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Abstract 
We consider research and development (R&D) investment competition between duopolistic firms 

that independently invest in two complementary technologies to produce their products. By “partially 

complementary technologies”, we mean that each firm can produce the goods without both technologies but 
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equilibria in R&D of the two technologies with and without a licensing system. By comparing R&D 

investment levels in the two equilibria, we show that the licensing system discourages R&D investment in 

most cases; however, it encourages R&D investment in some cases when the duopolistic firms can produce 

the goods using both technologies. We also show that (cross-) licensing increases the expected social 

surplus at the symmetric equilibrium. 
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1. Introduction 

One significant feature of recent technological innovation is that a firm often employs 

multiple distinct technologies to produce a commodity. Especially in information technology 

(IT) industries, one product is composed of numerous separable patentable elements. For 

example, the production of a mobile phone with a digital camera involves about 19,000 

(Japanese) patents and/or utility models. 1  In this environment, which has been called 

“cumulative-systems technologies” (Merges and Nelson (1994)) or “complex technologies” 

(Cohen, Nelson and Walsh (2000)), many economic agents hold and share the separable 

patentable elements. The method of coordination among these patent holders affects the 

interests of each inventor and also affects their R&D incentives. Over the last decade of the 

previous century, a number of studies have discussed the effects on R&D activities, licensing 

and the patent systems of the mode of coordination of inventions. 

Considering complex technologies, we can identify in principle two types of 

relationships between inventions. The first type is cumulative or one-way complementary. As 

Scotchmer (1991) pointed out, many inventors engage in R&D activities based on the 

outcome of preceding inventions. Here, while an applied technology invention that is based 

on basic technologies is not possible without the existence of these basic technologies, 

invention of the basic technologies in themselves is possible without the outcome of the 

applied technologies. With respect to this relationship, Green and Scotchmer (1995), and 

Chang (1995) showed that externalities, due to the lack of coordination among the creators of 

plural distinct inventions, discourage the development of these technologies. In the second 

type of relationship among inventions, various mutually interdependent inventions are 

required, without which production of the goods is very difficult. Thus, this relationship 

among inventions is called two-way complementary. 
                                                 

1 Nihon Keizai Shinbun (August 18, 2003) 
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In fact, as we have seen typically in the IT industries, technological innovations occur 

on the basis of plural distinct inventions developed in different systems of technologies. 

Distinct technologies are complementary to each other as parts of the product produced. An 

externality problem occurs due to a lack of coordination among the discoverers of plural 

complementary technologies. Heller and Eisenberg (1998) stated that the existence of such 

externality results in “the tragedy of anti-commons”. When the intellectual property rights of 

plural distinct technologies are assigned to different agents (firms), the externality generates 

excessive exercises of exclusive rights and leads to under-utilization of these technologies, 

and this under-utilization discourages R&D activities of agents (firms). 

When all complementary technologies are necessary to produce a product, licensing has 

strategic importance. If two firms own each of two distinct inventions with complete 

complementarity, then the two firms cannot produce a product at all without a cross-licensing 

contract. The form of this coordination affects R&D activities of the firms. Grindley and 

Teece (1997) and Hall and Ziedonis (2001) conducted empirical investigations of the 

appliance and integrated circuit (IC) industries. Their results show the conditions of the firms’ 

(cross-) licensing of technologies have a significant effect on the incentives for R&D 

activities in these industries where complementary inventions are indispensable for 

production. While there are many empirical studies on this subject, few theoretical studies 

have examined how the conditions of firms’ (cross-) licensing of technologies affect firms’ 

incentives for R&D activities. Fershtman and Kamien (1992) and Okamura, Shinkai and 

Tanaka (2002) offer two of the few studies of two firms engaging in R&D activities for two 

distinct technological inventions with complete complementarity. They both established that 

the existence of a cross-licensing system reduces the firms’ R&D activities in such a context. 

Complementary technological inventions are not always indispensable for production, 

in which case firms may produce a new product without using any one of two complementary 

inventions. For example, in IC technologies, a great number of distinct technological 
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inventions with complementarity exist such as software technologies, liquid crystal display 

(LCD) technologies and so on, all of which are indispensable for producing a mobile phone. 

Some firms, however, can develop and produce a new and superior mobile phone by using the 

outcomes of the successful invention with regard to software technologies and LCD 

technologies. In this environment, the margin created by the cost reduction (e.g. of the mobile 

phone) depends on the degree of complementarity of the underlying technologies. When the 

degree of complementarity is large (small), we expect that the cost reduction created by 

invention of only one element of the underlying technologies is small (large). Such an 

environment opens the possibility of unilateral licensing for coordinating technological 

inventions. When firms invest in R&D in two distinct technologies with complete 

complementarity, both technologies are indispensable for producing products, and the realized 

pattern of licensing becomes cross-licensing. On the contrary, consider the invention of one 

element of the underlying technologies that is dispensable for production but also contributes 

to cost reduction. This invention may be unilaterally licensed. Therefore, we employ a static 

framework to examine how the degree of complementarity between underlying technologies 

and the difference between cross-licensing and unilateral licensing changes firms’ incentives 

for R&D activities in a Cournot duopoly. We concentrate on the case where each duopolistic 

firm can invest in R&D for two distinct technological inventions with partial complementarity 

with each other. 

In Section 2, we describe our model. In Section 3, we analyze the problem of R&D in a 

Cournot duopoly with partially complementary technological innovations without licensing as 

a benchmark. In Section 4, we examine the conditions under which (cross-) licensing occurs. 

The appendix presents the conditions under which (cross-) licensing may occur at every state 

of nature. After extending our analysis to the case of (cross-) licensing in Section 5, we 

analyze theoretically how the difference between cross-licensing and unilateral licensing 

affects firms’ incentives for R&D activities in a Cournot duopoly in Sections 5 and 6.  In 
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Section 7, we use a numerical example to discuss briefly how the difference between 

cross-licensing and unilateral licensing affects welfare at the equilibria. In the final section, 

we present our concluding remarks. 

 

2. The model 

We consider a duopolistic market in which two firms with identical production 

technology, firms x and y, produce a homogeneous product. At the first stage, each firm 

simultaneously invests in R&D for the two distinct but partially complementary technologies, 

A and B. By “partially complementary technologies,” we mean that each firm can produce the 

goods without both two technologies but it incurs additional costs than with both technologies. 

Denote by xA , xB (≥ 0) and )0(, ≥BA yy  the investment levels for the technologies A, B of 

firm x and those for the technologies A, B of firm y. If each firm succeeds in the development 

of at least one of these technologies, it can reduce marginal cost through a process innovation. 

Assume that each firm has a constant return to scale production technology as follows: 

iiiii qcqcqC ⋅+== )0()( , if it succeeds in the development of both 

technologies A and B,     

          iqkc ⋅+= )(　 , if it succeeds in the development of technologies A 

or B, where 10 ≤≤ k ,    

iqc ⋅+= )1(　 , if it fails to develop both technologies A and B 

yxi ,= ,       (1) 

 

where c  is an intrinsic marginal cost and we set c  = 0 without loss of generality. 

This cost function implies that marginal cost decreases by 1, k−1  and 0 if 

firm ),( yxi = succeeds in the development of both, either and none of the two technologies. 

We say the two technologies A and B are less partially complementary, even partially 

complementary and more partially complementary, if 21,210 =<≤ kk 　  and 121 ≤< k　 , 
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respectively. Especially, the two technologies are the least partially complementary or the 

most partially complementary, if k = 0 or k = 1.2 

If each firm succeeds in the development of either technology A or B, it can reduce its 

marginal cost by k−1 . If it succeeds in the development of both technologies, the firm can 

reduce its marginal cost by 1. Suppose that the firm can develop the two technologies 

sequentially. This implies that the later developed technology decreases marginal cost by k, 

which is the value of the development of the second technology. Hence, if 121 ≤< k　 , the 

second technology reduces marginal cost more than does the first. In that case, increasing 

returns to R&D activity occurs. If 21=k , the values of both technologies are equivalent. If 

210 <≤ k , the R&D technologies exhibit decreasing returns. At the end of the first stage, 

“nature” chooses whether each firm succeeds in developing the technologies or not. Suppose 

that each firm succeeds in the development of the technology j with probability and assume 

that )(⋅jp  are identically and independently distributed. Therefore, we have 

BAjezpeypexp zy
jy

x
jx

jj ,,1)(1)(1)( =−==−==−= −−− . These probability functions 

are well defined since we have 

∞→′<⋅″>⋅′ )0(,0)(,0)( ppp  and 1)(,0)0( =∞= pp .3 

The inverse market demand function for the product is given by 

Qap −= ,      (2) 

                                                 
2 That is, we distinguish “the most partially complementary technologies” from “completely complementary 
technologies”; that is, the latter implies that no firm can produce the goods at all without the use of both 
technologies. In this paper, “completely complementary technologies” is expressed by the case where the 
marginal cost k is infinitely large; that is ∞→k　 . Okamura, Shinkai and Tanaka (2002) analyzed the case of 
completely complementary technologies. 
3 We assume the effect of the R&D activity on a process innovation as static. That is, the successes or failures of 
the development do not obey a stochastic process. However, these properties of the success probability function 
are similar to the dynamic “memoryless” or “Poisson” patent race model associated with Reinganum (1982). In 
her model of the research technology, it is assumed that a firm’s probability of making a discovery and obtaining 
a patent at a point of time depends only on this firm’s current R&D investment level and not on its past R&D 
experience. For illustrations of the dynamic patent race model, see Chapter 10 in Tirole (1989). 
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where p is the market price and Q is the aggregate output in the market, that is yx qqQ += . 

We assume that the market is sufficiently large, i.e. 
24

39 ka −≥ . At the beginning of the 

second stage, each firm knows all successes or failures of the both firms’ developments of the 

technologies. At the second stage, if a (cross-) licensing system is available, then each firm 

bargains with its rival and agrees on a (cross-) licensing contract through the Nash bargaining 

process. The licensing contract describes how both firms divide the total profit. If a (cross-) 

licensing system is not available, then the game proceeds to the third stage. At the third stage, 

each firm’s marginal cost is realized and it chooses its output simultaneously, that is, Cournot 

competition occurs.4 Finally, the profit of each firm is realized and the game is over. The 

timing of the game is illustrated in Figure 1. 

Let us conduct some preliminary work. Denote firm i ’s profit by ),( jii qqπ . 

