0)] η(λ− 1) ≥ 1.

Finally, we compare two cases to derive the optimal wage schemes. If both ΩJ < 1 and

ΩR < 1 hold, then IPE is optimal. Otherwise, team incentives become optimal and the

comparison of expected payments determines either JPE or RPE is optimal. By comparing

the expected payments under JPE with those under RPE, the cut-off point is given that

ΩJR ≡ [(1− q1 − q0)− q1(1− q1)
2(2− q1 − q0)] η(λ − 1) is equal to one. When ΩJ ≥ ΩR,

JPE is optimal if ΩJR ≤ 1; otherwise RPE is optimal. When ΩJ < ΩR, JPE is optimal if

ΩJR ≥ 1; otherwise RPE is optimal. As a result, we have a full characterization of optimal

wage schemes:

Proposition 5. In a two-agent model, the optimal wage scheme is:

1. wI = (wI , wI , 0, 0) where wI = d
Δq [1−(1−q1−q0)η(λ−1)]

if both ΩJ < 1 and ΩR < 1 hold.
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2. wJ = (wJ , wJ , wJ , 0) where wJ ≡ d
Δq(1−q1){1−[1−q1−q0−q1(2−q1−q0)]η(λ−1)} if one of the

following conditions holds; (i) q1 ≤ 1
2
and ΩR < 1 ≤ ΩJ , (ii) q1 ≤ 1

2
and ΩJR ≤ 1 ≤

ΩR ≤ ΩJ , or (iii) q1 >
1
2
and 1 ≤ ΩJR < ΩJ < ΩR.

3. wR = (wR, wR, 0, wR) where wR = d
Δqq1{1−[1−q1−q0−(1−q1)(2−q1−q0)]η(λ−1)} if one of the

following conditions holds; (i) q1 ≤ 1
2
and 1 < ΩJR < ΩR ≤ ΩJ , (ii) q1 > 1

2
and

ΩJ < 1 ≤ ΩR, or (iii) q1 >
1
2
and ΩJR < 1 ≤ ΩJ < ΩR.

As we described above, the optimal wage schemes depend on the trade-off between the

standard-incentive effect and the loss-reducing effect. In the intrinsic utility, the agent is less

willing to work under team incentives than under IPE because he receives same wage with

positive probability even when he fails. In the gain-loss utility, however, he is more willing

to work under team incentives than under IPE because it reduces his wage uncertainty

when working and increases his wage uncertainty when shirking. Proposition 5 provides

the following insights on team incentives. First, team incentives become optimal only when

q0 < 0.648. When q0 is large, the agent is very likely to succeed in his project even if he shirks.

In other words, his expected loss becomes small even if he shirks. Then, compensating for

his failure by team incentives is not optimal for the principal because the standard-incentive

effect becomes more crucial than the loss-reducing effect. Consequently, team incentives are

not optimal when q0 is large. Second, when the degree of loss aversion is moderate, i.e.

η(λ− 1) ≤ 1, the optimal wage scheme exhibits either IPE or JPE.16 As a typical example,

Figure 1 represents the optimal contracts when the degree of loss aversion is moderate such

that η = 1 and λ = 2. As q0 and q1 decrease, the agent’s wage uncertainty under working

compared to under shirking becomes large, and the agents are less likely to work hard under

IPE. Then, the principal’s incentive to compensate for the agents’ failure increases. As a

result, JPE becomes optimal if q1 is small.

The result that JPE can be optimal even when η(λ − 1) ≤ 1 and the principal can hire

only two agents is worth emphasizing.17 This result means that even when the agent does

not have large loss-aversion sensitivities and the principal can induce their efforts under IPE,

adopting JPE may be still better than IPE. This is because we highlight the loss-reducing

effects of the CPE-IC constraint on the optimal wage schemes by assuming the limited

16Some theoretical literature which analyzes reference-dependent preferences imposes η(λ − 1) ≤ 1 as an
assumption. See, for example, Herweg, Müller and Weinschenk (2010) or Herweg and Mierendorff (2013).

17The condition η(λ − 1) ≤ 1 corresponds with the “no dominance of gain-loss utility” assumption in
Herweg, Müller and Weinschenk (2010). In their Proposition 7, they show that if the assumption is satisfied,
then the stochastic compensation for the agent’s own failure is not optimal.
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Figure 2: The optimal wage schemes when η = 1 and λ = 2. The region of each contract
scheme which is optimal under CPE is shown by: IPE=White, JPE=Gray.

liability constraint, and the effects can outweigh the standard-incentive effect even when the

degree of loss aversion is moderate.

