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1. Introduction

One significant feature of recent technological innovation is that a firm often employs
multiple distinct technologies to produce a commodity. Especially in information technology
(IT) industries, one product is composed of numerous separable patentable elements. For
example, the production of a mobile phone with a digital camera involves about 19,000
(Japanese) patents and/or utility models.! In this environment, which has been called
“cumulative-systems technologies” (Merges and Nelson (1994)) or “complex technologies”
(Cohen, Nelson and Walsh (2000)), many economic agents hold and share the separable
patentable elements. The method of coordination among these patent holders affects the
interests of each inventor and also affects their R&D incentives. Over the last decade of the
previous century, a number of studies have discussed the effects on R&D activities, licensing
and the patent systems of the mode of coordination of inventions.

Considering complex technologies, we can identify in principle two types of
relationships between inventions. The first type is cumulative or one-way complementary. As
Scotchmer (1991) pointed out, many inventors engage in R&D activities based on the
outcome of preceding inventions. Here, while an applied technology invention that is based
on basic technologies is not possible without the existence of these basic technologies,
invention of the basic technologies in themselves is possible without the outcome of the
applied technologies. With respect to this relationship, Green and Scotchmer (1995), and
Chang (1995) showed that externalities, due to the lack of coordination among the creators of
plural distinct inventions, discourage the development of these technologies. In the second
type of relationship among inventions, various mutually interdependent inventions are
required, without which production of the goods is very difficult. Thus, this relationship

among inventions is called two-way complementary.

! Nihon Keizai Shinbun (August 18, 2003)



In fact, as we have seen typically in the IT industries, technological innovations occur
on the basis of plural distinct inventions developed in different systems of technologies.
Distinct technologies are complementary to each other as parts of the product produced. An
externality problem occurs due to a lack of coordination among the discoverers of plural
complementary technologies. Heller and Eisenberg (1998) stated that the existence of such
externality results in “the tragedy of anti-commons”. When the intellectual property rights of
plural distinct technologies are assigned to different agents (firms), the externality generates
excessive exercises of exclusive rights and leads to under-utilization of these technologies,
and this under-utilization discourages R&D activities of agents (firms).

When all complementary technologies are necessary to produce a product, licensing has
strategic importance. If two firms own each of two distinct inventions with complete
complementarity, then the two firms cannot produce a product at all without a cross-licensing
contract. The form of this coordination affects R&D activities of the firms. Grindley and
Teece (1997) and Hall and Ziedonis (2001) conducted empirical investigations of the
appliance and integrated circuit (IC) industries. Their results show the conditions of the firms’
(cross-) licensing of technologies have a significant effect on the incentives for R&D
activities in these industries where complementary inventions are indispensable for
production. While there are many empirical studies on this subject, few theoretical studies
have examined how the conditions of firms’ (cross-) licensing of technologies affect firms’
incentives for R&D activities. Fershtman and Kamien (1992) and Okamura, Shinkai and
Tanaka (2002) offer two of the few studies of two firms engaging in R&D activities for two
distinct technological inventions with complete complementarity. They both established that
the existence of a cross-licensing system reduces the firms’ R&D activities in such a context.

Complementary technological inventions are not always indispensable for production,
in which case firms may produce a new product without using any one of two complementary

inventions. For example, in IC technologies, a great number of distinct technological
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inventions with complementarity exist such as software technologies, liquid crystal display
(LCD) technologies and so on, all of which are indispensable for producing a mobile phone.
Some firms, however, can develop and produce a new and superior mobile phone by using the
outcomes of the successful invention with regard to software technologies and LCD
technologies. In this environment, the margin created by the cost reduction (e.g. of the mobile
phone) depends on the degree of complementarity of the underlying technologies. When the
degree of complementarity is large (small), we expect that the cost reduction created by
invention of only one element of the underlying technologies is small (large). Such an
environment opens the possibility of unilateral licensing for coordinating technological
inventions. When firms invest in R&D in two distinct technologies with complete
complementarity, both technologies are indispensable for producing products, and the realized
pattern of licensing becomes cross-licensing. On the contrary, consider the invention of one
element of the underlying technologies that is dispensable for production but also contributes
to cost reduction. This invention may be unilaterally licensed. Therefore, we employ a static
framework to examine how the degree of complementarity between underlying technologies
and the difference between cross-licensing and unilateral licensing changes firms’ incentives
for R&D activities in a Cournot duopoly. We concentrate on the case where each duopolistic
firm can invest in R&D for two distinct technological inventions with partial complementarity
with each other.