),,()(),( yxijiqcqqaqq iijijii =≠−−−= 　　π ,   (3) 

where }1,,0{ kcci ∈= . Since each firm engages in Cournot competition, the equilibrium 

output of firm i is given by 

3
)2(

),(* ji
jii

cca
ccq

+−
=  jiyxji ≠= ,,, .   (4) 

 

(The first stage )      (The second Stage)           (The third stage) 
   Decision on R&D     Bargaining for licensing       Decision on quantity 

 investment level      and choice of the license fee        of outputs  
                                   
                                Cournot competition 
    Nature’s choice on success 
      or failure of the development  

                                                 
4 Note that each firm can produce its product by using its own existing technology, even if it fails to develop 
both technologies, A and B in our model. 
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 Figure 1. Timing of the game 

 

Substituting (4) into (3) yields firm i ’s Cournot equilibrium profit, 

2
**

3
2

)),(),,((),( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
=≡ ji

ijjjiiijii

cca
ccqccqcc ππ .    (5) 

 

3. R&D investment without (cross-) licensing: A benchmark 

In this section, as a benchmark, we analyze the problem of R&D in a Cournot duopoly 

with partially complementary technological innovation without licensing.5 

Denote by {X,Y}, the combination of the states of nature which firms x and y face: 

Where },,,{, φBAABYX ∈  and “AB”, “A”, “B” and “φ ” implies that each firm succeeds in 

development of technologies A and B, A or B and neither A nor B. All possible states of nature 

are as follows: {AB, AB}, {AB, A}, {AB, B}, {AB, φ }, {A, AB}, {A, A}, {A, B}, {A,φ }, {B, 

AB}, {B, A}, {B, B}, {B, φ }, {φ , AB}, {φ , A}, {φ , B} and {φ , φ }.6 

For these states of nature, the corresponding realized equilibrium firm x’s profits are 
)1,0(),,0(),,0(),0,0( xxxx kk ππππ , )1,(),,(),,(),0,( kkkkkk xxxx ππππ , ),(),0,( kkk xx ππ , 

)1,(),,( kkk xx ππ , ),1(),,1(),0,1( kk xxx πππ and )1,1(xπ . 

The expected profit of firm x without (cross-) licensing is given by 

),,,( BABAxx yyxxEΠ≡Π =( 1)1)(1 Hee BA xx −− −− + 2)1( Hee BA xx −−−  

+ 3)1( Hee BA xx −− − + 4Hee BA xx −−   － BA xx − ,  (6) 

                                                 
5 A lemma needed to derive the proposition and all proofs of the lemma and proposition in this section are 
presented in Appendix 1.  
6 In our model, we also allow each firm to utilize the same technology as its rival’s for production, if each firm 
succeeds in the development of a technology by itself. There are two interpretations of the patent breadth that 
economists have suggested: They have modeled breadth in “product space,” defining how “similar” a product 
must be to infringe a patent, and in “technology space,” defining how costly it is to find non-infringing 
substitutes for the protected market. See Section 2 of Chapter 4 in Scotchmer (2004) for details. We follow the 
latter interpretation of patent breadth and consider the case where patent breadth in this sense is narrow. 
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where 

1H = ( Aye−−1 )( Bye−−1 ) )0,0(xπ + ( Aye−−1 ) Bye− ),0( kxπ  + ),0()1( kee x
yy BA π−− −  

+ )1,0(x
yy BA ee π−− ,       (7a) 

2H = ( Aye−−1 )( Bye−−1 ) )0,(kxπ  + ( Aye−−1 ) Bye− ),( kkxπ  + ),()1( kkee x
yy BA π−− −   

+ )1,(kee x
yy BA π−− ,       (7b) 

3H = ( Aye−−1 )( Bye−−1 ) )0,(kxπ  + ( Aye−−1 ) Bye− ),( kkxπ + ),()1( kkee x
yy BA π−− −  

+ )1,(kee x
yy BA π−−        (7c) 

and  

4H = ( )0,1()1)(1 x
yy BA ee π−− −− + ( ),1()1 kee x

yy BA π−−− + ),1()1( kee x
yy BA π−− −   

+ )1,1(x
yy BA ee π−− .       (7d) 

The first-order condition for expected profit maximization with respect to (w.r.t.) R&D 

activity of technology A is given by 

A

BABAx

x
yyxx

∂
∂ ),,,(Π

 = 1)1( Hee BA xx −− − + 2Hee BA xx −− － 3)1( Hee BA xx −− −  

－ −−−
4Hee BA xx 1 =0.  (8) 

From (7b) and (7c), we see that H2 = H3, and obtain 

1)1{( Hee BA xx −− − + 2)12( He Bx −− － −− }4He Bx 1＝0.  (9) 

Since both firms are identical, we focus on the symmetric equilibrium hereafter. We can 

denote the probability of failure for the development of each technology that plays a key role 

in our analysis by BABA yyxx eeees −−−− ==== .7 

                                                 

7 The second-order condition at the equilibrium is that 0)(
11

1
2

42

2
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
−

−
− HH

s
s

s
s  holds. If 

210 ≤< s holds, then we can easily show that this inequality holds. 
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The first-order condition (9) is expressed by 

A

BABAx

x
yyxx

∂
∂ ),,,(Π

= )(ssV －１ 

= { } 01)())(1( 4221 =−−+−− HHsHHss , 

where )())(1()( 4221 HHsHHssV −+−−≡ .     (10) 

We rewrite (10) as  

.01)(
9
4)12)(12(

9
4)21(

3
4)21(

9
4

1),,(

2342

42
3

3
2

4
1

=−−++−−+−+−=

−+++=

skaksakkskksk

sNsNsNsNaksφ
 (11) 

We assume that 

.0
9
1

18
1

12
13),,

2
1( >++−= akakφ  Or,  

24
39 ka −≥ .8      (12) 

We examine the properties of ),,( aksφ . By substituting 0 and 1 into s and rearranging terms 

we have 

01),,0( <−=akφ ,     (13) 

),,,0(1

1))(1(
9
4

1),,1( 4321

ak

akk

NNNNak

φ

φ

=−≥

−−−=

−+++=

　　

　　     (14) 

where the last equality holds when k = 1, that is, the two technologies are most partially 

completely complementary. Setting 1))(1(
9
4)( −−−= akkkf , we see that 

.
4

37
24

39

10,0))1(2(
9
4)(

01)
2
1(

9
2)

2
1(,01)1(,01

4
9)0(

'

≥−≥

≤≤<+−=

>−−−=<−=>−=

ka

kforakkf

affaf

Q

　　  

                                                 
8 This assumption implies that the marginal benefit with respect to Ax  is greater than the marginal cost w.r.t. 

Ax  when the development success chance is even. Increase of the investment level, or equivalently, decrease of 
the probability of failure of the development, is beneficial to the firm if the probability of failure is 1/2. 
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The smaller roots of 0)( =kf  is given by  

)(}1021{
2
1 *2* akaaak LL ≡+−−+=  and we see that  

.1)(lim73574.0137
8
3

8
41)

4
37( ** =≅−=

∞→
akandk LaL 　　　　  

Differentiating partially ),,( aksφ w.r.t. s yields 

)}.()21)(21(2)21(9)21(4{
9
4

234),,(),,(

232

43
2

2
3

1

kakskakskksk

NsNsNsNaks
s

aks
s

−+−−−+−+−=

+++==
∂

∂

　　　

φφ

 (15) 

We have 

,0)(
9
4),,0( 4' ≥−== kakNak

s
φ      (16) 

)}.1(2)37(5{
9
4

234)),,1(

2

4321

+++−=

+++=

akak

NNNNaks

　　　　　

φ
 

Defining )1(2)37(5)( 2 +++−= akakkg , we see that 

.0)37(10)(

0)
2
1(

2
1)

2
1(,0)1(,0)1(2)0(

' <+−=

>−=<−=>+=

akkg

agagag
 

Since the smaller roots of the quadratic equation of k, 0)( =kg  is given by 

)
2
1}(929)37{(

10
1ˆ 2 >++−+= aaak , we obtain 

.1ˆ,0

,ˆ0,0),,1(

≤<≤

≤≤≥

kkif

kkifaks

　　　　　　

　　　φ
      (17) 

We can show that  

2
1ˆ* >> kkL   if 

4
37

24
39

≥−≥
ka .    (18) 

From (15), we have 

)}21(9)21(6){21(
9
8)36(2),,( 2

32
2

1 kaksskkNsNsNaksss −−++−−=++=φ  (19) 

)3)12(4)(12(
3
8)4(6),,( 21 kkskNsNakssss −−−=+=φ    (20) 
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Now, we present the following proposition on the R&D investment equilibrium in a 

Cournot duopoly with partially complementary technologies without licensing.9 

 

Proposition 1 

Suppose that 
4

37
24

39
≥−≥

ka . Then, there exists at least one positive symmetric 

equilibrium *s in our model without (cross-) licensing, 

2
10 * << s , and 

a
s
∂
∂ *

< 0,   
k
s
∂
∂ *

< 0. 

The proposition asserts that there exists at least one equilibrium with large R&D 

investments, if the market is sufficiently large. Since 21
** <= − xes  is the probability of 

failure in the development of R&D, the equilibrium R&D investment level is obtained by 

.ln ** sx −=  With the failure probability sufficiently small, each firm invests relatively 

aggressively in R&D technologies. The comparative static results show that the equilibrium 

investment level increases as the market becomes large or as the complementarity between the 

two technologies grows strong. These results seem to be plausible. The first result implies that 

the improvement of the market condition encourages the R&D investments. Now define 

kkke −= 1)( , which measures the relative economic values of cost reduction if a firm 

succeeds in developing another technology, given it has already developed one technology. 

We interpret )(ke  as the measure of relative cost efficiency of the first and second developed 

technologies. The value of )(ke  increases from zero to infinitely large as k increases from 

zero to one. The second result implies that each firm increases R&D investment if relative 

cost efficiency improves. 

 

                                                 
9 Before deriving the sub game perfect equilibrium strategies, we need a lemma. The lemma is presented in 
Appendix 1. 
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4. The conditions under which (cross-) licensing may occur 

In this section, we explore the conditions under which each firm engages in (cross-) 

licensing. We assume that the patent breadth authorized by the patent protection authorities is 

narrow. That is, if both firms independently succeed in developing versions of technology A 

(B) that differ slightly from each other, they can acquire a patent for their own outcomes and 

can utilize the technology. We assume that the terms of the licensing contract entail a fixed 

licensing fee. We also assume that each firm produces the Cournot equilibrium quantity of 

output given the realized marginal cost under licensing, if it agrees to the licensing contract 

and it is executed.10 

The state of nature of each firm depends on success(es) or failure(s) of the development 

of technologies. All cases where (cross-) licensing occurs are summarized in Table 1. 