Last but not least, notice that this model does not shed light on the aspects which

constitute team production; our model has no common noise, no production externalities,

no activities among agents such as help, sabotage or mutual monitoring. In this sense, this

model differs from the existing literature on team incentives. However, our results indicate

that even if we do not explicitly incorporate such aspects of team production, forming teams

and introducing team incentives may be beneficial for managers. It helps to understand why

teams and team incentives are ubiquitous even when some workplaces do not seem to have

the above aspects of team production.

4.3 JPE as a Team Equilibrium

So far, we have considered the CPE-IC condition in which (ai, aj) = (1, 1) is a Nash equi-

librium for the agents. When the agents could communicate before choosing their actions,

however, it would be possible to act coordinately and jointly deviate from (ai, aj) = (1, 1).

We now examine whether (ai, aj) = (1, 1) yields a higher joint utility in teams rather than

other effort pairs. If (ai, aj) = (1, 1) yields the highest joint payoffs, the agents have no

incentives to jointly deviate from (ai, aj) = (1, 1).

Following Che and Yoo (2001), we call an action pair (ai, aj) a team equilibrium if it
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attains the highest joint utility in team under the wage scheme wJ = (wJ , wJ , wJ , 0) in

Proposition 5. The next proposition states that (ai, aj) = (1, 1) is a team equilibrium if the

condition

1− [1− q1 − q0 − q0(2− q1 − q0)] η(λ− 1) > 0 (3)

holds.

Proposition 6. Suppose (3) is satisfied. Then, (ai, aj) = (1, 1) is a unique team equilibrium.

Proposition 6 implies that even though (ai, aj) = (0, 0) can also be a Nash equilibrium, it

gives lower total utility to the agents and hence is less plausible than (ai, aj) = (1, 1). In the

proof, we also show that there is no equilibrium such that one agent works and the other

agent shirks.18 Notice that (3) is always satisfied when η(λ− 1) ≤ 1. Thus, (ai, aj) = (1, 1)

is supported as a unique team equilibrium in Figure 1 for all regions where wJ is the optimal

wage scheme.

5 Conclusion

We investigate a moral hazard model with limited liability in which the agents have expectation-

based reference-dependent preferences à la Kőszegi and Rabin (2006, 2007). We highlight a

trade-off between the standard-incentive effect and the loss-reducing effect on the agent’s in-

centive compatibility constraint, and show the optimality of stochastic compensation schemes

under agent loss aversion.

We also examine a multi-agent model and show that team incentives can be used for the

loss-reducing device. Our result may help understand why teams and team incentives are

ubiquitous in workplace, and team incentives as compensating for the agent’s failure may

help explain incentive schemes in practice.

18With a continuous effort choice, under JPE there might exist a team equilibrium in which one agent
works very hard and the other agent does not work at all. When the effort cost function is sufficiently
convex, however, such an action pair does not become a team equilibrium. This is because by choosing the
same level of efforts, the agents can save the total effort cost as keeping the probability of getting high wages
constant.
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Appendix

Proof of Proposition 1

Proof. In the text.

Proof of Proposition 2

Proof. Immediate from (2).

Proof of Lemma 1

Proof. For notational convenience, let qHa = qa and qLa = (1 − qa) where a ∈ {0, 1}. The

principal’s problem is:

min
{wQn}

N∑
n=1

pn[q1wHn + (1− q1)wLn]

s.t.
N∑

n=1

pn[q1wHn + (1− q1)wLn]

− 1

2

∑
Q∈{H,L}

∑
Q̂∈{H,L}

N∑
n=1

N∑
m=1

qQ1 q
Q̂
1 pnpmη(λ− 1) · |wQn − wQ̂m| − d

≥
N∑

n=1

pn[q0wHn + (1− q0)wLn]

− 1

2

∑
Q∈{H,L}

∑
Q̂∈{H,L}

N∑
n=1

N∑
m=1

qQ0 q
Q̂
0 pnpmη(λ− 1) · |wQn − wQ̂m|, (4)

∀Q ∀n wQn ≥ 0, ∀Q ∀n ∀n′ ≤ n wQn ≥ wQn′ , ∀n wHn ≥ wLn.

(4) can be written as:

(q1 − q0)
N∑

n=1

pn(wHn − wLn)

−1

2

∑
Q∈{H,L}

∑
Q̂∈{H,L}

N∑
n=1

N∑
m=1

(qQ1 q
Q̂
1 − qQ0 q

Q̂
0 )pnpmη(λ− 1) · |wQn − wQ̂m| ≥ d. (5)

(i) Take the following binary lottery: N = 2 and p1 = p2 = 1/2. Consider the following

wage scheme such that the agent receives a positive wage for sure if he succeeds in the
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project, and he receives the positive wage w > 0 with probability 1/2 if he fails:

wQn =

{
0 if Q = L and n = 1,

w otherwise.