In Section 2, we describe our model. In Section 3, we analyze the problem of R&D in a
Cournot duopoly with partially complementary technological innovations without licensing as
a benchmark. In Section 4, we examine the conditions under which (cross-) licensing occurs.
The appendix presents the conditions under which (cross-) licensing may occur at every state
of nature. After extending our analysis to the case of (cross-) licensing in Section 5, we
analyze theoretically how the difference between cross-licensing and unilateral licensing

affects firms’ incentives for R&D activities in a Cournot duopoly in Sections 5 and 6. In
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Section 7, we use a numerical example to discuss briefly how the difference between
cross-licensing and unilateral licensing affects welfare at the equilibria. In the final section,

we present our concluding remarks.

2. The model
We consider a duopolistic market in which two firms with identical production
technology, firms x and y, produce a homogeneous product. At the first stage, each firm
simultaneously invests in R&D for the two distinct but partially complementary technologies,
A and B. By “partially complementary technologies,” we mean that each firm can produce the
goods without both two technologies but it incurs additional costs than with both technologies.
Denote by x,,x,(=0) and y,,y,(=0) the investment levels for the technologies A, B of
firm x and those for the technologies A, B of firm y. If each firm succeeds in the development
of at least one of these technologies, it can reduce marginal cost through a process innovation.
Assume that each firm has a constant return to scale production technology as follows:
C.(q,)=c,q;=(c+0)-q, , if it succeeds in the development of both
technologies 4 and B,
=(c+k)-q,, if it succeeds in the development of technologies 4
or B, where 0<k<1,

=(c+1)-q,, if it fails to develop both technologies 4 and B

i=x,y, (1)

where ¢ is an intrinsic marginal cost and we set ¢ = 0 without loss of generality.

This cost function implies that marginal cost decreases by 1, 1-k and O if
firmi(= x, y) succeeds in the development of both, either and none of the two technologies.
We say the two technologies 4 and B are less partially complementary, even partially

complementary and more partially complementary, if 0<k <1/2, k=1/2 and 1/2<k <1,
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respectively. Especially, the two technologies are the least partially complementary or the
most partially complementary, if k=0 or k= 1.2

If each firm succeeds in the development of either technology A or B, it can reduce its
marginal cost by 1-k. If it succeeds in the development of both technologies, the firm can
reduce its marginal cost by 1. Suppose that the firm can develop the two technologies
sequentially. This implies that the later developed technology decreases marginal cost by £,
which is the value of the development of the second technology. Hence, if 1/2 <k <1, the
second technology reduces marginal cost more than does the first. In that case, increasing
returns to R&D activity occurs. If & =1/2, the values of both technologies are equivalent. If
0 <k <1/2, the R&D technologies exhibit decreasing returns. At the end of the first stage,
“nature” chooses whether each firm succeeds in developing the technologies or not. Suppose

that each firm succeeds in the development of the technology j with probability and assume
that p;() are identically and independently distributed. Therefore, we have
p(x)=l-e" =p (y,)=1-e” =p(z)=1-e7,j=A4,B. These probability functions
are well defined since we have

P ()>0,p ()<0,p (0) > and p(0) =0, p(ec) =1.

The inverse market demand function for the product is given by

p=a-0, 2)

* That is, we distinguish “the most partially complementary technologies” from “completely complementary
technologies”; that is, the latter implies that no firm can produce the goods at all without the use of both
technologies. In this paper, “completely complementary technologies” is expressed by the case where the
marginal cost £ is infinitely large; thatis & — . Okamura, Shinkai and Tanaka (2002) analyzed the case of
completely complementary technologies.

? We assume the effect of the R&D activity on a process innovation as static. That is, the successes or failures of
the development do not obey a stochastic process. However, these properties of the success probability function
are similar to the dynamic “memoryless” or “Poisson” patent race model associated with Reinganum (1982). In
her model of the research technology, it is assumed that a firm’s probability of making a discovery and obtaining
a patent at a point of time depends only on this firm’s current R&D investment level and not on its past R&D
experience. For illustrations of the dynamic patent race model, see Chapter 10 in Tirole (1989).
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where p is the market price and Q is the aggregate output in the market, that isQ =¢, +gq,,.

