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Abstract

Which is better off for the patentee to license its technology by fixed fee or unit royalties?

Kamien and Tauman [8] showed that the fixed fee scheme brings greater private value of

the patent in the linear model. We extend their analysis into a general model. Then, the

simple fact that the model allows a increasing marginal cost supports the unit royalties

scheme. More concretely, the unit royalties scheme is superior to the fixed fee scheme when

the number of firms is large.
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1 Introduction

When a firm successfully innovates production process and obtains its patent, which is better off

for the patentee to license its technology by fixed fee or unit royalties? Kamien and Tauman [8]

showed that the fixed fee scheme brings greater private value of the patent in the linear model.

Since this finding contradicts the reality that the unit royalty scheme is adopted in many cases

of patent licensing, many studies have been tackling to identify economic aspects that could

overturn said finding. Gallini and Wiright [4] and Beggs [2] consider the asymmetric information

between licensor and licensee. Wang [17] clarifies the outsider problem of licensor. Sen [12] finds

out the integer problem of the number of firms.

In this paper, we extend Kamien and Tauman’s analysis into a general model by allowing

general cost and demand structure. As for an analysis which intend to generalize a license

model, Kamien et al. [6] consider general demands. However, the cost functions are still linear

in their model. In our extension, we find the simple fact that the model allows a increasing

marginal cost supports the unit royalties scheme. More concretely, the unit royalties scheme is

superior to the fixed fee scheme when the number of firms is sufficiently large (when the market

is sufficiently competitive).1

This finding is explained as follows from the perspective of economics based on the model

structure. Under the royalty system, a sales strategy that may be summarized as “small vol-

ume sales to a large number of producers” tends to be adopted in order to avoid the problem

of capacity limitation (the possibility of decrease in marginal productivity) by diffusing the

patented technology among a large number of producers. This allows effective production by

those producers, increasing the value of the new technology in the market as a whole. The more

competitive the market is, the larger the number of producers to whom the new technology

could be licensed, leading to wider use of the technology. Consequently, the license revenues

would grow. On the other hand, under the fixed fee system, an opposite sales strategy tends

to be adopted. The patentee should restrict the number of licensees to absorb the profit in

lump-sum way. In other words, new technology would be disclosed only to a certain degree,

1As for the limit results in the field, see Proposition 8 in Kamien and Tauman [8], Kamien and Tauman [7],
Taumana and Watanabe [14] and Kishimoto, et al. [9] among others. All of them consider liner costs.
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leading to rather monopolistic use of the technology. This would lead to mass production by

each licensee, who tends to face the problem of capacity limitation as a result. An increase in

marginal cost would reduce the effectiveness of the use of new technology, decreasing the value of

the technology in the market as a whole. This structure explains why in contrast to a case where

the marginal cost remains constant, in a competitive market with a large number of producers

participating therein, the license revenues under the royalty system exceed those under the fixed

fee system.

The rest of paper is organized as follows. In Section 2, before considering the license model,

we investigate the fundamental futures of the market structure where two (old and new) technolo-

gies are used. Then, Section 3 analyzes the unit-royalty scheme and shows where the patentee’s

license revenue converges as the number of firms goes to infinity. Section 4 analyzes the fixed-fee

scheme and by comparing it to the unit-royalty scheme, shows the presented result. Section 5

provides the two related further discussions, the endogenous number of firms and the two-part

tariff. Section 6 concludes the paper.

2 Basic model, Monotone comparative statics, and Limit

We will formalize the three-stage game, following Kamien and Tauman [8], where one patentee

offers a license contract of its new technology in the first stage, producers decide whether or

not to buy the license simultaneously in the second stage, and the licensed producers and the

unlicensed producers compete in Cournot fashion2 in the third stage. In this paper, we consider

the situation where the patentee does not produce itself (outsider) and the producers can use

old technology even if they are unlicensed. First, in this section, we setup the general model to

investigate the fundamental structure of the third stage.

Basic setting. The basic setting of market competition analyzed in the third stage is as

follows. The set of producers is N = {1, 2, . . . , n}, where n ∈ Z++. The strategy of of producer

i ∈ N is represented by qi ∈ [0, Q̄], where Q̄ ∈ R++. The payoff function of producer i is

P (Q)qi − Cdi(qi) − Fdi . The first-order differentiable function P (Q) : R+ 7→ R+, where Q =

2As for the analysis of Bertrand competition, see Muto [10].
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∑n
k=1 qk, is inverse demand which satisfies P ′(Q) < 0 when Q < Q̄ and P (Q) = 0 when

Q ≥ Q̄. The first-order differentiable function Cdi
(qi) : R+ 7→ R+ is variable cost which satisfies

C ′
di

(qi) > 0 and Fdi is fixed cost, where d = (d1, d2, . . . , dn) is the parameter which represents

firms’ cost differences. The revenue P (Q)qi has decreasing difference in (qi, qj),3 where j ∈ N
and j 6= i.

Cournot competition. Consider the situation wherein the producers are engaged in Cournot

competition. Then, the system of n first-order conditions is

P (Q) + P ′(Q)qi ≤ C ′
di

(qi) i = 1, . . . n (1)

with equality if qi > 0. Denote the solution of this system (1) by q∗i (d), which corresponds

to the Cournot equilibrium output of producer i. Let producer i′s Cournot equilibrium profit

excluding fixed cost be π∗i (d) = P (Q∗(d))q∗i (d)− Cdi(q
∗
i (d)), where Q∗(d) =

∑n
k=1 q∗k(d).

Then, by our setting, we can easily implement the monotone comparative statics4 with

respect to producer i’s technology parameter di.