The wage scheme obviously satisfies the LL constraints. Since the agent can receive

w > 0 with probability q1 + (1 − q1)/2 = (1 + q1)/2 if he works and with probability

q0 + (1− q0)/2 = (1 + q0)/2 if he shirks, (5) becomes

(q1 − q0)
1

2
w −

[
1 + q1

2

(
1− 1 + q1

2

)
− 1 + q0

2

(
1− 1 + q0

2

)]
η(λ− 1)w ≥ d

⇔ w ≥ 2d

Δq[1 + η(λ− 1)(q0 + q1)]
.

Hence, the principal can induce the agent to exert high effort by setting sufficiently large

w > 0.

(ii) We prove this by contradiction. Suppose that there exists s and t > s such that

wHt �= wHs in the optimal wage scheme w. Since wHt ≥ wHs, we can set t = s + 1 without

loss of generality. We also set wHs+1 = wHN ; otherwise we can take another pair of wages

which contains the highest wage.

Because wHs ≥ wHn and wHn ≥ wLn for any n ≤ s, wHs ≥ wLn holds. This implies that

if wLn satisfying wHs+1 > wLn > wHs exists, then n > s must hold. Let l ≥ s+ 1 and h ≥ l

denote the lowest number and the highest number of n that satisfies wHs+1 > wLn > wHs,

respectively. Define
∑h

n=l pn = 0 if there does not exist n such that wHs+1 > wLn > wHs.

First, consider a new contract w′ with Δw > 0 that replaces wHs and wHs+1 of w to

w′
Hs = wHs + ps+1Δw and w′

Hs+1 = w′
Hs+1 − psΔw, respectively. All elements of w′ satisfy

the LL constraints and it has the same ordinal position as the original contract. Then, the

difference between the new contract and the original one for the left hand side of (5) is:

(q21 − q20)(ps + ps+1)psps+1η(λ− 1)Δw + 2 [q1(1− q1)− q0(1− q0)] (
h∑

n=l

pn)psps+1η(λ− 1)Δw

=

[
(q1 + q0)(ps + ps+1) + 2(1− q1 − q0)(

h∑
n=l

pn)

]
(q1 − q0)psps+1η(λ− 1)Δw. (6)

Notice that (6) is strictly positive if either ps + ps+1 ≥ ∑h
n=l pn or 1 − q1 − q0 ≥ 0 holds.

In these cases, the principal can relax (5) without violating the LL constraints. Because an

expected payment under the new contract is the same as under the original contract, the

principal can decrease the expected payment. A contradiction.
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Second, suppose that both ps+ ps+1 <
∑h

n=l pn and (1− q1− q0) < 0 hold. Then, we can

take Δw > 0 such that a new contract that changes the wages from the original contract to

w′
Hs+1 = wHs+1 − (1 − q1)phΔw and w′

Lh = wLh + q1ps+1Δw, satisfying the LL constraints

and has the same ordinal position as the original contract.

Then, the difference between the new contract and the original one for the left hand side

of (5) is:

{
(q21 − q20)(1− q1)ps+1(1− ps+1)ph︸ ︷︷ ︸
Comparing w′

Hs+1 with {w′
Hn}Nn=1

+ [q1(1− q1)− q0(1− q0)](1− q1)ps+1ph(1− ph)︸ ︷︷ ︸
Comparing w′

Hs+1 with {w′
Ln}Nn=1

− [q1(1− q1)− q0(1− q0)]q1ps+1(1− ps+1)ph︸ ︷︷ ︸
Comparing w′

Lh with {w′
Hn}Nn=1

− [(1− q1)
2 − (1− q0)

2]q1ps+1ph(1− ph)︸ ︷︷ ︸
Comparing w′

Lh with {w′
Ln}Nn=1

+ [q1(1− q1)− q0(1− q0)]ps+1ph[q1ps+1 + (1− q1)ph]︸ ︷︷ ︸
Comparing w′

Hs+1 with w′
Lh

}
η(λ− 1)Δw

=
{
[(q1 + q0)(1− ps+1) + (1− q0 − q1)ph](1− q1) + (1− q0)(1− ph)

− q1(1− q0 − q1)(1− 2ps+1)
}
(q1 − q0)ps+1phη(λ− 1)Δw. (7)

Notice that 1− q1− q0 < 0 implies (q1+ q0)(1− ps+1)+ (1− q0− q1)ph > (1− ps+1)− ph > 0,

and ps + ps+1 <
∑h

n=l pn implies ps+1 < 1
2
. Hence (7) is strictly positive, and the principal

can relax (5) without violating the LL constraints. Because an expected payment under

the new contract is the same as under the original contract, the principal can decrease the

expected payment—a contradiction.