We assume that the market is sufficiently large, i.e. a > %—% At the beginning of the

second stage, each firm knows all successes or failures of the both firms’ developments of the
technologies. At the second stage, if a (cross-) licensing system is available, then each firm
bargains with its rival and agrees on a (cross-) licensing contract through the Nash bargaining
process. The licensing contract describes how both firms divide the total profit. If a (cross-)
licensing system is not available, then the game proceeds to the third stage. At the third stage,
each firm’s marginal cost is realized and it chooses its output simultaneously, that is, Cournot
competition occurs.” Finally, the profit of each firm is realized and the game is over. The

timing of the game is illustrated in Figure 1.

Let us conduct some preliminary work. Denote firm i ’s profit by 7,(q,,4 ) -
ﬂ-i(qi’Qj):(a_qi_Qj_ci)Qi (i#Jj,i=x,)), 3)
where ¢, =ce€{0,k,1}. Since each firm engages in Cournot competition, the equilibrium

output of firm i is given by

* (a - 2Ci + Cj) .o . .
q%%th Lj=X,p,0%# . 4)
(The first stage ) (The second Stage) (The third stage)
Decision on R&D Bargaining for licensing Decision on quantity
investment level and choice of the license fee of outputs

Cournot competition
u i u
Nature’s choice on success

or failure of the development

* Note that each firm can produce its product by using its own existing technology, even if it fails to develop
both technologies, A and B in our model.



Figure 1. Timing of the game

Substituting (4) into (3) yields firm i’s Cournot equilibrium profit,

()

a-2c +c, ?
3 .

ﬂ-i(ci’cj) = ﬂ'-i(q;(ci’cj)’q;(cj’ci)) ZL

3. R&D investment without (cross-) licensing: A benchmark

In this section, as a benchmark, we analyze the problem of R&D in a Cournot duopoly
with partially complementary technological innovation without licensing.’

Denote by {X,Y}, the combination of the states of nature which firms x and y face:

Where X,Y €{A4B,A4,B,¢} and “AB”, “A”, “B” and “¢” implies that each firm succeeds in

development of technologies 4 and B, A or B and neither A nor B. All possible states of nature

are as follows: {AB, AB}, {AB, A}, {AB, B}, {AB, ¢}, {4, AB}, {4, A}, {4, B}, {4,¢}, {B,

AB}, {B, A}, (B, B}, (B, $},{¢,A4B}, {$,4}, {¢,B} and {¢, ¢}°

For these states of nature, the corresponding realized equilibrium firm x’s profits are
7,(0.0),7,(0,6),7,(0.k),7,(01) , 7 (kO)7,(k,K).z (k. K). 7 (k) . 7, (kO) 7, (k)

7w (k,k),7 (k)1),n (1,0),7 (1,k),7 (1,k)and 7 _(11).
The expected profit of firm x without (cross-) licensing is given by
[L=E0, (x,x5,0,,y)=(1—e)1—e)H+ (1-e)e ™ H,

+te“(l-e™)H,+ e e ™ H, X4~ Xp> ©)

> A lemma needed to derive the proposition and all proofs of the lemma and proposition in this section are
presented in Appendix 1.

6 In our model, we also allow each firm to utilize the same technology as its rival’s for production, if each firm
succeeds in the development of a technology by itself. There are two interpretations of the patent breadth that
economists have suggested: They have modeled breadth in “product space,” defining how “similar” a product
must be to infringe a patent, and in “technology space,” defining how costly it is to find non-infringing
substitutes for the protected market. See Section 2 of Chapter 4 in Scotchmer (2004) for details. We follow the
latter interpretation of patent breadth and consider the case where patent breadth in this sense is narrow.
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where
H=(10-e")1-e")z (0,0)+(1-e)e ™ 7 (0,k) +te " (1—-e"")x (0,k)

+ e ez (0,1), (7a)
H,=(1-e)1-e")x (k,0) +(1-e)e " n (k,k) +e " (1-e ")z (k,k)

+ e e (k)), (7b)
H,=(1-e)1-e")z (k,0) +(1-e")e* n (k,k)te " (1—e ")z (k,k)

+ e e (k) (7c)
and
H=(1-e"")(1-e")z (1L0)+(1-e")e ™z (Lk)+ e (1-e )z (k)