 

We classify the conditions under which (cross-) licensing occurs into four cases and 

derive the corresponding licensing fee in these cases.11 

(Case Ⅰ) The cross-licensing fee is given by  

FⅠ = 0.      (21) 

Cross-licensing occurs where 
                                                 

10 Both firms may agree to a licensing contract in which a licensee firm pays half the monopoly profit brought 
by producing at the lowered marginal cost realized by licensing, as the license fee in compensation for no 
production. The final gain of each firm after the side payment in this contract is, of course, larger than that where 
firms compete in a Cournot manner. However, the former is interpreted as an illegal act from the antitrust point 
of view. See the description in Section 3.2 and Example 4 in the Appendix of Antitrust Guidelines for 
Collaborations Among Competitors (April 2000) issued by the Federal Trade Commission and the U. S. 
Department of Justice. They say that 'Agreements of a type that always tends to raise price or reduce output are 
per se illegal.' The contract in which the licensee firm produces the monopoly output and pays half the monopoly 
profit as a licensing fee to the licensor firm seems to be per se illegal. We thank Kuninobu Takeda, Associate 
Professor of Antitrust Law in Osaka University, for this justification of our assumption from the antitrust point of 
view and for the source of this citation. Hence, we assume that two firms compete in a Cournot manner after the 
licensing contract. 
  

11 For the concrete derivation of the licensing conditions and the licensing fees in the case containing the four 
categories, see Appendix 2. 
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0
9

)2(),()0,0( ≥
−

=−
kakkkyx ππ ,   (22) 

in which case the inequality holds since 
4

37
24

39
≥−≥

ka  and 10 ≤≤ k . 

(Case Ⅱ)  The unilateral licensing fee is given by  

FⅡ = 
2
1 [ )1,(kxπ － ),1( kyπ ] = 

6
)12)(1( −−− kak >0.  (23) 

Unilateral licensing occurs where  

0
18

)1)(532(
≥

−+−− kka ,     (24) 

 

Firm y’s state Y 

Firm x’s state X 

  φ A B AB 

φ  UL: y → x 

CaseⅡ 

UL: y → x 

CaseⅡ 

UL: y → x 

Case Ⅳ 

A UL: x → y 

CaseⅡ

 CL: x↔  y 

CaseⅠ 

UL: y → x 

Case Ⅲ

B UL: x → y 

CaseⅡ 

CL: x ↔  y 

CaseⅠ 

 UL: y → x 

Case Ⅲ 

AB UL: x → y 

Case Ⅳ

UL: x → y 

Case Ⅲ

UL: x → y 

Case Ⅲ 

 

In the table, “UL: y →x”  and “CL: x ↔  y” imply “unilateral licensing from Firm y to Firm x,” and 

“cross-licensing between two firms,” respectively.  

Table 1. Possible Licensing Patterns 
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in which case the inequality holds since 
4

37
24

39
≥−≥

ka  and 10 ≤≤ k . 

(Case Ⅲ)  The unilateral licensing fee is given by  

FⅢ= 
2
1 [ ),0( kxπ － )0,(kyπ ] = ≥

−
6

)2( kak 0.  (25) 

Unilateral licensing occurs where  

0
18

)52(
≥

− kak ,      (26) 

in which case, again, the inequality holds since 
4

37
24

39
≥−≥

ka  and 10 ≤≤ k . 

(Case Ⅳ) This case consists of two sub-cases in which unilateral licensing occurs. One 

sub-case is where only one technology is licensed. The other sub-case is where both 

technologies are licensed. As we show in Appendix 2, the strategy of unilateral licensing of 

both technologies is more beneficial for the licenser firm than that of licensing only one 

technology. We analyze this latter type of licensing. The unilateral licensing fee is given by  

FⅣ= 
2
1 [ )1,0(xπ － )0,1(yπ ]=

6
12 −a >0.   (27) 

Unilateral licensing occurs where  

0
18

52
>

−a ,      (28) 

in which case the inequalities in (27) and (28) hold because 
4

37
24

39
≥−≥

ka . 

Now, we are ready to derive the R&D investment game in duopoly with a (cross-) 

licensing system. 

 

5. R&D investment with (cross-) licensing 

Examining cells in Table 1 where (cross-) licensing occurs, we can express the case by 

using the realized marginal cost of firm )( ji　  before (cross-) licensing as ( ), ji cc . Then, we 

see that all the cases with (cross-) licensing are (k, k), (0, k), (0, 1), (k, 1), (k, 0), (1, 0) and (1, 

k). 
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(1) The firm i ’s profit realized in state (k, k) ( in this case, cross-licensing occurs and 

the licensing fee is zero) is 

))1)(1()1()1(( BABABABA yyxxyyxxkk
i eeeeeeee −−−−−−−− −−+−−=π )0,0(iπ .  

      (29) 

(2) The firm i ’s profit realized in (0, k) is 

=k
i
0π }2){1)(1( BABABA yyyyxx eeeeee −−−−−− −+−− [ )0,0(iπ + ⅢF ].  (30) 

(3) The firm i ’s profit realized in (0, 1) is 

=01
iπ BABA yyxx eeee −−−− −− )1)(1( [ )0,0(iπ + ⅣF ].    (31) 

(4) The firm i ’s profit realized in (k, 1) is 

=1k
iπ  [ BABABA yyxxxx eeeeee −−−−−− −+ ]2 [ ),( kkiπ + ⅡF ].   (32) 

(5) The firm i ’s profit realized in (k, 0) is 

=0k
iπ  [ ]2 BABA xxxx eeee −−−− −+ )1)(1( BA yy ee −− −−  [ )0,0(iπ - ⅢF ].  (33) 

(6) The firm i ’s profit realized in (1, 0) is 

=10
iπ BA xx ee −− )1)(1( BA yy ee −− −−  [ )0,0(iπ - ⅣF ].    (34) 

(7) The firm i ’s profit realized in (1, k) is 

=k
i
1π BA xx ee −− )2( BABA yyyy eeee −−−− −+  [ ),( kkiπ - ⅡF ].   (35) 

Using the profits realized in states above, we express the expected profit of firm i  as 

iΠ~ = iΠ + CL
iΠ  

{ } { }[ ]ⅣⅢ FBFkAee iiii
xx BA +−++−−−+ −− )1,0()0,0(),0()0,0()1)(1( ππππ  

{ } { }[ ]ⅢⅡ FkCFkkkBeeee iiii
xxxx BABA −−++−−++ −−−− )0,()0,0()1,(),()2( ππππ  

{ } { }[ ]ⅡⅣ FkkkAFCee iiii
xx BA −−+−−+ −− ),1(),()0,1()0,0( ππππ   (36) 
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where A = BABA yyyy eeee −−−− −+ 2 ，B = BA yy ee −− ，C = )1)(1( BA yy ee −− −−   (37) 

The increment to Firm i ’s expected profit associated only with cross-licensing CL
iΠ  is given 

by 

CL
iΠ  = heeeeheeee BABAABBA yyxxuyxx −−−−−−−− −−+−− )1)(1()1()1( ,  (38) 

where h = )0,0(iπ － ),( kkiπ . 

Deriving the first-order condition and setting s = e−yA = e−yB = e−xA = e−xB , by using the 

fact that we derive the symmetric equilibrium, yields 

BxAyBxAx eeeesAx
aks

−−−− ====
∂
Π∂

≡Ω
~

),,(  = 
BxAyBxAxBxAyBxAx eeeesA

CL

eeeesA xx −−−−−−−− ========
∂
Π∂

+
∂
Π∂ +  

)]()()[12()]()()[1( 1987 ⅢⅡⅣⅢ FnCFnBssFnBFnAss −++−++++−  

0)]()([ 541
2 =−+−+− ⅡⅣ FnAFnnCs .    (39) 

After tedious calculations, we obtain the profit-maximization condition:12 

01)2(
6
1)3684(

18
1)1222(

9
1),,( 2242 =−−+−+−+−+−=Ω skaksaakksaakkaks  (40) 

From the l.h.s. of (40) we see that 

.
144
151

72
1)

72
7

36
1()

2
15172(

72
1),,

2
1( 22 −−+=+−−−=Ω kakaakkak  

As in the benchmark case, we assume that  

.0
144
151

72
1)

72
7

36
1(),,

2
1( 2 >−−+=Ω kakak  

This assumption implies that 

.10,
144
1512 2

≤≤
+
+

> k
k

ka        (41) 

Now, we need two lemmas to prepare for the result on equilibrium existence. 

The two lemmas and their proofs and the proof of the following proposition are 

presented in Appendix 3. 
                                                 

12 For derivation of (40), see Appendix 3. 
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From these two lemmas, we immediately obtain the following equilibrium existence 

result. 

 

Proposition 2 

Suppose that }
144
1512

,24
39max{

2

+
+

−>
k

kka . Then there exists a positive symmetric 

equilibrium )
2
1,0(~ 　∈s  in our model with (cross-) licensing.13 

In any )
2
1,0(~ 　∈s , we have 

k
s
∂
∂~

< 0 and 0
~
<

∂
∂
a
s . 

 

6. Effects of a (cross-) licensing system on R&D investment 

In this section, we compare the equilibrium investment level without a (cross-) licensing 

system with that with a (cross-) licensing system. The two lemmas needed for derivation of the 

main result and their proofs are presented in Appendix 4. We also present the proof of the 

proposition in Appendix 4. 

We establish the following proposition. 

 

Proposition 3 

(1) Suppose that the two technologies are not very partially complementary, such that 

2
10 ** <≤≤ kk . The licensing system discourages R&D investment, i.e. 

2
1~0 * <<< ss . 

(2) Suppose that the two technologies are sufficiently partially complementary, such that 

                                                 

13 We can show that ]),1,]([,0[0)(),,1( ** 　　 kkkak ∈∀⇔≤>Ω where .1155025
5
1 2* +−−= aaak  Then, there 

exists an s
~~  such that 1

~~
2
1

<< s  and ]1,[,0),,
~~( *　　　ｓ kkforak ∈=Ω . We also show, as we do in footnote 6, 

that s
~~ ( 1

~~
2
1

<< s ) never satisfies the second-order condition. By Kuhn–Tucker conditions, in this case, there 

exists equilibrium 1~ =s . It implies, however that each firm does not invest at all at the equilibrium. This case is 
not interesting and is omitted. 
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121** ≤<< kk  and there exist any points )
2
1,0(0 ∈s  such that ),,(),,( 00 aksaks Ω=φ . 