Let wHn = w where n ∈ {1, · · · , N}. If w = 0, then all wages must be zero because

wHn ≥ wLn and the contract does not satisfy (5). Therefore, w > 0 in the optimal contract.

(iii) Let b1 ≡ wL1 and bn ≡ wLn − wLn−1 for n ∈ {2, · · · , N}. Note that
∑N

n=1 pnwLn =∑N
n=1 p̃nbn where p̃n =

∑N−n
k=1 pN−k. Finally, set bN+1 = w −∑N

n=1 bn.
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Then, the principal’s problem can be written as:

min
{bn}N+1

n=1

q1(bN+1 +
N∑

n=1

bn) + (1− q1)
N∑

n=1

p̃nbn

s.t. bN+1 +
N∑

n=1

bn −
N∑

n=1

p̃nbn

+

[
−(1− q1 − q0)

N∑
n=1

pn(bN+1 +
N∑

k=n+1

bn) + (2− q1 − q0)
∑
n>m

pnpm(
m∑

k=n

bk)

]
η(λ− 1) =

d

Δq

,

(8)

∀n ∈ {1, · · · , N + 1} bn ≥ 0.

This is a linear programming problem. Notice that (8) is a closed set. Because each coefficient

of bn in the principal’s objective function is positive and each bn is bounded from below, there

existsK ∈ R++ such that for any n, bn > K is never optimal. Thus, without loss of generality

we can restrict the constraint set to bn ≤ K, which attains boundedness of the constraint

set. Thus, the problem has a solution.

As developed by Herweg, Müller and Weinschenk (2010), the solution of the linear pro-

gramming problem has an extreme point of the constraint, and it is generically unique. The

unique solution satisfies that bn > 0 holds for one of n ∈ {1, · · · , N + 1}, and bm = 0 holds

for any m �= n. By the construction of bn, we have proven that the optimal wage scheme is

binary and generically unique.

Proof of Proposition 3

Notice that at the optimal wage scheme, (CPE-IC’) must hold with equality because oth-

erwise the principal can decrease w without violating constraints. Thus, the optimal wage

is determined by w(α) as in the text, subject to 1 + [1− (1− α)(2− q1 − q0)] η(λ − 1) >

0 ⇐⇒ α > 1 − 1
2−q1−q0

[
1 + 1

η(λ−1)

]
. Note that (CPE-IC’) is never satisfied when α ≤

1− 1
2−q1−q0

[
1 + 1

η(λ−1)

]
.

By substituting w(α) into the expected payment function, the principal’s problem be-

comes:

min
α∈[0,1]

Wα ≡ [q1 + α(1− q1)]d

Δq(1− α){1 + [1− (1− α)(2− q1 − q0)]η(λ− 1)} , (9)

subject to α > 1− 1
2−q1−q0

[
1 + 1

η(λ−1)

]
.
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Because (9) is continuously differentiable for all α ∈
(
1− 1

2−q1−q0
[1 + 1

η(λ−1)
], 1

)
, the

solution satisfies the first-order condition:

dWα

dα
=

d

Δq

1 + [1− (2− q1 − q0)(1 + q1) + 2αq1(2− q1 − q0) + α2(1− q1)(2− q1 − q0)]η(λ− 1)

(1− α)2{1 + [1− (1− α)(2− q1 − q0)]η(λ− 1)}2
≥ 0, (10)

which holds with equality if α∗ > 0.

By solving (10), we get the candidate of the optimal compensation rate α∗ as in the

statement. Because the numerator of (10) is increasing in α, (10) is also a sufficient condition.

Proof of Proposition 4

Proof. First, we check Lemma 1 holds even when the IR constraint is additionally imposed.

Lemma 1 (i) holds, because once we have a contract satisfying the other constraints, then

the IR constraint is satisfied by increasing all of the wages at the same amount.

Lemma 1 (ii) holds because the both alternative contracts relax the IR constraint. First,

suppose that we take a new contract w′ with Δw > 0 which changes wHs and wHs+1 in w to

w′
Hs = wHs+ps+1Δw and w′

Hs+1 = wHs+1−psΔw, respectively. Then, the difference between

the new contract and the original one of the agent’s total utility is:

q21(ps + ps+1)psps+1η(λ− 1)Δw > 0.