+ e e (L). (7d)

The first-order condition for expected profit maximization with respect to (w.r.t.) R&D

activity of technology 4 is given by

oM (x,,%5,Y,4,V5)
ox

= e(l-e™)H+ e™e"H, e (l-e™)H,

e e "H, —1=0. (8)
From (7b) and (7¢), we see that H, = H3, and obtain
e “{(l-e™)H + (2 -1)H, e ™H,}—1 0. 9)

Since both firms are identical, we focus on the symmetric equilibrium hereafter. We can

denote the probability of failure for the development of each technology that plays a key role

in our analysisby s=e™ =™ =e¢ " =¢ 2]

2
2
7 The second-order condition at the equilibrium is that 1- > (H ,—H,)| >0 holds. If

-5 1-s

0 < s <1/2 holds, then we can easily show that this inequality holds.
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The first-order condition (9) is expressed by

oM (x,,X5,Y,,V5)
ox ,

=sV(s)
=s{(l—s)(H, - H,)+s(H,-H,)}-1=0,
where V(s)=(1-s)H,-H,)+s(H,—H,). (10)

We rewrite (10) as

P(s,k,a)=N;s* + N,s* + N;s> + N*s—1

(11)
=g(l—2k)zs4 +§k(l—2k)s3 +g(2k—1)(2k—a+1)s2 +gk(a —k)s—1=0.
We assume that

1 13 1 1
—,k,a)=——+—k+—-a>0. Or,
I ka) ==t gktga

39 kg

>227 12

=4 (12)

We examine the properties of @(s,k,a). By substituting 0 and 1 into s and rearranging terms

we have
#(0,k,a)=-1<0, (13)
¢(1,k,a)=N,+ N, + N;+ N, -1
:g(k—l)(k—a)—l (14)
>—-1=¢(0,k,a),

where the last equality holds when k£ = 1, that is, the two technologies are most partially

completely complementary. Setting f'(k) = g(k —1)(k—a)—1, we see that

9 1. 2.1
fO)=2a-1>0,f()=-1<0,f() == (- —a)=1>0

f'(k):%(2k—(1+a))<o,for 0<k<l

39 k_37
cax >

4 2 4

¥ This assumption implies that the marginal benefit with respect to X 4 1s greater than the marginal cost w.r.t.

X, when the development success chance is even. Increase of the investment level, or equivalently, decrease of

the probability of failure of the development, is beneficial to the firm if the probability of failure is 1/2.
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The smaller roots of f(k) =0 1is given by
k, =%{l+a—\/a2 —~2a+10} =k, (a) and we see that
* 37 . *
k (—) = ———«/13 =0.73574 and limk,(a)=1.

Differentiating partially ¢@(s,k,a)w.r.t. s yields

0d(s,k,a)
Os

= 3{4(1 —2k)*s® +9k(1-2k)s”> +2(1-2k)(a —1-2k)s + k(a —k)}.

=¢S(S,k5a)=4N]S3 +3N252 +2N3S+N4
(15)

We have
4
¢‘S(O,k,a):N4 :§k(a—k)20, (16)

¢.(1,k,a))=4N, +3N, +2N, + N,

= S{Skz —(7+3a)k +2(a+1)}.
Defining g(k) = 5k*> — (7 + 3a)k +2(a + 1), we see that

g0)=2(a+1)>0,g()=—-a< O,g(%) :%(a—%) >0
g (k) =10k — (7 +3a) < 0.

Since the smaller roots of the quadratic equation of £, g(k) =0 is given by

:—{(7+3a) \V9a® +2a+9 }(>—) we obtain

6. (Lk,a)>0, if 0<k<Kk

. (17)
<0, if k<k<l

We can show that
kL>l€>% if 0272227 (18)
From (15), we have
d. (s,k,a)=2(6N,s> +3N,s+ N,) = %(1 —2k){6(1-2k)s* +9ks + (a —1-2k)} (19)

. (s,k,a)=6(4N,s+N,) = —(2k—1)(4s(2k—1) 3k) (20)

RS
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Now, we present the following proposition on the R&D investment equilibrium in a

Cournot duopoly with partially complementary technologies without licensing.’