(2-a) If there exists a unique )
2
1,0(0 ∈s  such that 0),,(),,( 00 >Ω= aksaksφ , the 

licensing system discourages R&D investment, i.e. 
2
1~0 * <<< ss . 

(2-b) If there exists a unique )
2
1,0(0 ∈s  such that 0),,(),,( 00 <Ω= aksaksφ , the 

licensing system encourages R&D investment, i.e. 
2
1~0 * <<< ss . 

(2-c) If there exists a unique )
2
1,0(0 ∈s  such that 0),,(),,( 00 =Ω= aksaksφ , the 

licensing system is neutral for R&D investment, i.e. 
2
1~0 * <=< ss . 

 

We give some numerical examples for this proposition. See Figure 2 for (1), Figure 3 

for (2-b) and Figure 4 for (2-a). 

[Insert Figure 2, Figure 3 and Figure 4 here] 

We explain intuitively the discouragement to R&D investment result. From (38) the 

increment to firm i ’s expected profit with only cross-licensing CL
iΠ  is given by 

CL
iΠ  = heeeeheeee BABABABA yyxxyyxx −−−−−−−− −−+−− )1)(1()1()1( , 

where h = 0
9

)2(),()0,0( ≥
−

=−
kakkkyx ππ .( ))22(Q   (42) 

The partial derivative term of CL
iπ evaluated at the symmetric equilibrium 

( BABA yyxx eeees −−−− ==== ) is given by the following expression. 

0)1)(12(
9
1),,( 2 <−−==

∂
Π∂

−−−− ====

hsssaksM
x ByAyBxAx eeeesA

CL

   
(43) 

However, from Proposition 2, we see that )
2
1(~0 << s  at equilibrium. The expression 

above shows that the existence of cross-licensing discourages R&D investment. On the other 
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hand, the increment to firm i ’s expected profit resulting from unilateral licensing is given by 

the following formula: 

,)1()1(

)1()1(

)1)(1)(1()1()1)(1(

)1)(1()1()1)(1)(1(

)1)(1()1)(1(

ⅡⅡ

ⅡⅡ

ⅢⅢ

ⅢⅢ

ⅣⅣ

ππ

ππ

ππ

ππ

ππ

BABABABA

BABABABA

BABABABA

BABABABA

BABABABA

yyxxyyxx

yyxxyyxx

yyxxyyxx

yyxxyyxx

yyxxyyxxUL

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

−−−−−−−−

−−−−−−−−

−−−−−−−−

−−−−−−−−

−−−−−−−−

−+−+

−+−+

−−−+−−−+

−−−+−−−+

−−+−−=Π

 

where 

.),1(),()1,(),(
,)0,()0,0(),0()0,0(

,)0,1()0,0()1,0()0,0(

ⅡⅡⅡ

ⅢⅢⅢ

ⅣⅣⅣ

FkkkFkkk
FkFk

FF

xxxx

xxxx

xxxx

−−=+−≡
−−=+−≡
−−=+−≡

πππππ
πππππ
πππππ

 

From the corresponding part of the first-order condition of the symmetric equilibrium  

( BABA yyxx eeees −−−− ==== ) is given by the following expression. 

ⅡⅢⅣ

ⅡⅡ

ⅢⅢⅣ

ⅡⅡ

ⅡⅡ

ⅢⅢ

ⅢⅢ

ⅣⅣ

　

πππ

ππ

πππ

ππ

ππ

ππ

ππ

ππ

)3~4(~)1~4()~1(~)1~2)(~1(~
)~1(~2)1~2(~

)1~2()~1(~)~1(~2)1~2)(~1(~
)1()1(

)1(

)1)(1)(1()1()1(

)1)(1()1)(1(

)1)(1()1(

322

33

2222

~

−+−−+−−=

−−−+

−−+−+−−=

−−−−

−−+

−−−−−−+

−−+−−+

−−−−=
∂
Π∂

−−−−−−−−

−−−−−−−−

−−−−−−−−

−−−−−−−−

−−−−−−−−

ssssssss
ssss

ssssssss

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee
x

BABABABA

BABABABA

BABABABA

BABABABA

BABABABA

yyxxyyxx

yyxxyyxx

yyxxyyxx

yyxxyyxx

yyxxyyxx

sA

UL

  (44) 

From (23), (25), (27) and the definitions of ⅣⅢⅡ 　　 πππ ,,  above, we obtain 

.
18

52,
18

)52(,
18

)532)(1( −
=

−
=

−+−
=

akakkak
ⅣⅢⅡ 　　 πππ    (45) 

Calculating the partial derivatives of ⅣⅢⅡ 　　 πππ ,,  w.r.t. a and k  in (45) yields 

.
4

37,10,0,0
9
5,0

18
268

10,0
9
1,0

9
,0

9
1

>≤≤=
∂
∂

≥
−

=
∂
∂

<
−−

=
∂
∂

≤≤>=
∂
∂

≥=
∂
∂

≥
−

=
∂
∂

ak
k

ka
k

ak
k

k
a

k
a

k
a

　　　　

　　　

ⅣⅢⅡ

ⅣⅢⅡ

πππ

πππ

 

At the symmetric equilibrium )
2
1(~0 << s , the only two terms in (44) and 
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Ⅲ

ⅢⅢ

π

ππ
22 )~1(~2

)1)(1()1)(1(

ss

eeeeeeee BABABABA yyxxyyxx

−=

−−+−− −−−−−−−−

   (46) 

work in the same direction to increase R&D investment (shift the function Ω  upward). 

These two terms are the marginal benefit to firm x when it slightly increases investment in 

development of technology A in the cases {AB, A} and {A, AB}, respectively (which 

correspond to the two shaded cells in Table 1). In these two cases, the increase of Ax  is 

always beneficial to firm x since it succeeds in developing technology A. However, all the 

other eight terms in (44) work to shrink R&D investment (shift the function Ω  downward). 

In these cases, although the increase of Ax  brings firm x a positive marginal benefit if it 

succeeds in developing technology A (for example, see the corresponding cell to the case 

Ⅳ{AB,φ } in Table 1), at the same time it brings a negative marginal benefit since the 

expected benefit as a unilateral licensee of technology A from firm y decreases in the pair case 

where firm x fails to develop technology A (See the UL cells to case Ⅳ{φ , AB} in Table 1). 

The corresponding part of the first-order condition of the increment to firm i ’s expected 

profit with only cross-licensing CL
iΠ  also works to shrink R&D investment (shift the 

function Ω  downward). The total negative effect dominates in most cases when the 

underlying market demand for the product a is sufficiently large, since ⅣⅢⅡ 　　 πππ ,,  are 

nondecreasing in a. In some cases, however, the positive effects dominate. If the extent of 

complementarity ]1,0[∈k  is so large and the underlying demand a  is small enough, these 

cases tend to occur. 

To explain these results intuitively, note that we normalize the reduction of the marginal 

cost of production associated with the R&D development to unity. The underlying demand a  

is also looked upon as reduced to unity ( a  is the original market size divided by the amount 

of marginal cost reduction). Thus, the change in a  is incomparably larger than the change of 

k . 
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Let us focus on the comparative statics w.r.t. k  when the underlying demand a  is 

small enough and the magnitude of the marginal cost reduction is large compared with the 

underlying demand. From the above definitions, ⅣⅢⅡ 　　 πππ ,,  and h  represent the ex 

post profit of each firm under unilateral licensing of only one technology where the licensee 

has not developed any technology, the ex post profit of the firm under unilateral licensing of 

one technology by the licensor who has developed both technologies and the licensee has 

developed only one technology, the ex post profit of the firm under unilateral licensing of two 

developed technologies where the licensee has no developed technologies, and the 

incremental profit of each firm under cross-licensing, respectively. As the extent of the 

complementarity k  increases, Ⅲπ  and h  increase while Ⅳπ  does not change and Ⅱπ  

decreases. Therefore, when k is large but a  is small enough, the positive effect (associated 

with Ⅲπ ) presented in (46) dominates the total negative effects associated with terms Ⅱπ  in 

(44) and h  (given by (43)). 

This proposition shows that a (cross-) licensing system promotes R&D investment in 

some cases when the duopolistic firms produce goods by using two partially complementary 

technologies. In these cases, the extent of complementarity k  is sufficiently large and the 

underlying demand a  is small enough. 

Okamura, Shinkai and Tanaka (2002) established that the existence of a cross-licensing 

system always discourages firm’s R&D investments, when the duopolistic firms produce a 

good by using the two completely complementary technologies. In their model, no unilateral 

licensing can occur since firms require both technologies to produce the good. The existence 

of a cross-licensing system decreases firms’ incentives for R&D through the chance to 

exchange their technologies. As we have shown in this paper, however, unilateral licensing 

may encourage firms’ incentives for R&D through the chance of their receiving (paying) the 

licensing fee when the extent of complementarity k  is sufficiently large and the underlying 

demand a  is small enough. When two not quite completely complementary technological 
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innovations occur, this positive effect of unilateral licensing on firms’ incentives for R&D 

may surpass the negative effect of cross-licensing upon their incentives. 

 

7. Welfare comparison at the equilibria with and without licensing 

In this section, we compare economic welfare evaluated at the equilibria, *s and 

s~ with and without (cross-) licensing. Since we see that we cannot derive two equilibrium 

solutions *s and s~  analytically from the discussion in the preceding section, so comparison 

of economic welfare at *s and s~  is conducted for the numerical solutions *s ’s and s~ ’s 

presented in preceding section in three cases in the preceding section, where a = 15, k = 0.3, 

where a = 9.5, k = 0.95 and where a = 15, k = 0.95. 

Set )ln( **** ****

sxxeeees BA
yyxx BABA −====== −−−− 　　 in (6) and multiply it by 2, we 

define the expected producers’ surplus at the symmetric equilibrium without licensing as 

,ln4),,(2),,()1(4),,()1(2),,( **
4

2**
2

***
1

2*** saksHsaksHssaksHsaksEPS ++−+−≡  

(47) 

where 4,2,1),,,( * =ikasH i  implies 4,2,1, =iH i given by (7a), (7b) and (7d) evaluated at 

***** BABA yyxx eeees −−−− ==== . That is, we have 

),,( *
1 aksH = 2* )1( s− )0,0(xπ + )1(2 ** ss − ),0( kxπ  + )1,0(2*

xs π ,  (48a) 

),,( *
2 aksH = 2* )1( s− )0,(kxπ + )1(2 ** ss − ),( kkxπ  + )1,(2* ks xπ ,  (48b) 

),,( *
4 aksH = 2* )1( s− )0,1(xπ + )1(2 ** ss − ),1( kxπ  + )1,1(2*

xs π .  (48c) 

We know well that the consumers’ surplus in the Cournot equilibrium of our setting is 

given by ,),(
2
1)),(( 2

yxyx ccQccQCS =  where )(),(),( xyyyxxyx ccqccqccQ ++= . 