Lemma 1 Suppose that Cdi(qi) has increasing difference in (qi, di). Then, (i) q∗i (d) is decreas-

ing in di, (ii) q∗j (d) is increasing in di, (iii) Q∗(d) is decreasing in di, (iv) π∗i (d) is decreasing

in di, and (v) π∗j (d) is increasing in di, where j 6= i.

Since Cdi(qi) is first-order differentiable, the concept “increasing difference” means that the

derivative C ′
di

(qi) is increasing in di for all qi. Thus, Lemma 1 implies the well-known results

in Cournot equilibrium that when one producer’s marginal cost increases, its own output and

profit decrease, the total output decreases, and its rival’s output and profit increase.

Two types of costs. Now, consider that there are two groups of producers, S and N\S, where

S ⊆ N. Hereafter, we regard the group of licensed producers as S and the unlicensed producers

3This is equivalent to the stability condition P ′(Q) + P ′′(Q)qi ≤ 0 if P is second-order differentiable.
4In our basic setting, the abovementioned Cournot competition is a submodular game (Note that Cdi(qi) is

lower semicontinuous in qi since it is first-order differentiable). Then, as seen in the following lemma, the concept
of increasing (decreasing) difference is a well-known condition for the monotone results of comparative statics. See
among others, Topkis [15] for modularity and monotone comparative statics, and Vives [16] for the application
to oligopoly models.
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as N \ S. Thus, these groups differ with respect to their cost functions. Let di be the indicator

function which satisfies

di =

{
0 if i ∈ S
1 if i /∈ S.

Hence, if Cdi(qi) has increasing difference in (qi, di), the producers in the group S have the

lower marginal cost than the rest of producers. Since all the producers in the same group

are respectively identical, each producer’s Cournot equilibrium output in the same group is

symmetric.5 Thus, letting the number of elements in S by s and given the total number of firms

n, we can denote these symmetric equilibrium output in each group by qn
0 (s) = q∗i (d) if di = 0

(i ∈ S) and qn
1 (s) = q∗i (d) if di = 1 (i ∈ N \S). Let each firm’s equilibrium profit excluding fixed

cost in each group be πn
di

(s) = P (Qn(s))qn
di

(s)−Cdi(q
n
di

(s)), where Qn(s) = sqn
0 (s)+(n−s)qn

1 (s).

Under these setting, the following results are obtained as the corollary of Lemma 1.

Corollary 1 Suppose that Cdi(qi) has increasing difference in (qi, di). Then, (i) qn
0 (s) ≥ qn

1 (s−
1), (ii) qn

di
(s) ≤ qn

di
(s− 1) for di = 0, 1, (iii) Qn(s) ≥ Qn(s− 1), (iv) πn

0 (s) ≤ πn
1 (s− 1), and (v)

πn
di

(s) ≤ πn
di

(s− 1) for di = 0, 1.

Note that from (i) and (ii) ((iv) and (v)) of this corollary, we have qn
0 (s) ≥ qn

1 (s) (πn
0 (s) ≥ πn

1 (s)).

From (i) to (iii) of this corollary, sqn
0 (s) ≥ (s−1)qn

0 (s−1) and (n−s)qn
1 (s) ≤ (n−s+1)qn

1 (n−s+1).

Limit quantities. Does the output of each producer become infinitesimally small if the num-

ber of producers n is large? The limit outputs will differ depending on which group’s members

diverges to infinity. By comparing the levels of first-unit marginal costs of two groups, let us

denote d̄ = maxd∈{0,1} {C ′
d(0)} and d = mind∈{0,1} {C ′

d(0)}. Indeed, each producer’s output in

the group with the higher first-unit marginal cost always converges to zero when n diverges

to infinity. On the other hand, to shrink each producer’s output in the group with the lower

first-unit marginal cost, the number of its own group’s members must be large.

Lemma 2 Take any sequence {sn}∞n=1 with sn ≤ n. Then, we have (i) ∀ε > 0, ∃n̄, ∀n ≥ n̄,

qn
d̄

(sn) < ε. In addition, if limn→∞(1− d)sn + d(n− sn) = ∞, we have (ii) ∀ε > 0, ∃n̄, ∀n ≥ n̄,

qn
d (sn) < ε.

5Rosen [11] proved that this Cournot game has the unique Nash equilibrium in more general setting. Therefore,
there are no solutions except for the symmetric equilibrium that we focus on.
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Proof (i) First, we prove that ∀ε > 0, ∃n̄, ∀n ≥ n̄, qn
0 (sn) < ε or qn

1 (sn) < ε. Suppose

the contrary, ∃ε > 0, ∀n̄,∃n ≥ n̄, qn
0 (s) ≥ ε and qn

1 (s) ≥ ε. Then, we can make up a sub-

sequence
{

q
m(n)
0

(
sm(n)

)
, q

m(n)
1

(
sm(n)

)}
of {qn

0 (sn) , qn
1 (sn)} such that q

m(n)
0 (sm(n)) ≥ ε and

q
m(n)
1 (sm(n)) ≥ ε. Then,

P (m(n)ε) + P ′(m(n)ε)ε ≥ P (Qn (sn)) + P ′(Qn (sn))qn
di

(sn) (∵ qn
0 (s) ≥ ε and qn

1 (s) ≥ ε)

= C ′
0(q

n
0 (sn)) (∵ the first-order condition (2))

≥ C ′
0(ε). (∵ qn

0 (s) ≥ ε)

When m(n) →∞, the left hand side must become negative – contradiction.