Proposition 1

Suppose that a2%—§2¥. Then, there exists at least one positive symmetric

equilibrium 5" in our model without (cross-) licensing,

0<s <L and é’i<0, & .
2 oa ok

The proposition asserts that there exists at least one equilibrium with large R&D

investments, if the market is sufficiently large. Since s° = e < 1/2 is the probability of

failure in the development of R&D, the equilibrium R&D investment level is obtained by
x =—Ins". With the failure probability sufficiently small, each firm invests relatively
aggressively in R&D technologies. The comparative static results show that the equilibrium
investment level increases as the market becomes large or as the complementarity between the
two technologies grows strong. These results seem to be plausible. The first result implies that
the improvement of the market condition encourages the R&D investments. Now define
e(k) = k/1—k, which measures the relative economic values of cost reduction if a firm
succeeds in developing another technology, given it has already developed one technology.
We interpret e(k) as the measure of relative cost efficiency of the first and second developed
technologies. The value of e(k) increases from zero to infinitely large as k increases from
zero to one. The second result implies that each firm increases R&D investment if relative

cost efficiency improves.

? Before deriving the sub game perfect equilibrium strategies, we need a lemma. The lemma is presented in
Appendix 1.
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4. The conditions under which (cross-) licensing may occur

In this section, we explore the conditions under which each firm engages in (cross-)
licensing. We assume that the patent breadth authorized by the patent protection authorities is
narrow. That is, if both firms independently succeed in developing versions of technology A
(B) that differ slightly from each other, they can acquire a patent for their own outcomes and
can utilize the technology. We assume that the terms of the licensing contract entail a fixed
licensing fee. We also assume that each firm produces the Cournot equilibrium quantity of
output given the realized marginal cost under licensing, if it agrees to the licensing contract
and it is executed. "’

The state of nature of each firm depends on success(es) or failure(s) of the development

of technologies. All cases where (cross-) licensing occurs are summarized in Table 1.

We classify the conditions under which (cross-) licensing occurs into four cases and
derive the corresponding licensing fee in these cases."'
(Case ) The cross-licensing fee is given by
F =0. 21)

Cross-licensing occurs where

' Both firms may agree to a licensing contract in which a licensee firm pays half the monopoly profit brought
by producing at the lowered marginal cost realized by licensing, as the license fee in compensation for no
production. The final gain of each firm after the side payment in this contract is, of course, larger than that where
firms compete in a Cournot manner. However, the former is interpreted as an illegal act from the antitrust point
of view. See the description in Section 3.2 and Example 4 in the Appendix of Antitrust Guidelines for
Collaborations Among Competitors (April 2000) issued by the Federal Trade Commission and the U. S.
Department of Justice. They say that 'Agreements of a type that always tends to raise price or reduce output are
per se illegal.' The contract in which the licensee firm produces the monopoly output and pays half the monopoly
profit as a licensing fee to the licensor firm seems to be per se illegal. We thank Kuninobu Takeda, Associate
Professor of Antitrust Law in Osaka University, for this justification of our assumption from the antitrust point of
view and for the source of this citation. Hence, we assume that two firms compete in a Cournot manner after the
licensing contract.

""" For the concrete derivation of the licensing conditions and the licensing fees in the case containing the four
categories, see Appendix 2.
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7.(0,0)— 7, (k, k) = @ >0, (22)
. . . . . 39 k37
in which case the inequality holds since a> w3 >— and 0k <1.
(Case ) The unilateral licensing fee is given by
1 1-k)2a-k-1
Lz oz am)= LE0CZkED o, 23)
2 g 6
Unilateral licensing occurs where
(—2a-3k+5)(k-1) >0, (24)
18
® A B AB
Firm x’s state X
® UL:y —x UL:y —x UL:y —x
Case Case Case
A UL:x—y CL:xe y UL:y —x
Case Case Case
B UL: x —- y|CL: x & UL:y —»x
Case Case Case
AB UL:x —y UL:x —y UL:x —y
Case Case Case

In the table, “UL: y —x”

“cross-licensing between two firms,” respectively.

Table 1. Possible Licensing Patterns

15

and “CL: x <> »” imply “unilateral licensing from Firm y to Firm x,” and



in which case the inequality holds since a> 3749 - % >37 and 0<k<1.

(Case ) The unilateral licensing fee is given by

F = % [7.(0,k) 7,(k0)] =@ >0, (25)
Unilateral licensing occurs where
k(2a -5k) >0, (26)
18
39 k37

in which case, again, the inequality holds since a> e >— and 0<k<1.