Replacing ),( yxx ccπ by )),(( yx ccQCS  in (48a), (48b) and (48c), we define the 

expected consumers’ surplus as  
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),,,(2),,()1(4),,()1(2),,( *
4

2**
2

***
1

2*** aksJsaksJssaksJsaksECS +−+−≡  (49) 

where  

),,( *
1 aksJ = 2* )1( s− ))0,0((QCS + )1(2 ** ss − )),0(( kQCS + ))1,0((2* QCSs , (50a) 

),,( *
2 aksJ = 2* )1( s− ))0,(( kQCS + )1(2 ** ss − )),(( kkQCS + ))1,((2* kQCSs , (50b) 

),,( *
4 aksJ = 2* )1( s− ))0,1((QCS + )1(2 ** ss − )),1(( kQCS + ))1,1((2* QCSs . 

(50c) 

 

Accordingly, the expected social surplus at the symmetric equilibrium without licensing 

is defined as 

),,(),,(),,( ****** aksECSaksEPSaksESS += .   (51) 

From Table 1 and the description following Table 1, the expect profit of firm x at the 

equilibrium with (cross-) licensing is given by 

,)1()1()1)(1( 4321 BA
xxxxxxxxWL

x xxLeeLeeLeeLee AABABABA −−+−+−+−−≡Π −−−−−−−− 　  (52) 

where 

],)0,0([
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(53a) 

],),([

)0,0()1(),()1(])0,0()[1)(1(2

Ⅱ
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x
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],),([

),()1()0,0()1(])0,0()[1)(1(3

Ⅱ
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x
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).1,1(]),()[1(
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Similarly, we can obtain the expect profit of firm y at the equilibrium. Setting 