Next consider the case qn
d (sn) < ε. Take ε′ ∈ (0, ε] such that ∀q ≤ ε′, C ′

d(q) < C ′̄
d
(q). Then,

we must have qn
d̄

(sn) < ε′ since the supposition that qn
d̄

(sn) ≥ ε′ leads a contradiction:

P ′(Qn (sn))ε′ ≤ C ′
d(ε

′)− P (Qn (sn)) (∵ the first-order condition (2))

< C ′̄
d(ε

′)− P (Qn (sn)) (∵ the assumption of ε)

≤ C ′̄
d(q

n
d̄ (sn))− P (Qn (sn)) (∵ qn

d̄ (sn) ≥ ε)

= P ′(Qn (sn))qn
d̄ (sn) (∵ the first-order condition (2))

⇒ ε′ > qn
d̄ (sn) (∵ P ′(Qn (sn)) < 0).

(ii) Consider the case where d = 0. (The proof is similar in the case where d = 1.) Sup-

pose the contrary, ∃ε > 0, ∀n̄,∃n ≥ n̄, qn
0 (s) ≥ ε. Then, we can make up a subsequence

{
q
m(n)
0

(
sm(n)

)}
of {qn

0 (sn)} such that q
m(n)
0

(
sm(n)

) ≥ ε. Thus,

P (sm(n)ε + (n− sm(n))q
m(n)
1

(
sm(n)

)
) + P ′(sm(n)ε + (n− sm(n))q

m(n)
1

(
sm(n)

)
)ε

≥ P (Qm(n)
(
sm(n)

)
) + P ′(Qm(n)

(
sm(n)

)
)qm(n)

0

(
sm(n)

)

= C ′
0(q

m(n)
0

(
sm(n)

)
) = C ′

0(ε)

When m(n) →∞, we must have sm(n) →∞ by the assumption that limn→∞ sn = ∞. Therefore,

the left hand side must become negative – contradiction. Q.E.D.
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Innovation. Let the second-order differentiable function cdi
(qi) : R+ 7→ R+ be production

cost which satisfies cdi
(0) = 06 and c′di

, c′′di
> 0, and has strictly increasing difference in (qi, di).

We represent the innovative (new) technology by c0(qi) and the laggard (old) technology c1(qi).

Assume that c′1(0) < P (0). Let α = c′1(0) − c′0(0), i.e., α is the innovative technology’s cost

advantage to produce the first unit.

Define the nonnegative-integer number ŝ as

ŝ = min{s ∈ Z+|qn
1 (s) = 0}.

For this number ŝ, we have the following lemma.

Lemma 3 Suppose Cdi(qi) = cdi(qi). Then, when n is a sufficiently large number, there uniquely

exists ŝ ∈ (0, n) and qn
1 (s) = 0 if and only if s ≥ ŝ.

Proof By Corollary 1 (v), πn
1 (s) is decreasing in s. For s = 0 (all the producers use the laggard

technology), πn
1 (0) > 0 since c′1(0) < P (0). For s = n − 1 (only one firm use the laggard

technology), since qn
0 (n− 1) > 0 by c′0(0) < c′1(0) < P (0), the first-order condition of a producer

must be satisfied with equality:

P (Qn(n− 1)) + P ′(Qn(n− 1))qn
0 (n) = c′0(q

n
0 (n)).

By Lemma 2 (ii), we must have limn→∞ qn
0 (n − 1) = 0. Thus, by diverging n to the infinity in

the first-order condition, limn→∞ P (Qn(n− 1)) = c′0(0). Thus, for sufficiently large n, we must

have P (Qn(n−1)) < c′1(0). This immediately implies that qn
1 (n−1) = 0. As a whole, ŝ uniquely

exists in (0, n) and qn
1 (s) = 0 if and only if s ≥ ŝ. Q.E.D.

From this Lemma, we find that ŝ is the critical mass of the number of firms using the innovative

technology that drive the laggard technology out of the markets. Thus, we call the innovation

is ŝ-firms drastic. Hereafter, we assume ŝ > 1, that is, the innovation is not one-firm drastic.7

Define QM by P ′(QM )QM + P (QM ) = c′0(0) and QQM by P (QQM ) = c′1(0). We call the

innovation is efficiently drastic if QM > QQM . Since the efficiently drastic innovation implies
6In other words, we consider the situation where the entry costs of producers have sunk. However, we can

easily offer a simple modification to consider the U-shaped average cost and endogenize the number of firms. See
the further discussion.

7The definition of drastic innovation follows Arrow [1]. Sen [12] extends this concept to ŝ-firms drastic inno-
vation.

7



that P (QM ) < c′1(0), the firm with a constant marginal cost of c′0(0) can deter the firms with the

laggard technology c1 even under its monopoly price. Note that the innovation can be efficiently

drastic even if it is not one-firm drastic since c′′0 > 0.

3 Unit royalty scheme

In this section, we investigate the unit royalty scheme wherein the patentee offers r ∈ R+,

which represents the unit royalty, in the first stage and then, the n producers decide whether or

not to buy the license simultaneously in the second stage. Royalties for a patent are collected

according to the volume of output produced by use of the patent. Thus, in the third stage, the

cost functions of firm i can be described as

Cdi(qi) = cdi(qi) + (1− di)rqi, Fdi = 0.

Notice that in the unit-royalty scheme, Cdi does not always have increasing difference in (qi, di)

depending on the unit-royalty level r. The payoff of patentee is rQ̃, where Q̃ represents the

aggregate output of the licensed producers. We suppose that there uniquely exist a subgame

perfect equilibrium in this game.

3.1 The third stage

Under the unit royalty scheme, the first-order condition of firm i (1) turns out to be

P (Qn (s)) + P ′(Qn (s))qn
di

(s) ≤ c′di
(qn

di
(s)) + (1− di)r (2)

with equality if qn
di

(s) > 0. From this, we find that each firm’s equilibrium output depends on

r. Hence, in this section, we rewrite qn
di

(s) by a expression including r, qn
di

(s, r).