(Case ) This case consists of two sub-cases in which unilateral licensing occurs. One
sub-case is where only one technology is licensed. The other sub-case is where both
technologies are licensed. As we show in Appendix 2, the strategy of unilateral licensing of
both technologies is more beneficial for the licenser firm than that of licensing only one

technology. We analyze this latter type of licensing. The unilateral licensing fee is given by

2a-1
>

1
F = 5 [z,(0,D) 7,(10)]= 0. (27)
Unilateral licensing occurs where
2a-5
>0, 28
T (28)
. . . ce 39 k37
in which case the inequalities in (27) and (28) hold because a>—-—>=—

2 47
Now, we are ready to derive the R&D investment game in duopoly with a (cross-)

licensing system.

5. R&D investment with (cross-) licensing

Examining cells in Table 1 where (cross-) licensing occurs, we can express the case by
using the realized marginal cost of firm i(;) before (cross-) licensing as (¢,,c;). Then, we
see that all the cases with (cross-) licensing are (&, k), (0, k), (0, 1), (k, 1), (k, 0), (1, 0) and (1,
k).

16



(1) The firm i’s profit realized in state (k, k) ( in this case, cross-licensing occurs and

the licensing fee is zero) is

*=((-e*)e e 1 (1-e ) +e  (1-e)l—e"")e ) x,(0,0).

(29)
(2) The firm i’s profit realized in (0, k) is
af=(l-e)l-e){e ™ +e —2e e} [7,(0,0)+F ]. (30)
(3) The firm i’s profit realized in (0, 1) is
)l =(l-e*)l-e)e e [7,(0,0)+F 1. (31)
(4) The firm i’s profit realized in (k, 1) is
= [e™ +e™ —2e e e e [ m,(k,k)+ F . (32)
(5) The firm i’s profit realized in (4, 0) is
7= [e™ +e™ —2e e [ (1—e " )1—e) [,(0,0)-F 1. (33)
(6) The firm i’s profit realized in (1, 0) is
)’ =ee ™ (1—e ™ )1-e) [7,(0,0)-F 1. (34)
(7) The firm i’s profit realized in (1, k) is
rlf =e e (e +e " —2e e [z, (k,k)-F 1. (35)

Using the profits realized in states above, we express the expected profit of firm i as

I =11 +11%
+(1—e™)(1—e ™) [4{r,(0,0)~7,(0,k) + F }+ B{x,(0,0)—7,(0,1) + F }]
+(e +e —2e e ) B{x, (k, k) — x,(k)) + F }+ C{z,(0,0) - z,(k,0)— F }]
+e e [Clr,(0,0) - 7,(1,0)— F }+ Az, (k. k) — 7, (1Lk) = F ] (36)
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where A= e’ +e* —2e e’ B= e e C= (1-e’)1-e") (37)
The increment to Firm i ’s expected profit associated only with cross-licensing T is given

by

N% = (l-e™)e™(l-e")e ™ h+e ™ (1-e)l—e"")e"h, (38)
where h=7,(0,0) 7,(k,k).

Deriving the first-order condition and settings=e™* =e™? =e ™ =¢ **, by using the

fact that we derive the symmetric equilibrium, yields

I CL
Q(s,k,a) = o _at + gl +
a)CA s=¢ YA —p™¥B —p"VA —o"YB axA s=e ¥ =g B =™V 4 —o™*B aX'.A s=e ¥ = ¥B —p™V4 —p™*B
sA=s)[A(n, + F )+ B(ng + F )]+sQ2s=D[B(ny, +F )+ C(n, - F )]
—s’[C(n,+n, —F )+ A(ny,— F )] = (39)

After tedious calculations, we obtain the profit-maximization condition:'?

Q(s,k,a) :é(Zk2 —2ak +2a—-1)s" +%(4k2 —8ak + 6a —3)s’ +%k(2a—k)s—1 =0 (40)
From the Lh.s. of (40) we see that
1 1 151 7 1 151
Q(—,k,a)=—— (k> —2ak-Ta+~——)=(—k+—)a-—k* -
(loay=—gy  —2ak=Ta+=7) = ( ) 144°

As in the benchmark case, we assume that

1 151
Q(=, k —k+— —— kP ———>0.
( =G D T
This assumption implies that
2
>M,03k31. (41)
4k +14

Now, we need two lemmas to prepare for the result on equilibrium existence.
The two lemmas and their proofs and the proof of the following proposition are

presented in Appendix 3.