)~ln~~(~
BA

~~~~
BABA sxxeeees yyxx −====== −−−− 　　 in these expected profits, and taking into 

consideration that all license fee terms cancel out at the equilibrium. Then, we can obtain the 

expected producers’ surplus at the symmetric equilibrium with licensing as  

saskasssass

sskksssssaksEPS xxx
WL

~ln4
9

)1(~2
9

)()~1)(~1(~4
9

)~1()~1(2

~ln4)1,1(~2),()~1)(~1(~4)0,0()~1()~1(2),,~(
2

4
2

2
2

22

4222

+
−

⋅+
−

⋅+−+⋅+−=

+⋅+⋅+−+⋅+−≡

　　　　　　　

πππ
 

(54) 

Similar to ),,~( aksEPS WL , we also define the expected consumers’ surplus as  

.
9

)1(2~
9

)(2)~1)(~1(~2
9

2)~1()~1(

))1,1(((~)),(()~1)(~1(~2))0,0(()~1()~1(),,~(
2

4
2

2
2

22

4222

−
⋅+

−
⋅+−+⋅+−=

⋅+⋅+−+⋅+−≡

askasssass

QCSskkQCSsssQCSssaksECS WL

　　　　　　　

          (55) 

The expected social surplus at the symmetric equilibrium with licensing is defined as 

),,~(),,~(),,~( aksECSaksEPSaksESS WLWLWL += .   (56) 

To compare economic welfare evaluated at the equilibria *s and s~ with and without 

(cross-) licensing, solved numerically in three cases where a = 15, k = 0.3, where a = 9.5, k = 

0.95 and where a = 15, k = 0.95), we calculate 

),,~(),,,~(),,,(),,,(),,,( ****** aksECSaksEPSaksESSaksECSaksEPS WLWL  and 

),,~( aksESS WL in these cases. Denote the variations of the expected producers’, consumers’ 

and social surplus by ,*EPSEPSPS WL −=∆  *ECSECSCS WL −=∆  and 

*ESSESSSS WL −=∆ . 

(i) Where a = 15, k = 0.3, the two equilibria are 35384.0* =s  and 

37943.0~ =s (Figure 2). From (47),(49),(51),(54),(56) and (56) we have 

,502 45.  )15,3.0,0.37943(219.44)15,3.0,0.35384(* =<= WLEPSEPS 　   (57a) 

378, 49. )15,3.0, 0.37943(277 48. )15,3.0,0.35384(* =<= WLECSECS   (57b) 

88 94.)15,3.0, 0.37943(496 92. )15,3.0,0.35384(* =<= WLESSESS .  (57c) 
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=∆PS  1. 283, CS∆ = 1. 101, SS∆ = 2. 384 

=
∆
∆

SS
PS 0.53817 > 

SS
CS
∆
∆ = 0.46183    (58) 

(ii) Where a = 9.5, k = 0.95, the two equilibria are 0.44885* =s and 0.41939~ =s (Figure 

3). From (47), (49), (51), (54), (56) and (56) we have 

,  351 15.)5.9,95.0,  0.41939(335.14)5.9,95.0,0.44885(* =<= WLEPSEPS 　  (59a) 

18.827, )5.9,95.0, 0.41939(17.342 )5.9,95.0,0.44885(* =<= WLECSECS  (59b) 

178 34.)5.9,95.0,  0.41939(678 31. )5.9,95.0,0.44885(* =<= WLESSESS . (59c) 

=∆PS  1. 016, CS∆ = 1. 485, SS∆ = 2. 5. 

=
∆
∆

SS
PS  0.4064 < 

SS
CS
∆
∆ = 0.594 (60) 

(iii) Where a = 15, k = 0.95, the two equilibria are 0.20408* =s and 0.23493~ =s (Figure 

3). From (47),(49),(51),(54),(56) and (56) we have 

,43.547  )15,95.0, 0.23493(571.41)15,95.0,0.20408(* =<= WLEPSEPS   (61a) 

341, 49.  )15,95.0, 0.23493(716 47. )15,95.0,0.20408(* =<= WLECSECS (61b) 

888 92.)15,95.0,  0.23493(287 89.  )15,95.0,0.20408(* =<= WLESSESS . (61c) 

=∆PS  1. 976, CS∆ = 1. 625, SS∆ = 3. 601 

=
∆
∆

SS
PS  0.54874 > 

SS
CS
∆
∆ =0.45126    (62) 

From the above, we see that (cross-) licensing increases the expected producers’, 

consumers’ and social surplus at the symmetric equilibrium in all cases. However, the 

contributions of the improvement of the expected producers’ or consumers’ surplus to the total 

improvement of the expected social welfare measured by SSPS ∆∆ or SSCS ∆∆  differ 

between each case. Remember, here, that (cross-) licensing always occurs in all possible cases 

in our model. Accordingly, note that (cross-) licensing unties each firm’s over-investment in 

research and development since there is never a spill-over of technologies in our duopoly. If 

underlying demand is sufficient, large and the two technologies are less or more partially 

complementary (in cases (i) and (iii)), then licensing discourages technological development 
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and improves producers’ welfare more than consumers’ (see (58), (62)). Since consumers’ 

surplus increases with (expected) output but output decreases in these cases, it seems to be 

contradicting the consumers’ surplus increase. Note, however, that a cross-licensing system 

has two opposite effects on outputs. The first is an output-reducing effect associated with a 

reduction in the probability of success of R&D investment. The second is an 

output-expanding effect associated with the fact that a cross-licensing contract allows each 

firm to produce the good if it succeeds in inventing a single different technology. If, however, 

the underlying demand is so small and the two technologies are nearly completely 

complementary (in case (ii)), then licensing encourages technological development and 

improves producers’ welfare less than that of consumers (see (60)). These results hold at least 

within the neighborhood of the numerical solutions *s and s~  in each of three cases. 

 

8. Concluding remarks 

In this paper, we explored the incentive for R&D investment of duopolistic firms facing 

technological innovations in nearly completely complementary, partially complementary and 

less partially complementary technologies by analyzing a simple static innovation model. The 

first result we obtained was that the effect of cross-licensing of technologies on the incentive 

for R&D differs from the effect of licensing as a unilateral imposition. The effects due to the 

difference between cross-licensing and unilateral licensing systems on the incentive for R&D 

change the relationships among technologies such as the extent of weakly complementarity. 

Therefore, the above discussion suggests the importance of noticing the relationships among 

technologies, to analyze how firms determine their R&D under complex technological 

innovations. The second result is that (cross-) licensing increases the expected producers’, 

consumers’ and social surplus at the symmetric equilibria in the three cases where the 

equilibria are solved numerically. If underlying demand is sufficient, large and two partially 

complementary technologies are more or less complementary, then licensing discourages the 
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incentive for technological development and improves producers’ welfare more than 

consumers’. If, however, the underlying demand is so small and two technologies are nearly 

completely complementary, then licensing encourages technological development and 

improves producers’ welfare less than consumers’. 

There remain many problems for future research. In this paper, for example, we focus 

on symmetric equilibrium for tractability. In practice, however, firms cannot be symmetric in 

the industries where complementary technologies are indispensable for the production of 

goods. In addition, the role of R&D ventures that do not produce products but concentrate on 

R&D increases its importance in such industries. Second, we cannot derive equilibria 

analytically in our model setting. Therefore, the analysis of properties of the equilibria 

investments and welfare are not always sufficient. If we can amend our model and make it 

more tractable, we can derive clearer results. 
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Appendix 1 

Lemma 1 

For )21,0[∈∀k , 10,0),,( ≤≤> sakss 　φ , 
2
10,0),,( ≤≤> saksss 　φ . 

For ]ˆ,21( kk ∈∀ , 
2
10,0),,( ≤≤> sakssφ  and 

 for ]1,21(∈∀k 10,0),,( ≤≤< saksss 　φ . 

[Proof] 

From (21), we easily see that for )21,0[∈k , 0),,(0
)12(4

3
≤⇔≤

−
≤ aks

k
ks sssφ  and 

0),,(
)12(4

3
>⇔<

−
akss

k
k

sssφ .  

We also know form (20) that 0)21)(21(
9
8),,0( >−−−= kakakssφ

 

.0))1(5)(21(
9
8),,1(and >−−−−= akkakssφ　    Hence, we have 10,0),,( ≤≤> saksss 　φ .  

Taking this into consideration with that  0),,
2
1(,0),,0( >≥ akak ss φφ 　  from (17), (18) and (19), 

we can conclude that a 0),,( >akssφ for ].
2
1,0[),21,0[ ∈∀∈∀ sk   For ]1,21(∈∀k , however, 

from (21) we see that  

0),,(
5
4

2
1,

)12(4
3101

4
5,1

)12(4
30 ≤⇔<<

−
<≤≤≤≤≤

−
≤≤ aksk

k
ksork

k
ks sssφ　　　　  and 

.0),,(1
5
4,1)

)12(4
30( >⇔≤<≤<
−

< aksks
k
k

sssφ   So ),,( aksssφ  has a minimal 

value ))1(8165(
18
1),,

)12(4
3( 2 −+−=
−

aakkak
k
k

ssφ at 
)12(4

3
−

=
k
ks for 10 ≤≤ s .  The two 

real roots of the quadratic equation 0)1(8165 2 =−+− aakk  are given by 

5
)558(228~ 2

1

−−−
=

aaa
k  and 

5
)558(28~ 2

2

−−+
=

aaa
k .  From the assumption (13), 

we can show that 
2
1~0 1 << k  and 2

~1 k< .  So we see that for ]1,21(∈∀k , 
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0))1(8165(
18
1),,

)12(4
3( 2 <−+−=
−

aakkak
k
k

ssφ . Furthermore, from (13) and (20) we see 

that 0)21)(21(
9
4),,0( <−−−= kakakssφ  and 0))1(5)(21(

9
8),,1( <−−−−= akkakssφ  for 

]1,21(∈∀k .  Hence we have that 10,0),,( ≤≤< saksss 　　φ .  Finally, from (18), (19), the 

fact that ]1,21(]ˆ,21( ⊂∈∀ kk  and 10,0),,( ≤≤< saksss 　　φ , we can conclude that  

0),,( >akssφ for ].
2
1,0[],1,21( ∈∀∈∀ sk               (Q.E.D.) 

[Proof of Proposition 1] 

Suppose that 21≠k .  Divide both sides of the first order condition (12) by N1, and 

define 

.0
)21(4

9
)21(
)(

)21(
)12(

)21(
3

1),,()(

22
234

11

42

1

33

1

24

1

=
−

−
−
−

+
−

+−
−

−
+=

−+++=≡

k
s

k
kaks

k
aks

k
ks

N
s

N
Ns

N
Ns

N
Ns

N
akssG φ

     (A1) 

Define by γβα ,,  and )( δγβαδ <<< , the biquadrate equation G(s) of s, we see 

that  

.0
)(

)()())()()(( 234

=
++++−

+++++++++−=−−−−

　　　　　　　　　　　　　

　　　　　　　　　　　　　 αβγδαβδαβγβγδαγδ
γδβδβγαδαγαβδγβαδγβα

s
sssssss

 

(A2) 

Comparing the coefficients of each terms in (A1) with the correspondence coefficients 

in (A2), we have 

)21(
3

k
k

−
−=+++ δγβα                      (A3) 

and 

.21,0
)21(4

9
2 ≠<

−
−= k

k
　αβγδ                  (A4) 

From (A4), if (A2) has four real roots, then three roots have the same sign and the other 

one has the opposite sign.  Furthermore, if (A2) has two real roots and two imaginary roots, 

then the two real ones have the opposite sign each other form (A4).  Threfore, from (A3) and 
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(A4) all the cases we should examine are 

(i)  the case where (A2) has four real roots, 　γβα ,,  and δ  such 
that δγβα <<<< 0 ,   

(ii) the case where (A2) has four real roots, γβα ,,  and δ  such that δγβα <<<< 0 , 

and   

(iii) the case where (A2) has one positive real root and one negative real root, and two 
imaginary roots. 

From (A3), the case (i) may occur for ]1,21(∈∀k .  From the monotonicity of  

),,( aksφ  presented in Lemma 1 and the assumption that 
24

39 ka −≥ , there exists a unique 

solution )21,0[* ∈s of ,0),,( =aksφ  for ]ˆ,21( kk ∈∀ .  For example, see Figure A-1, in 

which we set 65336.070
5
24ˆ55.0,11 ≅−=<== kka .   For ]1,ˆ(kk ∈∀ , there exists at 

least one solution )21,0[* ∈s of 0),,( =aksφ  and at most two solutions in ]1,0[∈s  from 

the concavity of ),,( aksφ  proved in Lemma 1 and the assumption that 
24

39 ka −≥ .  For 

example, see Figure A-2, in which we set 65336.070