When r < α, since the marginal cost for license payments does not exceed the innovative

technology’s cost advantage for the first unit, we have C ′
0(0) < C ′

1(0), that is, d = 0. Therefore,

by Lemma 2, all the producer’s output converges to zero when the number of licensed producers

is large. Conversely, since d = 1 when r > α, all the producer’s output converges to zero when

the number of unlicensed producers is large. Furthermore, if r /∈ (α− δ, α + δ) for some δ > 0,

with regard to the level of r, we can find the most slowly converging point in each case. The

following lemma states this fact formally.
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Lemma 4 Take δ > 0 arbitrarily. (i) Take any sequence {sn}∞n=1 with sn ≤ n and limn→∞ sn =

∞. Then, qn
0 (sn, r) and qn

1 (sn, r) uniformly converge to 0 on r ∈ [0, α − δ] when n → ∞. (ii)

Take any sequence {sn}∞n=1 with sn ≤ n and limn→∞(n−sn) = ∞. Then, qn
0 (sn, r) and qn

1 (sn, r)

uniformly converge to 0 on r ∈ [α + δ, P (0)] when n →∞.

Proof Pick ε > 0 and δ > 0 arbitrarily. (i) First, take any sequence {sn}∞n=1 with sn ≤ n

and limn→∞ sn = ∞. We will prove that ∃n′, ∀n ≥ n′, ∀r ∈ [0, α − δ], qn
0 (sn, r) < ε and

qn
1 (sn, r) < ε. Since C ′

0(0) is increasing in r, qn
1 (sn, α − δ) ≥ qn

1 (sn, r) and qn
0 (sn, 0) ≥ qn

0 (sn, r)

for all r ∈ [0, α−δ]. By Lemma 2(i), ∃n̂, ∀n ≥ n̂, qn
1 (sn, α−δ) < ε. By Lemma 2(ii), ∃ň, ∀n ≥ ň,

qn
0 (sn, 0) < ε. Thus, ∀n ≥ n′ = max {n̂, ň}, qn

0 (sn, r) < ε and qn
0 (sn, r) < ε for all r ∈ [0, α − δ].

(ii) Next, take any sequence {sn}∞n=1 with sn ≤ n and limn→∞(n− sn) = ∞. Similarly, we can

prove that ∃n′′, ∀n ≥ n′′, ∀r ∈ [α + δ, P (0)], qn
0 (sn, r) < ε and qn

1 (sn, r) < ε. Q.E.D.

3.2 The second stage

Let sn(r) be the equilibrium number of the firms who accept the license with the unit-royalty

level r. When n is sufficiently large, as far as r /∈ (α− δ, α+ δ) for some δ > 0, all the producers

accept the unit-royalty level r < α and no producers accept the unit-royalty level r > α. The

following lemma states this formally.

Lemma 5 ∀δ > 0, ∃n̄, ∀n ≥ n̄,

sn(r) =

{
n ∀r ∈ [0, α− δ]
0 ∀r ∈ [α + δ, P (0)].

Proof Consider the case where r ∈ [0, α−δ], that is, C ′
0(0) < C ′

1(0). Take ε > 0 such that ∀q ≤ ε,

C ′
0(q) < C ′

1(q). By Lemma 4, ∃n̂, ∀n ≥ n̂, qn
0 (n, r) < ε for all r ∈ [0, α − δ] and ∃ň, ∀n ≥ ň,

qn
0 (n− 1, r) < ε and qn

1 (n− 1, r) < ε for all r ∈ [0, α − δ]. Therefore, ∀n ≥ n′ = max {n̂, ň},
qn
0 (n, r) < ε and qn

0 (n− 1, r) < ε and qn
1 (n− 1, r) < ε. Hence, q ∈ [0, ε] is the relevant range to

induce the equilibrium output when n ≥ n′. Since C ′
d(q) has increasing difference in (q, d) when

q ∈ [0, ε], we can applies the Lemma 1(iv) and thus πn
0 (n, r) ≥ πn

1 (n− 1, r) for all r ∈ [0, α− δ].
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Therefore, when n ≥ n′, no firms have the incentive to deviate from the situation wherein s = n,

for all r ∈ [0, α − δ]. The similar proof is applicable in the case where ∀r ∈ [α + δ, P (0)], that

is, C ′
0(0) > C ′

1(0). Thus, we have ∃n′′, ∀n ≥ n′′, no firms have the incentive to deviate from the

situation wherein s = 0 for all r ∈ [α + δ, P (0)]. Let n̄ = max {n′, n′′}, we reach the requested

result. Q.E.D.

We denote firm i’s output in the equilibrium path of the subgame after the patentee chooses

r by qn
i (r), the aggregate output by Qn(r) =

∑n
i=1 qn

i (r), and the patentee’s payoff by Πn(r)

when the number of firms is n.

3.3 The first stage

Let patentee’s equilibrium royalty given the number of firms n be rn
R and the patentee’s equi-

librium payoff given the number of firms n be Πn
R = Πn(rn

R). The following theorem reveals

where the equilibrium level of unit royalties goes and how much the patentee can earn by the

unit-royalty scheme in the limit.

Theorem 1

(i) If the innovation is not efficiently drastic, we have limn→∞ rn
R = c′1(0)− c′0(0) and

lim
n→∞Πn

R = [c′1(0)− c′0(0)]QQM .