12 For derivation of (40), see Appendix 3.
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From these two lemmas, we immediately obtain the following equilibrium existence

result.

Proposition 2

39k 2k*+151 . . .
Suppose that a > max{———;}. Then there exists a positive symmetric

4 2, 4k+14
equilibrium 5 e (0, %) in our model with (cross-) licensing."

~

Inany 5 e(0, l),wehave §<0and a—S<O.
2 ok oa

6. Effects of a (cross-) licensing system on R&D investment

In this section, we compare the equilibrium investment level without a (cross-) licensing
system with that with a (cross-) licensing system. The two lemmas needed for derivation of the
main result and their proofs are presented in Appendix 4. We also present the proof of the
proposition in Appendix 4.

We establish the following proposition.

Proposition 3

(1) Suppose that the two technologies are not very partially complementary, such that

sk 1 . . . . . * ~
0<k<k < 5 The licensing system discourages R&D investment, i.e. 0<s <5< %

(2) Suppose that the two technologies are sufficiently partially complementary, such that

Y We can show that Q(1,k,a) > (<)0 < Vk [0, & J([k",1]), where k" = a—% 254> —50a+115. Then, there
existsan 5 such that %< 5<1 and Q(:,k,a) =0, for ke[k’,1]. We also show, as we do in footnote 6,

that s (% <5<l ) never satisfies the second-order condition. By Kuhn—Tucker conditions, in this case, there

exists equilibrium s =1. It implies, however that each firm does not invest at all at the equilibrium. This case is
not interesting and is omitted.
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k™ <1/2<k <1 and there exist any points s’ (0, %) such that ¢(s°,k,a) = Q(s°, k,a).

(2-a) If there exists a uniques’ (0, %) such that ¢(s°,k,a)=Q(s’,k,a) >0, the
licensing system discourages R&D investment, i.e. 0<s <5 < %

(2-b) If there exists a uniques’ (O,%) such that ¢(s°,k,a) =Q(s’,k,a) <0, the
licensing system encourages R&D investment, i.e. 0<5<s < % .

(2-c) If there exists a uniques’ (0, %) such that ¢(s°,k,a)=Q(s’,k,a)=0, the

. . : : : ~ o« 1
licensing system is neutral for R&D investment,ie. 0<s =5 < 5

We give some numerical examples for this proposition. See Figure 2 for (1), Figure 3

for (2-b) and Figure 4 for (2-a).
[Insert Figure 2, Figure 3 and Figure 4 here]
We explain intuitively the discouragement to R&D investment result. From (38) the

increment to firm i’s expected profit with only cross-licensing 1" is given by

I = (I—e™)e e (I-e " Yr+e ™ (I-e)l—e)e " h,

1

where h=7,(0,0) ~ 7, (k,k) = @

>0.(-(22)) (42)
The partial derivative term of 7z " evaluated at the symmetric equilibrium

(s=e ™ =™ =™ =¢7") is given by the following expression.

:M(s,k,a):ész(Zs—l)(l—s)h <0 (43)

.. | e .
However, from Proposition 2, we see that 0 < s(< 5) at equilibrium. The expression

above shows that the existence of cross-licensing discourages R&D investment. On the other
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hand, the increment to firm i ’s expected profit resulting from unilateral licensing is given by

the following formula:

N =(-e™)l-e™)e e r +e e (l-e’)l-e" )1
+(l-e™)1-e™)1—e")e "7 +(1—e™)e (- )l-e ")
+(l-e")l—e)e " (I—e)r +e ™ (l-e)l-e)l—-e")x
+(l—e"e e e +e e t(l—-e’)e " x

+e(l-e™)e e +e e e (l-e ),

where
7 =7,00)-7.0D)+F =x.(00)-7x(L,0)-F ,
7 =7.(00)-7(0,k)+F =7x(00)-x_(k0)-F ,
n =x (k,k)y-n (k)+F =xn_(k,k)—n (L,k)-F .

From the corresponding part of the first-order condition of the symmetric equilibrium

(s=e ™ =e ™ =¢ =¢7") is given by the following expression.