5
24ˆ8.0,11 ≅−=>== kka . 

   From (A3), the case (ii) and (iii) may occur for )21,0[∈∀k .  From the 

monotonicity of ),,( aksφ  in s presented in Lemma 1 and the assumption that 
24

39 ka −≥ , 

there exists a unique solution )21,0(* ∈s of ,0),,( =aksφ  for )21,0[∈∀k .  For example, 

see Figure A-3, in which we set 65336.070
5
24ˆ3.0,11 ≅−=<== kka .              

Now, we prove the comparative statistics results on )21,0(* ∈s . 

From Lemma 1 and )21,0(* ∈s , 0),,( * >akssφ .  Here, the first order condition (12) 

can be rewritten   

,0),(),(

1)(
9
4)12)(12(

9
4)21(

3
4)21(

9
4

1),,(

2342

42
3

3
2

4
1

=+=
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−+++=

aksiksh

skaksakkskksk

sNsNsNsNaksφ

 

 where  
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ksskksi

andskskskkskksh
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4)14(
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3
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9
4),(
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−−−+−+−= 　　

 

So, if 0),( * <ksh , then we have 0),,( * >aksaφ .  However, we now that  

)21,0(* ∈s  and 21,10 ≠≤≤ kk .  So we can show that 
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aks
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a

φ
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Next, we show that 21,10],
2
1,0(,0),,( ≠≤≤∈∀> kksaksk 　　φ .  From (12), we have 
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  For 
2
10 <≤ k , we show ]

2
1,0[,0),,( ∈∀> saksν .  One hand, we have 

},4)14(3{
9
8}4)14(3)12(6{

9
8),,( 2 akskakskskakss −+−−<−+−−−=ν for 

.
2
10 　<≤ k   We have ]

2
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}4
2
1)14(3{

9
8}4)14(3{

9
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24
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2
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<−<−+−− akaksk  for .
24

39,
2
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Hence ,0}4)14(3{
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2
1,0[,

2
10 ∈∀<≤ sk 　  So, we can 

conclude that ]
2
1,0[,0),,( ∈∀< sakss 　ν , for .210 <≤ k   However, we know that 

0
9
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24
39 ka −≥    Hence, 

0),,(),,(,0),,( >⋅=> akssaksaks k νφν
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2
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On the other hand, for 1
2
1

≤< k  , we see that ),,( akskφ  is non-increasing in k , since 
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However, we know that 　 ,0
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φ , and the result follows.   

 (Q.E.D) 

Appendix 2 

 

In this Appendix, we derive the licensing fees and the conditions for that each licensing 

occurs in the four types of cases presented in section 4.  For in the type Ⅳ cases , we also 

show that the unilateral licensing strategy of both of the two technologies dominates that of 

only one technology for the licenser firm.  

 

Ⅰ. In the cases included in this category, the Nash bargaining function BⅠ is given by, 

BⅠ= [ ),()0,0( kkF xx ππ −+ Ⅰ ][ ),()0,0( kkF yy ππ −− Ⅰ ].    (A2.1) 

Since the licensing fee FⅠ is determined so as to maximize (A2.1), we have 

Ⅰ

Ⅰ

dF
dB = −−− ),()0,0( kkF yy ππ Ⅰ { ),()0,0( kkF xx ππ −+ Ⅰ }          

ⅠF2−= = 0.                                 (A2.2) 

Then we obtain  

FⅠ=0.                                  (A2.3) 

 

Each firm must have a positive gain from this licensing: 

),()0,0( kkF xx ππ −+ Ⅰ = ≥
−

=
−

−
9

)2(
9

)(
9

22 kakkaa 0, 

which is the condition for this cross-licensing. 
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Ⅱ. In the cases included in this category, the Nash bargaining function BⅡ is given by, 

BⅡ= [ )1,(),( kFkk xx ππ −+ Ⅱ ][ ),1(),( kFkk yy ππ −− Ⅱ ].    (A2.4) 

Since the licensing fee FⅡ is determined so as to maximize (A4), we have 

Ⅱ

Ⅱ

dF
dB =6{ )1,(),( kFkk yx ππ −+ Ⅱ } 

9
)2(

9
)12(2

22 kakaF +−
−

+−
−= ＋Ⅱ  = 0.             (A2.5) 

Then we obtain  

FⅡ=
2
1 [

9
)2(

9
)12( 22 kaka +−

−
+− ]= ≥

−−−
6

)12)(1( kak 0.         (A2.6) 

 

Each firm must have a positive gain from this licensing: 

)1,(),( kFkk yx ππ −+ Ⅱ =
6

)12)(1(
9

)12(
9

)( 22 −−−
+

+−
−

− kakkaka = 

≥
−−−

=
18

)1)(12( kka 0, 

which is the condition for this licensing. 

 

Ⅲ. In the cases included in this category, the Nash bargaining function BⅢ is given by, 

BⅢ= [ ),0()0,0( kF xx ππ −+ Ⅲ ][ )0,()0,0( kF yy ππ −− Ⅲ ].    (A2.7) 

Since the licensing fee FⅢ is determined so as to maximize (A2.7), we have 

Ⅲ

Ⅲ

dF
dB ={ )0,(),0(2 kFkF yx ππ −++− ⅢⅢ } 

= 0.                                     (A2.8) 

Then we obtain  

FⅢ=
2
1 [

9
)2(

9
)( 22 kaka −

−
+ ]= ≥

−
6

)2( kak 0.         (A2.9) 

 

Each firm must have a positive gain from this licensing: 
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),0()0,0( kF yx ππ −+ Ⅲ =
6

)2(
9

)(
9

22 kakkaa −
+

+
− = ≥

−
=

18
)52( kak 0, 

which is the condition for this licensing. 

 

Ⅳ. In the cases included in this category, there are two type of cases in which the unilateral 

licensing occurs.  In one type of the cases, the unilateral licensing of only one technology 

occurs. In the other type of the cases, the unilateral licensing of both of the two 

technologies occurs.  In the first, we derive the licensing fee in which the unilateral 

licensing of only one technology occurs. 

Ⅳ-1. In the cases included in this category, the Nash bargaining function B1
Ⅳ is given 

by, 

B1
Ⅳ= [ )1,0(),0( 1

xx Fk ππ −+ Ⅳ ][ )0,1()0,( 1
yy Fk ππ −− Ⅳ ].    (A2.10) 

Since the licensing fee F1
Ⅳ is determined so as to maximize (A10), we have 

Ⅳ

Ⅳ

1

1

dF
dB = )}0,1()1,0()0,()1,0(),0(2{ 11

yxyxx kFkF πππππ −−+++−− ⅣⅣ  

= 0.                                              (A2.11) 

Then we obtain  

F1
Ⅳ= ≥

−−−
6

))12()(1( akk 0.                  (A2.12) 

 

Each firm must have a positive gain from this licensing: 

)1,0(),0( 1
yx Fk ππ −+ Ⅳ =

6
))12()(1(

9
)1(

9
)( 22 −−−

+
+

−
+ akkaka =  

      ≥
+−−

=
18

)525)(1( akk 0,                       (A2.13) 

which is the condition for this licensing.  Next, we derive the licensing fee in which the 

unilateral licensing of both of the two technologies occurs. 

Ⅳ-2 .In the cases included in this category, the Nash bargaining function B2
Ⅳ is given 

by, 
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B2
Ⅳ= [ )1,0()0,0( 2

xx F ππ −+ Ⅳ ] [ )0,1()0,0( 2
yy F ππ −− Ⅳ ].    (A2.14) 

Since the licensing fee F2
Ⅳ is determined so as to maximize (A10), we have 

Ⅳ

Ⅳ

2

2

dF
dB = )0,1()1,0(2 2

yxF ππ −+− Ⅳ =0                  (A2.15) 

Then we obtain  

F2
Ⅳ= >

−
6

)12( a 0.                       (A2.16) 

 

Each firm must have a positive gain from this licensing: 

)1,0()0,0( 2
yx F ππ −+ Ⅳ =

6
12

9
)1(

9

22 −
+

+
−

aaa = 
18

52 −a >0,        (A2.17) 

which is the condition for this licensing. 

However, from (A2.13) and (A2.17), we have  

)1,0()0,0( 2
yx F ππ −+ Ⅳ )]1,0(),0([ 1

yx Fk ππ −+− Ⅳ  

=
18

52 −a 10,
24

39,0)25(
18
1

18
)525)(1( 2 ≤≤−≥>+−=

+−−
− kkaakakk

Q .  

Consequently, we show in the above that the unilateral licensing strategy of both of the two 

technologies dominates that of only one technology for the licenser firm. 

 

Appendix 3 

     In this Appendix, we derive the first order condition for firm i  w.r.t. its own R&D 

level  in the case with a (cross) licensing contract at first.  Then, we also present two 

lemmas and the proofs of four lemmas, also present the proof of the proposition in section 

5. 

 

Derivation of ),,( aksΩ  

Now from (11) and (12) in section 3, we know that the first term of r.h.s. in (39) is 
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),,(
\

aks
x ByAyBxAx eeeesA

φ=
∂
Π∂

==== −−−

.  From (38), we also see that the second term of r.h.s. 

in (39) yields 

hsss
x

aksM
ByAyBxAx eeeesA

CL

)1)(12(
9
1),,( 2

\

−−=
∂
Π∂

≡
==== −−−

.       (A3.1) 

For any 21<s , we see that 0),,( <aksM .                                    

We set the last three terms in the l.h.s. of (39) by ),,,( aksN  

)],()([

)]()()[12()]()()[1(),,(

541
2

1987

ⅡⅣ

ⅢⅡⅣⅢ

　　　　　　 FnAFnnCs

FnCFnBssFnBFnAssaksN

−+−+−

−++−++++−=
 

(A3.2), 

where kakkknkakkn iiii 9
4),(),0(),(

9
4)0,()0,0( 21 =−=−=−= ππππ 　 , 

)1)(1(
9
4)0,1()0,(),1(

9
4)1,()1,0( 43 −−−=−=+−=−= kakknkakkn iiii ππππ 　 , 

))(1(
9
4)1,1()1,(),1)(1(

9
4),1(),( 65 kakknakkkkn iiii −−=−=−−=−= ππππ 　  

9
12)1,0()0,0(,

9
)2(),0()0,0( 87

−−
=−=

+−
=−=

ankakkn iiii ππππ 　  

9
)132)(1()1,(),(9

+−−
=−=

kakkkkn ii ππ .                                   
 

From (23), (25), (27) and the above in  s( 9,,2,1 L=i ), we see that 

).(
2
1),(

2
1),(

2
1

8417195 nnnFnnFnnF −+=−=−= ⅣⅢⅡ 　　          (A3.3) 

From the symmetry of the equilibrium and (37), we see that 

 A = )1(2 ss − ，B = 2s ，C = 2)1( s− .                (A3.4) 

 

Substituting (A3.3) and (A3.4) into (A3.2) and rearranging yields: 

 

)]25(

)521230())2(29(6)521616(2[
18
1)( 2232

akk

saakksakksakkssN

−+

+−+−++−+−++−=

　　　　

(A3.
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5) 

From (39), (A3.1) and (A3.5), we obtain final form of the profit-maximization condition (40), 

i.e. 0),,( =Ω aks . 

 

  

Lemma 2 

Suppose that }
144
1512,

24
39max{

2

+
+

−>
k

kka . Then we have ,0),,( <Ω aksssk for 

]1,0(],1,0[ ∈∀∈∀ ks 　 .  If ,
2
10 ≤≤ k  then ,0),,( >Ω aksss  for ].

2
1,0[ 　∈s  If ,1

2
1

≤< k  

then ,0),,( <Ω akssss for ].
2
1,0( 　∈s   We have 0),,( >Ω akss ]1,0(],

2
1,0( ∈∀∈∀ ks 　 . 

[Proof] 

At first, we show that  

　　 10,10,0),,( ≤≤≤≤<Ω ksaksssk  for }.
144
1512,

24
39max{

2

+
+

−>
k

kka  

At first, define 
24

39)( kkf −≡  and 
144
1512)(

2

+
+

=
k

kkg . Then we can show 

that 
14
151)0(

4
39)0( =<= gf , 5.8

2
17

18
153)1(

4
37)1( ===>= gf ,  

0
2
1)( <−=′ kf  and 0

)72(
151142)( 2

2

<
+

−+
=′

k
kkkg  for ]1,0[∋∀k . Solving 

144
1512

24
39 2

+
+

=−
k

kk  w.r.t. k , we obtain 22
4
34,22

4
34 +−= 　k .  From this, 

we see that  

48219.022
4
34)(

24
39)()(

144
1512)(

2

≅−>≤⇔−=<≥
+
+

= kkkf
k

kkg 　　 . 

From (40) and the above discussion, for 
4

37}
144
1512,

24
39max{

2

>
+
+

−>
k

kka  

we have, 

　　　 10,10,0))(16(
9
8)(),,( 2

2

2

≤≤≤≤<−+=
∂
Ω∂

∂
∂

=Ω ksaks
sk

aksssk .  (A3.6)  

From (40), we also have  
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).3684(
9
1)1242(

3
4),,( 222 −+−+−+−=Ω aakksaakkaksss

  
(A3.7)

 

Substituting 21=k  into (A.3.7), we can show that for  

448.10
29
303

1421
15121}

1421
15121,

4
1

4
39max{ ≅=

+
+

=
+
+

−>a  

].1,0[,0)13(
9
2),

2
1,( 2 ∈∀>+−=Ω ssaasss 　

 
       (A3.8) 

Setting 0=k in the assumption (41), we have 
14
151}

14
151,

4
39max{ =>a . 

Then, we can show that 