(ii) If the innovation is efficiently drastic, we have limn→∞ rn
R = P (QM )− c′0(0) and

lim
n→∞Πn

R = [P (QM )− c′0(0)]QM .

Proof Pick δ > 0 arbitrarily. By Lemma 5, ∃n̄, ∀n ≥ n̄, sn(r) = n if r ∈ [0, α−δ] and sn(r) = 0

if r ∈ [α + δ, P (0)]. Henceforth, we focus on the case when n ≥ n̄. Then, if the patentee chooses

r ∈ [α + δ, P (0)], its payoff Πn(r) is always zero. On the other hand, if r ∈ [0, α − δ], since

qn
i (r) = qn

0 (n, r) > 0 for all i by Lemma 5, it must be satisfied that

sup
r∈[0,α−δ]

|P (Qn(r))− C ′
0(0)| = sup

r∈[0,α−δ]
|C ′

0(q
n
0 (n, r))− C ′

0(0)− P ′(nqn
0 (n, r))qn

0 (n, r)|
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by the first-order condition (2). The right hand side converges to zero when n → ∞ since by

Lemma 4 (i), qn
0 (n, r) uniformly converges to 0 on r ∈ [0, α− δ] when n →∞. Therefore, when

n → ∞, P (Qn(r)) uniformly converges to C ′
0(0) on r ∈ [0, α − δ]. As a whole, the patentee’s

payoff Πn(r) uniformly converges to 0 on [α + δ, P (0)] and to rP−1(C ′
0(0)) = rP−1(c′0(0) + r)

on r ∈ [0, α− δ].

If the innovation is not efficiently drastic, c′1(0) ≤ P (QM ). Thus, from the above,

lim
n→∞ argmax

r∈[0,P (0)]\(α−δ,α+δ)
Πn(r) = α− δ, (3)

where use was made of the mathematical result of Lemma 8 provided in the appendix. Since we

can take arbitrarily small δ > 0, we must have limn→∞ rn
R = α. (Suppose the contrary. Then,

there exists δ′ > 0, we can make up a subsequence
{
rm(n)

}
of {rn

R} such that |rm(n)−α| ≥ δ′ for

all m(n). Taking δ ∈ (0, δ′) leads a contradiction since (3) implies rn
R = argmaxr∈[0,P (0)] Πn(r)

must be in (α− δ′, α + δ′) for sufficiently large n.) The fact that limn→∞Πn
R = rn

RP−1(c′0(0) +

rn
R) = αP−1(c′1(0)) = αQQM immediately follows from this conclusion.

If the innovation is efficiently drastic, c′1(0) > P (QM ). Thus, from the above, ∀δ < c′1(0) −
P (QM ),

lim
n→∞ argmax

r∈[0,P (0)]\(α−δ,α+δ)
Πn(r) = P (QM )− c′0(0),

lim
n→∞ max

r∈[0,P (0)]\(α−δ,α+δ)
Πn(r) = [P (QM )− c′0(0)]QM , (4)

by Lemma 8. Since by the definition of QM , [P (QM ) − c′0(0)]QM is greater than rQn(r) when

r 6= P (QM ) − c′0(0), we must have limn→∞ rn
R = P (QM ) − c′0(0). (Suppose that {rn

R} does not

converges to P (QM )− c′0(0). Then, there exists δ′ > 0, we can make up a subsequence
{
rm(n)

}

of {rn
R} such that |rm(n) − [P (QM ) − c′0(0)]| ≥ δ′ for all m(n). Thus, ∃∆ > 0, for all m(n),

[P (QM ) − c′0(0)]QM − rm(n)P (Qm(n)(rm(n)
R )) > ∆. By taking δ ∈ (0, δ′), this contradicts to

(4).) The fact that limn→∞Πn
R = [P (QM )− c′0(0)]QM immediately follows from this conclusion.

Q.E.D.

Intuitively, the result of this theorem is very simple if we see the figure 1. In the unit-royalty

scheme, all the producers are licensed or unlicensed when n → ∞ (by Lemma 5). Then, in
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the limit, since each producer produces infinitesimally small output (by Lemma 2), the new

technology’s production approximates that produced with a most efficient constant marginal

cost c′0(0) as a whole, as well as the old technology’s production approximates that produced

with a constant marginal cost c′1(0). Therefore, when (i) the innovation is not efficiently drastic,

i.e., c′1(0) ≤ P (QM ), the limit royalty will be the level which just undercuts the old technology’s

marginal cost c′1(0) and the patentee can earn the undercutting profit8 (the area ABCD in the

figure). When (ii) the innovation is efficiently drastic, i.e., c′1(0) > P (QM ), the limit royalty will

be the level which just realizes the monopoly profit (the area AEFG in the figure).

Q

MR P (Q)
c′0(0)

O

P

r

QQMQM

(i)c′1(0)
P (QM )

(ii)c′1(0)

A

B C

D

E F

G

Figure 1: Limit profit in the unit royalty scheme

4 Fixed fee scheme

In this section, we investigate the fixed-fee scheme wherein the patentee offers f ∈ R+, which

represents the fixed fee, in the first stage and then, the n producers decide whether or not to

accept the license simultaneously in the second stage. Under the fixed fee system, a producer

who has paid a certain amount of fee is entitled to use a patented technology regardless of

production volume. Thus, in the third stage, the cost functions of producer i can be described

as

Cdi(qi) = cdi(qi), Fdi = (1− di)f.

8Ino and kawamori [5] refer this situation as quasi-monopoly. Thus, we uses the notation QQM .
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Notice that in the fixed fee scheme, Cdi
always has increasing difference in (qi, di) regardless of

the fixed-fee level f . The payoff of patentee is ñf , where ñ represents the number of producers

who accept the license. We suppose that there uniquely exist a subgame perfect equilibrium in

this game.