Next, suppose that we take a new contract which changes the wages from the original contract

to w′
Hs+1 = wHs+1 − (1− q1)phΔw and w′

Lh = wLh + q1ps+1Δw. Then, the difference between

the new contract and the original one of the agent’s total utility is:

q1(1− q1)ps+1ph [q1ps+1 + (1− q1)ph] η(λ− 1)Δw > 0.

Thus, in each case the IR constraint is relaxed.

To check Lemma 1 (iii), notice that (5) always binds in the optimal contract; otherwise

the principal offers a flat-wage contract. The principal’s problem in this case is:
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min
{bn}N+1

n=1

q1(bN+1 +
N∑

n=1

bn) + (1− q1)
N∑

n=1

p̃nbn

s.t. bN+1 +
N∑

n=1

bn −
N∑

n=1

p̃nbn

+
[
− (1− q1 − q0)

N∑
n=1

pn(bN+1 +
N∑

k=n+1

bn) + (2− q1 − q0)
∑
n>m

pnpm(
m∑

k=n

bk)
]
η(λ− 1) =

d

Δq

,

q1(bN+1 +
N∑

n=1

bn) + (1− q1)
N∑

n=1

p̃nbn

−
[
q1(1− q1)

N∑
n=1

pn(bN+1 +
N∑

k=n+1

bn) + (1− q1)
2
∑
n>m

pnpm(
m∑

k=n

bk)
]
η(λ− 1) ≥ d, (11)

∀n ∈ {1, · · · , N + 1} bn ≥ 0.

If (11) does not bind in the optimal contract, then the proof of Lemma 1 (iii) can be

directly applied. Suppose (11) binds in the optimal contract. Then, by solving (11) for

b1 and substituting it into the objective function, the principal’s problem becomes a linear

programming problem with one equality constraint and non-negative constraints. Thus, the

optimal wage scheme is binary and generically unique by the similar logic with the proof of

Lemma 1. Set b1 = wL.

We now characterize the optimal contract. The IR constraint becomes:

wL + [q1 + α(1− q1)] [1− (1− α)(1− q1)η(λ− 1)]w(α) ≥ d+ ū. (12)

If (12) does not bind, the analysis is just same with the proof of Proposition 3 and hence

α = α∗. We investigate the case of which (12) binds. We first prove α > 0 implies wL = 0 by

contradiction. Suppose instead α > 0 and wL > 0 in the optimal contract. Substituting (12)

with equality and w(α) into the objective function and ignoring the LL constraint wL ≥ 0,

the principal’s problem becomes:

min
α∈[0,1]

[q1 + α(1− q1)] (1− q1)η(λ− 1)d

Δq {1 + [1− (1− α)(2− q1 − q0)] η(λ− 1)} + d+ ū. (13)

The first-order derivative of (13) is negative if and only if η(λ − 1) > 1−q1
1−q0

. Hence, in the

optimal contract the principal chooses either α = 0 or α → 1. The base wage wL, however,

goes to negative infinity as α goes to one—a contradiction. Thus, if α > 0 holds in the

optimal contract, then the LL constraint binds.
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By substituting the value of w(α) and wL = 0 into (12), we have:

[q1 + α(1− q1)] [1− (1− α)(1− q1)η(λ− 1)]

(q1 − q0)(1− α) {1 + [1− (1− α)(2− q1 − q0)] η(λ− 1)} ≥ d+ ū

d
(14)

Note that the left hand side of (14) goes to infinity as α → 1. Hence, for any parameters

there exists α ∈ [0, 1) which satisfies (14) with equality.

In general, there exist multiple α which satisfies (14) with equality. In such a case, the

principal chooses α which minimizes her expected payment. Because the numerator of (10) is

increasing in α, the principal’s expected payment is decreasing in α < α∗ and is increasing in

α > α∗. Let αl denote the highest α < α∗ which satisfies (14) with equality. Similarly, let αh

denote the lowest α > α∗ which satisfies (14) with equality. Then, the optimal compensation

rate is determined as:

αIR ≡ argminα∈{αh,αl} Wα.

Note that αIR is well-defined for all parameters.

Proof of Corollary 1

We first prove wL = 0 by contradiction. Suppose wL > 0 in the optimal contract. Then, (12)

binds because otherwise the principal can decrease both w(α) and wL by a same amount.