].1,0[,0)14)(12(
3
1),0,( 2 ∈∀>+−=Ω ssaasss 　  

Considering together (A3.6), (A3.8) and ]1,0[,0),0,( ∈∀>Ω sasss , we can 

conclude that ].
2
1,0[],

2
1,0[,0),,( ∈∀∈∀>Ω ksaksss  Next we show that if 

,1
2
1

≤< k  then for )
2
1,0[ 　∈s , 0),,( >Ω aksss .  Next let us show that 

].1,0(],1,
2
1(,0),,( ∈∀∈∀<Ω skakssss  Differentiating (A3.7) partially by s, we 

obtain  

.)1242(
3
8),,( 2 saakkakssss −+−=Ω            (A3.9) 

Since we can express the part within the parentheses coefficient of s  in 

(A3.9) as 

 

),)122(221()()122(221(()1242( 222 +−+−+−−−=−+− aaakaaakaakk

we can see that 

.)122(221,)122(221,0),,( 22 +−++−−<Ω aaaaaaakssss 　　
 

Remember that  

)48219.022
4
34(

2
11

24
39

144
1512 2

≅−>≥≥⇔−<
+
+ kk

k
k

　　  and  
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144
1512)(

2

+
+

=
k

kkg  is decreasing in k . So we evaluate
 

)122(221,)122(221 22 +−++−− aaaaaa 　  at 
2

17
144
1512

=
+
+

=a  yields 

16.516
2

257170.48439,
2

25717
≅

+
≅

− , respectively and 

,0
1222

1222)21(2))122(221(
2

2
2 >

+−

+−+−
=+−−

aa
aaaaaa

da
d

 

2
1))122(221(lim 2 =+−−

∞→
aaa

a
and  

.0
1222

1222)12(2))122(221(
2

2
2 >

+−

+−+−
=+−+

aa
aaaaaa

da
d  

Since we see that  

,)122('2211
2
1)122('22148439.0 22 +−+<<<<+−−< aaakaaa  

we can conclude that  

01242 2 <−+− aakk and ].1,0(],1,
2
1(,0),,( ∈∀∈∀<Ω skakssss   (A3.10) 

Finally, we show that ].1,0(],
2
1,0[,0),,( ∈∀∈∀>Ω ksakss   From (40), we 

have  

)2(
6
1)3684(

9
1)4242(

9
4),,( 232 kaksaakksaakkakss −++−+−+−+−=Ω

(A3.11) 

From (A3.11), we have   

].
2
1,0(,0)2(

6
1),,0( ∈∀>−=Ω kkakaks   From this and the fact that 

],
2
1,0[],

2
1,0[,0),,( ∈∀∈∀>Ω ksaksss  ].

2
1,0(],

2
1,0[,0),,( ∈∀∈∀>Ω ksakss  

At one hand, for ]1,
2
1(∈∀k , ]1,0(],1,

2
1(,0),,( ∈∀∈∀<Ω skakssss  from  

(A3.10).  Hence ),,( akssΩ is concave in ].)1,0((∈s  ],1,
2
1(∈∀k  On the other 

hand, we have  
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)4863(
18
1),,

2
1( 2 −+−=Ω aakkaks  

 The two solutions of the quadratic equation of s, 04863 2 =−+− aakk  are 

given by 

,)483(331,)483(331 22 +−++−− aaaaaa 　  

where 217)144()1512(,0)2)(23(483 2 =++≥>−−=+− aaaaa . 

Evaluating at 217=a   

　　　 )483('331,)483('331 22 +−++−− aaaaaa
     

yields      

15.636. 
6
1833513644, 1. 

6
183351

≅
+

≅
−

  

We see that ,0
4833

)43(34833))483(331(
2

2
2 <

+−

−−+−
=+−−
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aaaaaa

da
d

 

3
4))483(33(lim 2 =+−−

∞→
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a
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.0
4833

)43(34833))483(331(
2

2
2 >

+−
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=+−+
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da
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Hence,  

,5.8],1,0[,04863 2 ≥∈∀>−+− akaakk

5.8],1,0[,0)4863(
18
1),,

2
1( 2 ≥∈∀>−+−=Ω akaakkaks . From this  

],1,0[,0)2(
6
1),,0( ∈∀>−=Ω kkakaks  and concavity of ),,( akssΩ w.r.t. s, 

].1,
2
1(],

2
1,0[,0),,( ∈∀∈∀>Ω ksakss  In consequent, we can conclude that 

].1,0[],
2
1,0(,0),,( ∈∀∈∀>Ω ksakss ),,( akssΩ .  (A3.12) 

(Q.E.D) 

 

Lemma 3 
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)
2
1,0[,0),,(,0),,(

∈>
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Ω∂
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∂
Ω∂ s

a
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k
aks

　　 . 

[Proof] 

Since  
2
1~0 << s  must satisfy the first order condition (40),  
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1~)21(
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1~)34(
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−−+−+−+−+−=Ω

aksks

asksksksksksk

skaksaakksaakkaks

βα　　　　　

　　　　　

 where 1~
6
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9
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9
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1~1
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Since 0),~(),~( =+ aksks βα  and 0
2

17
>≥a  however, it follows that  

0),~(),,~( >=Ω ksaksa β .    Next we show that 0),,( >Ω aksk for 
2
10 << s .  

From Young theorem and partial differentiability and the continuity of Ω , 

),,~(),,~( aksaks sskkss Ω=Ω .  In the proof of lemma 2, we have already shown that  

4
37}
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1512,

24
39max{,10,10,0),,(

2

>
+
+

−≥≤≤≤≤<Ω
k

kkaksaksssk 　　　 (A3.6).  

Hence we also see that  

}.
144
1512,

24
39max{,10,10,0),,(

2

+
+

−>≤≤≤≤<Ω
k

kkaksakskss 　　　    

So we see that ),,~( akskΩ  is concave in s~ .  From (40) we have 

).1)1(
3
4)((

3
1),,( 2 −+−=Ω ssaksaksk  Therefore, we have for 
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   ,0),,0( =Ω akk .0)(
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2
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2
1
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4)((

2
1

3
1),,

2
1(

2

>−=−+⋅−⋅=Ω kaakakk  

Thus we have shown that  

0),,( >Ω aksk for 
2
10 << s .  Thus, the lemma holds. 

(Q.E.D) 

[Proof of Proposition 2] 

For the first existence result of the proposition, combining the fact that 

,01),,0( <−=Ω ak
 
the assumption that 0),,

2
1( >Ω ak  and that for ,1

2
1

≤< k  )
2
1,0[ 　∈s , 

0),,0( >Ω aks and 0),,( >Ω aksss , therefore 0),,( >Ω akss  from Lemma 2, the result 

follows.  For the last part of the proposition, we know that for any )
2
1,0[ 　∈s , 

0),,( >Ω akss  from the above. Also we know that 0),,~( >Ω aksa  and 0),,( >Ω aksk for 

2
10 << s  from Lemma 3.  By the implicit function theorem and the fact that 0),,( >Ω akss  
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∂
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 (Q.E.D) 

 

Appendix 4 

     In this Appendix, we present the two lemmas and their proofs, also present the proof of 

the proposition in section 6. 

 

Lemma 4 

If ]),,0[](1,( **** kkkk 　　 ∈∈  then  

),,
2
1()(),,

2
1( akak φ≤>Ω , 
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where .482188.022
4
34** ≅−=k  

 

[Proof] 

We assume that 0),,
2
1( >akφ  and 0),,

2
1( >Ω ak .  The former implies that 

24
39 ka −>  and the latter implies that 

144
1512 2

+
+

>
k

ka , respectively. 
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1512

24
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+
+
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kk  for k , we obtain 22
4
34 m=k .  Obviously we see 

that 122
4
34 >+=k .  Let 482188.022

4
34** ≅−=k .  We can easily show that for 

]1,(](,0[ ****　 kkkk ∈∈ ), ⎟⎟
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⎛
+
+
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+
+

≤−
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24
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k
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]1,(](,0[ ****　 kkkk ∈∈ ), 

).0),,
2
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2
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2
1(0),,

2
1( >Ω⇒>>⇒>Ω akakakak φφ 　　  

)0),,
2
1(0),,

2
1((0),,

2
1(0),,

2
1( >Ω⇒>>⇒>Ω akakakak φφ 　　  imply that  

),0),,
2
1(),,

2
1((),,

2
1(),,

2
1(0 >Ω≥≤Ω< akakakak φφ 　　  and the result 

follows.                         (Q.E.D) 

 

Lemma 5 

If ]1,0[,}
144
1512,

2
1

4
39max{

2

∈∀≤
+
+

− ka
k

kk 　　 , then 

        .0),,0(),,0( >Ω> akak ssφ  

[Proof] 

From (A3.6) in the proof of Lemma 2, note that  

}
144
1512,

24
39max{,10,0)2(

6
1),,0(

2

+
+

−≥≤<>−=Ω
k

kkakkakaks 　 .  

On the other hand, from (12), we have 
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).(
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9
8)21(4)144(
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.
4
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2
1,0)(

9
4),,0( >≤<>−= akkakaks 　　φ        (A4.2) 

Subtracting (A4.1) from (A4.2) yields 
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24
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1),,0(),,0(

2

+
+

−≥∈∀>−=Ω−
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kkakkakakak ssφ

(Q.E.D) 

 

[Proof of Proposition 3] 

At first, we know that ),,( ak•φ  is convex (concave) in )
2
1,0[∈s , 

⎟
⎠
⎞

⎜
⎝
⎛ ≤<<≤ 1

2
1,

2
10 kk 　  from Lemma 1 and  ),,( ak•Ω  is convex in 

)
2
1,0[∈s , 10 ≤≤ k .   From (12) and (46), 1),,0(),,0( −=Ω= akakφ  holds, 

and by the assumptions we have that .0),,
2
1(,0),,

2
1( >Ω> akakφ  We also 

see that 0),,0(),,0( >Ω> akak ssφ  from Lemma 5.  Therefore, if 

2
10 ** <≤≤ kk , then there never exist any intersect points 0s of ),,( aksφ  and 

),,( aksΩ  in )
2
1,0[∈s  such that ),,(),,( 00 aksaks Ω=φ  since 

0),,
2
1(),,

2
1( >Ω≥ akakφ  from Lemma 4.  Thus, we can conclude that 

2
1~0 * <<< ss ,  if 

2
10 ** <≤≤ kk . (See Figure 2, in which )15,3.0,(sφ and 

)15,3.0,(sΩ are depicted.)  

 While, if 1
2
1 ** ≤<< kk , then there exist a unique intersect point 0s of 

),,( aksφ  and ),,( aksΩ  in )
2
1,0[∈s  such that ),,(),,( 00 aksaks Ω=φ  

since ),,
2
1(),,

2
1(0 akak Ω<< φ  from Lemma 4.  At one hand, if 

0),,(),,( 00 <Ω= aksaksφ  at  the ),
2
1,0(0 ∈s  then we see that 
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2
1~0 * <<< ss under the above conditions stated above. (See Figure 3, in which 

)5.9,95.0,(sφ and )5.9,95.0,(sΩ are depicted.)  On the other hand, if 

0),,(),,( 00 >Ω= aksaksφ  at  the ),
2
1,0(0 ∈s  then we see that 

2
1~0 * <<< ss under the above conditions stated above. (See Figure 4, in which 

)15,95.0,(sφ and )15,95.0,(sΩ are depicted.)  

(Q.E.D.) 
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φ (s,0.55,11)=0, Solutions : {s=-6. 8435},{s=0.46962}, {s=3. 6399},{s=19. 234} 

Figure A-1 φ(s,0.55,11) 
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φ (s,0.8,11)=0, Solutions: {s=-2. 9091},{s=0.43294}, {s=0.88802},{s=5. 5882} 

Figure A-2 φ(s,0.8,11) 
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φ(s,0.3,11)=0, solutions: {s=-1. 4180}, {s=-0.65838-4. 4749i}, {s=-0.65838+4. 4749i}, 

{s=0.48475} 

Figure A-3 φ(s,0.3,11) 
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)15,3.0,(sφ : a dotted thin line 

 )15,3.0,(sΩ : a solid thick line  

,0)15,3.0,( =sφ Numerical Solution: =*s  0.35384 

0)15,3.0,( =Ω s ,Numerical Solution: =s~  0.37943 

Figure 2 )15,3.0,(sφ , )15,3.0,(sΩ  
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)15,95.0,(sφ : a dotted thin line 

 )15,95.0,(sΩ : a solid thick line 

,0)15,95.0,( =sφ Numerical Solution: =*s  0.20408 

0)15,95.0,( =Ω s ,Numerical Solution: =s~  0.23493 

Figure 3  )15,95.0,(sφ , )15,95.0,(sΩ  
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)5.9,95.0,(sφ : a dotted thin line 

 )5.9,95.0,(sΩ : a solid thick line 

,0)5.9,95.0,( =sφ Numerical Solution: =*s 0.44885 

0)5.9,95.0,( =Ω s ,Numerical Solution: =s~  0.41939 

Figure 4 )5.9,95.0,(sφ , )5.9,95.0,(sΩ  

 

 