4.1 The third stage

For given s and f , the first-order condition (1) is not directly affected by f . Thus, we find that

each firm’s equilibrium output qn
di

(s) does not depend on f . The profit of firm i is

πn
di

(s) = P (Qn(s))qn
di

(s)− cdi(q
n
di

(s))− (1− di)f.

Observe that πn
di

(s) is decreasing in f when di = 0 while does not depend on f when di = 1.

The following lemma states that if n is sufficiently large, one producer’s incentive to par-

ticipate in the licensed group is greater, the smaller the number of licensed group’s member

is.

Lemma 6 ∃n̄, ∀n ≥ n̄, ∀s ∈ {1, 2, . . . , n− 1},

πn
0 (s)− πn

1 (s− 1) > πn
0 (s + 1)− πn

1 (s).

Proof First, we show that for s < ŝ, P (Qn(s)) converges to c′1(0) when n → ∞. For s ∈
{0, 1, . . . , ŝ−1}, since qn

1 (s) > 0 by Lemma 3, the first-order condition of a unlicensed firm must

be satisfied with equality:

P (Qn(s)) + P ′(Qn(s))qn
1 (s) = c′1(q

n
1 (s)).

By Lemma 2 (i), we must have limn→∞ qn
1 (s) = 0. Thus, by diverging n to the infinity in the

first-order condition, limn→∞ P (Qn(s)) = c′1(0).

Next, we show that ∀ε > 0, ∃n̄, ∀n ≥ n̄, πn
1 (s) < ε ∀s ∈ {0, 1, · · · , n} and in particular,

πn
1 (s) = 0 ∀s ∈ {ŝ, ŝ+1, · · · , n}. Take ε > 0 arbitrarily. By Corollary 1 (v), ∀s, πn

1 (s) ≤ πn
1 (s−1).

Thus, if πn
1 (0) < ε, we immediately obtain ∀s, πn

1 (s) < ε. When s < ŝ, from the first paragraph,

13



limn→∞ P (Qn (s)) = c′1(0). Hence,

lim
n→∞πn

1 (0) = lim
n→∞P (nqn

1 (0))qn
1 (0)− c1( lim

n→∞ qn
1 (0)) (∵ Continuity of c0 and lim

n→∞ qn
1 (0) = 0)

= c′1(0) lim
n→∞ qn

1 (0)− c1(0) = 0 (∵ lim
n→∞P (Qn (s)) = c′1(0) and lim

n→∞ qn
1 (0) = 0)

Furthermore, when s ≥ ŝ, qn
1 (s) = 0 by Lemma 3 for sufficiently large n. Therefore, Thus, since

{0, 1, . . . , n} is finite set, we can take n̄ such that ∀n ≥ n̄, πn
1 (0) < ε for all s and πn

1 (s) = 0 for

s ≥ ŝ.

Finally, we show that πn
0 (s) − πn

0 (s + 1) > πn
1 (s − 1) − πn

1 (s) for sufficiently large n. By

Corollary 1 (v) and qn
0 (s) > 0, πn

0 (s)− πn
0 (s + 1) > 0 for all s ∈ {1, . . . , n− 1}. Let

ε = min
s∈{1,2,...,ŝ}

[πn
0 (s)− πn

0 (s + 1)].

Then, from the above, ∃n̄, ∀n ≥ n̄, πn
1 (s−1)−πn

1 (s) < ε for all s and indeed, πn
1 (s−1)−πn

1 (s) = 0

for s > ŝ. Therefore, when s ≤ ŝ, πn
0 (s)− πn

0 (s + 1) ≥ ε > πn
1 (s− 1)− πn

1 (s) by the definition of

ε. When s ≤ ŝ, the requested result holds by πn
0 (s)−πn

0 (s+1) > 0 = πn
1 (s−1)−πn

1 (s). Q.E.D.

4.2 The second stage

Let sn(f) be the equilibrium number of firms who accept the license contract with the fixed-fee

level f . As easily predicted by the result of lemma 6, if n is sufficiently large, we find the

monotone relation such that sn(f) increases as f decreases.

Lemma 7 ∃n̄, ∀n ≥ n̄,

sn(f) =





0 if πn
0 (1)− πn

1 (0) < f

1 if πn
0 (2)− πn

1 (1) < f ≤ πn
0 (1)− πn

1 (0)
...
ŝ− 1 if πn

0 (ŝ)− πn
1 (ŝ− 1) < f ≤ πn

0 (ŝ− 1)− πn
1 (ŝ− 2)

ŝ if πn
0 (ŝ + 1) < f ≤ πn

0 (ŝ)− πn
1 (ŝ− 1)

ŝ + 1 if πn
0 (ŝ + 2) < f ≤ πn

0 (ŝ + 1)
...
n− 1 if πn

0 (n) < f ≤ πn
0 (n− 1)

n if f ≤ πn
0 (n).
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Proof (i) By Lemma 6, we can take n̄ > ŝ such that ∀n ≥ n̄, πn
0 (s)− πn

1 (s− 1) is decreasing in

s ∈ {1, 2, . . . , n− 1}. Consider n greater than or equal to such n̄.

Suppose that for s = 1, . . . , n− 1, s firms accepts the license contract and

πn
0 (s + 1)− πn

1 (s) < f ≤ πn
0 (s)− πn

1 (s− 1). (5)

Note that if s > ŝ, the term πn
1 (s) is vanished from this condition since it is zero. The deviation

profit of a licensed firm is πn
1 (s−1)− [πn

0 (s)−f ] but this is non-positive by the second inequality

of (5). The deviation profit of a unlicensed firm is [πn
0 (s + 1) − f ] − πn

1 (s) but this is negative

by the first inequality of (5). Therefore, sn(f) = s.