In this case, (12) holds with α = α∗ and wL = 0 if and only if η(λ − 1) ≤ 1/(1 − q0). he

principal prefers such a wage scheme. Since the principal chooses wL > 0 in the optimal

contract, η(λ− 1) > 1/(1− q0) must hold. Then, the first-order derivative of (13) is always

negative, the principal chooses α → 1, and the base wage wL goes to negative infinity—a

contradiction.

When ū = 0, (14) becomes:

[α(1− q0) + q0] · [1− (1− α)(1− q0)η(λ− 1)] ≥ 0.

Because α(1− q0) + q0 > 0, the condition is equivalent to:

α ≥ 1− 1

(1− q0)η(λ− 1)
.

Thus, αIR = 1− 1
(1−q0)η(λ−1)

when ū = 0.

Proof of Lemma 2

Notice that in the two-agent moral-hazard model, the CPE-IC condition can be rewritten as
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q1wHH + (1− q1)wHL − q1wLH − (1− q1)wLL

−q1(1− q1)(q1 + q0)η(λ− 1)|wHH − wHL| − q21(1− q1 − q0)η(λ− 1)|wHH − wLH |
−q1(1− q1)(1− q1 − q0)xη(λ− 1)|wHH − wLL| − q1(1− q1)(1− q1 − q0)η(λ− 1)|wHL − wLH |
−(1− q1)

2(1− q1 − q0)η(λ− 1)|wHL − wLL|+ q1(1− q1)(2− q1 − q0)η(λ− 1)|wLH − wLL|
≥ d

Δq

. (CPE’)

Proof. (i) We prove this by contradiction. Suppose that w = (wHH , wHL, wLH , wLL) which

satisfies min{wLH , wLL} > 0 is the optimal wage scheme. By Assumption 2, we can reduce

the same amount from each possible wage without violating the LL constraints. Also, re-

ducing the same amount from all payments does not affect (CPE’). Thus, the principal can

decrease the expected payment. A contradiction.

(ii) We prove this by contradiction. Suppose w = (wHH , wHL, wLH , wLL) is the optimal

wage scheme.

Consider a case in which wHH > wHL. Then, we can take Δw > 0 such that a new

contract w = (wHH − (1 − q1)Δw, wHL + q1Δw, wLH , wLL) satisfies the LL constraints and

has the same ordinal position as the original contract.

First, suppose that wHH > wHL. If wHL ≥ wLH , the difference between the new contract

and the original contract for the left hand side of (CPE’) is:

C(w)− C(w) = q1(1− q1)(q1 + q0)η(λ− 1)Δw > 0.

where we denote the left hand side of (CPE’) as C(w′) when a wage scheme is w′. If

wHH > wLH > wHL, the difference between the new contract and the original contract for

the left hand side of (CPE’) is:

C(w)− C(w) =q1(1− q1)(q1 + q0)η(λ− 1)Δw + 2q21(1− q1)(1− q1 − q0)η(λ− 1)Δw

=q1(1− q1) [(1− q1)(q1 + q0) + q1(2− q1 − q0)] η(λ− 1)Δw

>0.

Thus, the principal can relax (CPE’) without violating the LL constraints. Because an

expected payment under the new contract is the same as under the original contract, the

principal can decrease the expected payment. A contradiction.
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Second, suppose that wHL < wLH = wHH . By (i) of this Lemma, wLL = 0 holds. The

left hand side of (CPE’) is:

C(w) =(1− q1) {1− [(1− q1 − q0)− q1(2− q1 − q0)] η(λ− 1)}wHL.

Because we suppose that w satisfies (CPE’), 1− [(1− q1 − q0)− q1(2− q1 − q0)] η(λ−1) > 0

must hold. Then we can take Δw > 0 such that a new contract w̃ = (wHH−(1−q1)Δw, wHL+

Δw, wLH − (1 − q1)Δw, wLL) satisfies the LL constraints and has the same ordinal position

as the original contract. The difference between the new contract and the original one for

the left hand side of (CPE’) is:

C(w̃)− C(w) =(1− q1) {1− [(1− q1 − q0)− q1(2− q1 − q0)] η(λ− 1)}Δw > 0.

Thus, the principal can relax (CPE’) without violating the LL constraints. Because an

expected payment under the new contract is the same as under the original contract, the

principal can decrease the expected payment. A contradiction.

We can prove this in the case where wHH < wHL in the same way except for taking w =

(wHH+(1−q1)Δw, wHL−q1Δw, wLH , wLL) or w̃ = (wHH+(1−q1)Δw, wHL−q21Δw, wLH , wLL−
q21Δw) as a new contract.

Proof of Proposition 5

First, consider the case of (i) w ≥ wLH ≥ wLL = 0. Suppose that 1−(1−q1−q0)η(λ−1) > 0.