Finally, we will consider two extreme cases. Suppose that πn
0 (1) − πn

1 (0) < f and no firms

accept the license contract. The deviation profit of a firm is [πn
0 (1) − f ] − πn

1 (0) but this is

negative by the supposition. Thus, in this case, sn(f) = 0. Suppose that f ≤ πn
0 (n) and all the

firms accept the license contract. The deviation profit of a firm is πn
1 (n − 1) − [πn

0 (n) − f ] but

this is non-positive by the supposition and the fact that πn
1 (n− 1) = 0 since n ≥ n̄ > ŝ. Thus,

in this case, sn(f) = n. Q.E.D.

We denote the patentee’s payoff in the equilibrium path of the subgame after the patentee

chooses f by Πn(f) = sn(f)f when the number of firms is n.

4.3 The first stage

Let fn
F be the equilibrium level of fixed fee for given n. Then, the equilibrium profit of the

patentee Πn
F is defined by

Πn
F = Πn(fn

F ) = sn(fn
F )fn

F .

The following theorem is our main goal which reveals that it is better off for the patentee to

license its technology in the unit-royalty scheme than in the fixed-fee scheme when the number

of producers is sufficiently large.

Theorem 2 Whenever the innovation is efficiently drastic or not, ∃n̄, ∀n ≥ n̄, Πn
F < Πn

R.

Proof Take n′ such that ∀n ≥ n′, sn(f) is that in Lemma 7. Since the profit of the patentee
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Πn(f) = sn(f)f is maximized when f = πn
0 (s)− πn

1 (s− 1) in the range wherein sn(f) = s,

Πn(f) ≤ sn(f)[πn
0 (sn(f))− πn

1 (sn(f)− 1)] (6)

with equality if f = πn
0 (s)− πn

1 (s− 1).

We confirm that ∃ε > 0, ∀n ≥ n′, Πn
F > ε. Take n > n′ arbitrarily. Then, if f is in

(πn
0 (ŝ+1), πn

0 (ŝ)−πn
1 (ŝ−1)], the patentee’s payoff is greater than ŝπn

0 (ŝ+1) by Lemma 7. Since

qn
1 (sn(f)) = 0 in this case, πn

0 (ŝ + 1) = πŝ+1
0 (ŝ + 1), which equals to the ordinary ŝ + 1-firm

Cournot profit regardless of n.

We exclude two polar cases. First, we must have sn(fn
F ) > 0. To the contrary, if sn(fn

F ) = 0,

Πn
F = 0 contradicts to the above. Next, we must have ∃s∗ > ŝ, ∀n ≥ n′, sn(fn

F ) < s∗. If not so,

we can make up the subsequence
(
sm(n)

)
of (sn(fn

F )) such that limm(n)→∞ sm(n) = ∞. Then,

lim
m(n)→∞

P (Qm(n)(sm(n))) = c′0(0),

where the proof is similar to Lemma 3. Thus, limm(n)→∞ sm(n)π
m(n)
0 (sm(n)) = 0. Since f

m(n)
F ≤

π
m(n)
0 (sm(n)) by (6), limm(n)→∞Πm

F (n) = 0. This contradicts to the above.

Hereafter, we focus on the case where 0 < sn(f) < s∗. From (6), for all n ≥ n′,

Πn(f) ≤ sn(f)πn
0 (sn(f)) = P (Qn(sn(f)))sn(f)qn

0 (sn(f))− sn(f)c0(qn
0 (sn(f))) (7)

where the second term of the right hand side can be decomposed as

sn(f)c0(qn
0 (sn(f))) = sn(f)qn

0 (sn(f))c′0(0) + sn(f)
∫ qn

0 (sn(f))

0
[c′0(t)− c′0(0)]dt.

From Corollary 1 (ii) and sn(f) < s∗,
∫ qn

0 (sn(f))

0
[c′0(t)− c′0(0)]dt ≥

∫ qn
0 (s∗)

0
[c′0(t)− c′0(0)]dt ≡ A > 0,

where the last inequality comes from c′′0 > 0. By substituting these into (7), for all n ≥ n′,

Πn(f) ≤ [P (Qn(sn(f)))− c′0(0)]sn(f)qn
0 (sn(f))− sn(f)A

≤ [P (Qn(sn(f)))− c′0(0)]Qn(f)−A (∵ sn(f) ≥ 1). (8)

Observe that since qn
0 (s∗) does not depend on n by s∗ > ŝ and Lemma 3, so A does not (Thus,

the term A never converges to zero if n →∞). Therefore, by (8), ∃δ > 0, ∃n̄ ≥ n′, for all n ≥ n̄,

Πn(f) < [P (Qn(sn(f)))− c′0(0)]Qn(f)− δ (9)
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Thus, Πn(f) must be less than the profit gained by producing Qn(sn(f)) with a constant

marginal cost c′0(0). Therefore, Πn(f) never reaches [P (QM )− c′0(0)]QM .

When sn(f) < ŝ, since limn→∞ P (Qn(sn(f))) = c′1(0) by the first paragraph in the proof of

Lemma 6,

lim
n→∞P (Qn(sn(f)))Qn(f) = c′1(0)QQM . (10)

Therefore, by (9), ∃δ > 0, ∃n̄ ≥ n′, for all n ≥ n̄,

Πn(f) < [c′1(0)− c′0(0)]QQM − δ. (11)

Therefore, Πn(f) never reaches [c′1(0)− c′0(0)]QQM .

From these facts and Theorem 1, we have the requested result. Q.E.D.

Intuition of this theorem is clear. As seen in Lemma 5 and Theorem 1, all the producers are

licensed in the unit-royalty scheme. Since the unit royalty raises the marginal cost, competition

among the licensed producers does not induce a low price. Thus, the patent holder can enjoy

the difference between the price and the reduced marginal-production cost under “small volume

sales to a large number of producers”. In contrast, the feature of the optimal license contract in

the fixed-fee scheme is “large volume sales to a small number of producers”. This is because if all

the producers use the innovative technology, competition among them lowers the price since the

fixed fee does not raise the marginal cost. Thus, to absorb the profit in lump-sum way, the patent

holder should restrict the number of licensed producers. However, since the cost is convex, this

feature of the fixed-fee scheme yields the disadvantage with respect to the production efficiency.

Note that under the convex costs, the larger the number of licensed producers, the lower the

total cost is. Thus, when n is large, this disadvantage is more likely to dominate the advantage

of the fixed-fee scheme that is found by Kamien and Tauman [8].

5 Further Discussions

Endogenous number of firms In the body of paper, we avoid discussing the set-up or entry

costs of the producers and endogenizing the number of firms. In other words, we assume that the

entry costs of producers have sunk. Thus, at a glance, we only consider the increasing average
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cost and make n diverge exogenously. However, we can easily offer a simple modification to

consider the U-shaped average cost and endogenize the number of firms. Suppose that potential

producers need to pay non-sunk fixed costs, F > 0 to enter the market and they choose to

enter or not before the patentee offers license contract (Stage 0).9 Consider that n is determined

endogenously by a zero-profit condition in this stage. Then, the post-entry market (the subgame

after n is determined) is exactly the same one analyzed in this paper. Producers will enter the

market if F is less than its post-entry profit analyzed in our paper (note that each producer earns

positive post-entry profit when n is finite). The post-entry market grows into a competitive one

as F goes to zero. Since n → ∞ when F → 0, this limit outcome is the same as that in the

body of the paper.

Two-part tariff Thus far, we consider the unit-royalty scheme and the fixed-fee scheme sepa-

rately. However, it is often discussed that the combination of the unit and the fixed fee (two-part

tariff) brings greater private value of the patent than each scheme.10 Thus, it is worth to dis-

cuss what happens in our limit results if we allow the combination of two schemes: the patentee

offers (r, f) ∈ R2
+ in the first stage and the cost functions of producer i in the third stage can

be described as

Cdi(qi) = cdi(qi) + (1− di)rq, Fdi = (1− di)f.

Even under this modification, we can show that in the optimal license contract, r converges to

the same values provided in Theorem 1 and f converges to zero as n → ∞. In other words,

when the market is sufficiently competitive, the patentee solely uses the unit royalty even if

the combination with fixed fee is feasible. This is because the unit royalty alone can attain the

maximized profit (monopoly or under-cutting profit) as seen in Theorem 1 and a positive fixed

fee disturbs the efficient use of technology for the similar reason to Theorem 2.

9De Meza [3] considers another timing of entry. In his license model, the entries of producers occur between
Stage 1 and Stage 2.

10See Sen and Tauman [13] among others.
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6 Concluding Remarks

We have shown that the unit-royalty scheme is superior to the fixed-fee scheme when the market

is sufficiently competitive (Theorem 2). Kamien and Tauman [8] showed that as the market goes

purely competitive (n → ∞), the patentee’s profit using the fixed fee or using the unit royalty

goes indifferent under the linear costs (Proposition 8(2) in their paper). Combining these results,

we can state that in the convex-cost environment, when the market goes purely competitive, the

patentee’s profits using the royalty licensing is higher than or equal to that using the fixed fee

licensing with equality if and only if cost functions are linear. Therefore, the result of Kamien

and Tauman is a boundary solution in the sense that the fixed fee licensing always dominates

the unit royalty licensing if and only if marginal costs are constant.

Our result provides an important implication for pro-patent policies. Sometimes, pro-patent

policies draw criticism for lack of availability of new technologies. An intuition behind this

criticism is that strong protection of patents ensures patentees’ monopolistic license revenue

and it may lead to exclusive supplies of new technologies. As a result, it seems that the new

technologies do not widespread due to pro-patent policies. As for the the fixed-fee scheme, this

is true since the the fixed-fee scheme induces the strategy, “large volume sales to a small number

of producers.” However, when the market is sufficiently competitive, our result indicates that

the technology which should be common (convex cost) would widespread even under the perfect

protection of the patent. This is because the unit royalty scheme induces the strategy, “small

volume sales to a large number of producers”. Therefore, in this mean, for the availability of

new technology, the important thing is to improve market competition along with pro-patent

policies.

Appendix

We provide a mathematical fact suitable for our analysis. Roughly speaking, this fact tells

us that if the “limit payoff function” f , which the sequence of payoff function (fn) uniformly

converges to, has the unique maximizer on the compact area, the sequence of maximizers for

(fn) cannot escape from that value as n goes to infinity. Thus, once this “limit payoff function”
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is identified, we can find the convergent point of the equilibria without characterizing each

finite maximization problem. Pointwise convergence is not sufficient to prove the lemma below.

Uniform convergence is the key condition.

Lemma 8 (Solution of maximization in the limit)

Let D ⊂ R be compact. Suppose that a sequence of functions (fn : D → R)n∈N uniformly

converges to a continuous function f : D → R. If f has the unique maximizer denoted by

x∗ ∈ D and fn has a maximizer denoted by xn ∈ D for each n, we have x∗ = limn→∞ xn.

Proof See Ino and Kawamori [5] Q.E.D.
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