By substituting w which holds (CPEJ) with equality into the objective function, this problem

is reduced to:

min
wLH

[
1− q1(1− q1)(2− q1 − q0)η(λ− 1)

1− (1− q1 − q0)η(λ− 1)

]
wLH

subject to

wLH ∈ [0, w].

If the coefficient of wLH is positive, wLH should be zero. On the other hand, wLH should

be equal to w if the coefficient of wLH is not positive. As a result, the optimal wLH is

presented by:

wLH =

{
0 if ΩJ < 1,

w if ΩJ ≥ 1,

where ΩJ ≡ [1− q1 − q0 + q1(1− q1)(2− q1 − q0)] η(λ− 1).

31



Next, suppose that 1−(1−q1−q0)η(λ−1) ≤ 0 < 1−[1− q1 − q0 − q1(2− q1 − q0)] η(λ−1).

Because the coefficient of wLH is positive but that of w is negative, the solution exists and

wLH = w holds at the optimum.

Finally, suppose that 1− [1− q1 − q0 − q1(2− q1 − q0)] η(λ− 1) ≤ 0. Then, the solution

does not exist.

As a result, if ΩJ < 1, the optimal wage scheme is wI = (wI , wI , 0, 0) where

wI =
d

Δq[1− (1− q1 − q0)η(λ− 1)]
,

and the expected wage is:

W I = q1
d

Δq[1− (1− q1 − q0)η(λ− 1)]
. (IPE)

If ΩJ > 1 and 1− [1− q1 − q0 − q1(2− q1 − q0)] η(λ− 1) > 0, the solution in this case is

wJ = (wJ , wJ , wJ , 0) where

wJ ≡ d

Δq(1− q1) {1− [1− q1 − q0 − q1(2− q1 − q0)] η(λ− 1)} ,

and the expected wage is:

W J = q1(2− q1)
d

Δq(1− q1) {1− [1− q1 − q0 − q1(2− q1 − q0)] η(λ− 1)} . (JPE)

If 1− [1− q1 − q0 − q1(2− q1 − q0)] η(λ− 1) ≤ 0, the solution does not exist in this case.

This result can be summarized as follows.

Lemma 3. Suppose that w ≥ wLH ≥ wLL = 0. The solution exists if and only if

1− [1− q1 − q0 − q1(2− q1 − q0)] η(λ− 1) > 0. If it does exist, the optimal wage scheme is

wI = (wI , wI , 0, 0) if ΩJ < 1, and wJ = (wJ , wJ , wJ , 0) if ΩJ ≥ 1.

Second, we examine the case of (ii) w ≥ wLL ≥ wLH = 0. The principal’s problem is as

follows:

min
w,wLL

q1w + (1− q1)
2wLL

subject to

[1− (1− q1 − q0)η(λ− 1)]w

+ [−(1− q1) + (1− q1)(1− q1 − q0)η(λ− 1) + q1(1− q1)(2− q1 − q0)η(λ− 1)]wLL

≥ d

Δq

. (CPER)
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w ≥ 0, and wLL ∈ [0, w]. (LLR)

where (CPER) is the CPE-IC constraint and (LLR) is the limited liability constraint in this

case.

Suppose that 1− (1− q1 − q0)η(λ− 1) > 0. By substituting w which holds (CPER) with

equality into the objective function, this problem is reduced to:

min
wLL

[
1− q21(2− q1 − q0)η(λ− 1)

1− (1− q1 − q0)η(λ− 1)

]
wLL

subject to

wLL ∈ [0, w].

If the coefficient of wLL is positive, wLL should be zero. On the other hand, wLL should

be equal to w if the coefficient of wLL is not positive. The optimal wLH is presented by:

wLL =

{
0 if ΩR < 1,

w if ΩR ≥ 1,

where ΩR ≡ [1− q1 − q0 + q21(2− q1 − q0)] η(λ− 1).

Next, suppose that 1−(1−q1−q0)η(λ−1) ≤ 0. Because the coefficient of wLL is positive

but that of w is not positive, the solution exists and wLL = w holds at the optimum.

As a result, if ΩR < 1, the optimal contract in this case is wI and the expected wage is

WI . On the other hand, if ΩR ≥ 1, the optimal contract is wR = (wR, wR, 0, wR) where

wR =
d

Δqq1 {1− [1− q1 − q0 − (1− q1)(2− q1 − q0)] η(λ− 1)} ,

and the expected wage is:

WR = (q21 − q1 + 1)
d

Δqq1 {1− [1− q1 − q0 − (1− q1)(2− q1 − q0)] η(λ− 1)} . (RPE)

Because 1− q1 − q0 − (1− q1)(2− q1 − q0) < 0, the solution always exists.

Hence, we have the following lemma.

Lemma 4. Suppose that w ≥ wLL ≥ wLH = 0. The solution always exists. The optimal

wage scheme is wI = (wI , wI , 0, 0) if ΩR < 1, and wR = (wR, wR, 0, wR) if ΩR ≥ 1,

where wR = d
Δqq1{1−[1−q1−q0−(1−q1)(2−q1−q0)]η(λ−1)} .
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We now derive the optimal wage scheme from Lemma 3 and Lemma 4. We have the

following relationship:

ΩJ � ΩR ⇔ 1

2
� q1.

When q1 ≤ 1
2
, we have the following possible cases: (I-1) ΩR ≤ ΩJ < 1, (I-2) ΩR < 1 ≤ ΩJ

and (I-3) 1 ≤ ΩR ≤ ΩJ .

First, in case (I-1), the optimal wage scheme is wI which exhibits IPE. Second, in case

(I-2), the optimal wage scheme is wJ which exhibits JPE. These results are easily derived

from Lemma 3 and Lemma 4. Finally, in case (I-3), we should compare between WJ and

WR in order to determine the optimal wage scheme.

WJ < WR ⇔ (1− 2q1)
{
1− [

1− q1 − q0 − q1(1− q1)
2(2− q1 − q0)

]
η(λ− 1)

}
> 0. (15)

Because q1 ≤ 1
2
, we have:

WJ ≤ WR ⇔ ΩJR ≡ [
1− q1 − q0 − q1(1− q1)

2(2− q1 − q0)
]
η(λ− 1) ≤ 1. (16)

Thus, when (I-3), the optimal wage scheme is wJ if (16) is satisfied; otherwise wR is the

optimal.

Next, when q1 > 1
2
, we have the following possible cases: (II-1) ΩJ < ΩR < 1, (II-2)

ΩJ < 1 ≤ ΩR and (II-3) 1 ≤ ΩJ < ΩR.

First, by Lemma 3 and 4, the optimal wage scheme is wI in case (II-1) while it is wR in

case (II-2). Next, in the case of (II-3), we should compare between WJ and WR in order to

determine the optimal wage scheme. By (15) and q1 >
1
2
, we have:

WR < WJ ⇔ ΩJR < 1. (17)

Thus, when (II-3), the optimal wage scheme is wR if (17) is satisfied; otherwise it is wJ .

Proof of Proposition 6

Proof. Because wJ is the optimal contract, the CPE-IC constraint holds with equality:

U(1, 1,wJ |1, 1, ŵJ) = U(0, 1,wJ |0, 1, ŵJ). Also, under the payment scheme wJ , the agent’s

probability of getting w when he works and his colleague shirks is equal to when he shirks and

his colleague works. Hence U(1, 0,wJ |1, 0, ŵJ) = U(0, 1,wJ |0, 1, ŵJ)−d < U(1, 1,wJ |1, 1, ŵJ).

Thus, neither (ai, aj) = (1, 0) nor (ai, aj) = (0, 1) gives the agents the highest joint utility

under the payment scheme wJ .
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Next, we show that each agent’s total utility when both agents work is higher than when

both agents shirk. The agent’s total utilities when (ai, aj) = (0, 1) and (ai, aj) = (0, 0) under

wJ are as follows:

U(0, 1,wJ |0, 1, ŵJ) = [1− (1− q1)(1− q0)]w
J − (1− q1)(1− q0) [1− (1− q1)(1− q0)] η(λ− 1)wJ ,

U(0, 0,wJ |0, 0, ŵJ) =
[
1− (1− q0)

2
]
wJ − (1− q0)

2
[
1− (1− q0)

2
]
η(λ− 1)wJ .

Because (3) implies

U(0, 1,wJ |0, 1, ŵJ)− U(0, 0,wJ |0, 0, ŵJ)

=Δq(1− q0) [1 + η(λ− 1)− (1− q0)(2− q1 − q0)η(λ− 1)]wJ

=Δq(1− q0) {1− [1− q1 − q0 − q0(2− q1 − q0)] η(λ− 1)}wJ

>0,

we have U(0, 0,wJ |0, 0, ŵJ) < U(0, 1,wJ |0, 1, ŵJ) = U(1, 1,wJ |1, 1, ŵJ).

Therefore, (ai, aj) = (1, 1) attains the agents the highest joint utility under the wage

scheme wJ .
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