=e(l-e)e ey —ee T (1-e)(1-e )

+ei(l—e™)l—e")e 7 +e e (l-e’)1—e )

+e i (l—e™)e " (l-e)yr —e™“(l-e)l-e)l-e")x

+e e e e r —e et (1—e M )e i (44)
—eM(l—e)e ey —e e e (1-e )

=5°1-5)Q25 -z +25°(1-5) 7 +5(1-5)°25-Dx

+5°Q5 - -25°(1-5)x

=5*(1-5)Q25 -z +5(1-5)’@45-D)r +5°(45 -7

From (23), (25), (27) and the definitionsof 7 , 7 , & above, we obtain

, (-hQa+3k=5) = k2a=Sk) = _2a-5 @)
18 18 18

Calculating the partial derivativesof 7 , 7 , 7 wrt aand k£ in(45)yields

0F 1ok 007 _k,0.9%7 _1 . 00<k<1

oa 9 oa 9 oa 9

On__8-6k=2a 0n _a=Sk,,0m _, roy 4537
ok 18 ok 9 ok 4

At the symmetric equilibrium 0 < 5(< %) , the only two terms in (44) and
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e (l-e™)1—-e")e"nr +e et (l—e ) l-e ") (46)
=25*(1-35)x
work in the same direction to increase R&D investment (shift the function € upward).
These two terms are the marginal benefit to firm x when it slightly increases investment in
development of technology 4 in the cases {4AB, A} and {4, AB}, respectively (which
correspond to the two shaded cells in Table 1). In these two cases, the increase of x, is
always beneficial to firm x since it succeeds in developing technology A. However, all the
other eight terms in (44) work to shrink R&D investment (shift the function Q downward).
In these cases, although the increase of x, brings firm x a positive marginal benefit if it
succeeds in developing technology 4 (for example, see the corresponding cell to the case
{4B,¢} in Table 1), at the same time it brings a negative marginal benefit since the
expected benefit as a unilateral licensee of technology 4 from firm y decreases in the pair case

where firm x fails to develop technology A4 (See the UL cells to case  {¢, AB} in Table 1).

The corresponding part of the first-order condition of the increment to firm i’s expected

profit with only cross-licensing I1" also works to shrink R&D investment (shift the

function Q downward). The total negative effect dominates in most cases when the
underlying market demand for the product ais sufficiently large, since 7 , 7 , =« are
nondecreasing in a. In some cases, however, the positive effects dominate. If the extent of
complementarity k €[0,1] is so large and the underlying demand « is small enough, these
cases tend to occur.

To explain these results intuitively, note that we normalize the reduction of the marginal
cost of production associated with the R&D development to unity. The underlying demand a
is also looked upon as reduced to unity (a is the original market size divided by the amount

of marginal cost reduction). Thus, the change in a is incomparably larger than the change of

k.
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Let us focus on the comparative statics w.r.t. & when the underlying demand a is
small enough and the magnitude of the marginal cost reduction is large compared with the
underlying demand. From the above definitions, 7 , 7 , 7 and /A represent the ex
post profit of each firm under unilateral licensing of only one technology where the licensee
has not developed any technology, the ex post profit of the firm under unilateral licensing of
one technology by the licensor who has developed both technologies and the licensee has
developed only one technology, the ex post profit of the firm under unilateral licensing of two
developed technologies where the licensee has no developed technologies, and the
incremental profit of each firm under cross-licensing, respectively. As the extent of the
complementarity & increases, 7 and % increase while 7  does not change and 7
decreases. Therefore, when k£ is large but a is small enough, the positive effect (associated
with 7 ) presented in (46) dominates the total negative effects associated with terms 7 in
(44) and h (given by (43)).

This proposition shows that a (cross-) licensing system promotes R&D investment in
some cases when the duopolistic firms produce goods by using two partially complementary
technologies. In these cases, the extent of complementarity & is sufficiently large and the
underlying demand a is small enough.

Okamura, Shinkai and Tanaka (2002) established that the existence of a cross-licensing
system always discourages firm’s R&D investments, when the duopolistic firms produce a
good by using the two completely complementary technologies. In their model, no unilateral
licensing can occur since firms require both technologies to produce the good. The existence
of a cross-licensing system decreases firms’ incentives for R&D through the chance to
exchange their technologies. As we have shown in this paper, however, unilateral licensing
may encourage firms’ incentives for R&D through the chance of their receiving (paying) the
licensing fee when the extent of complementarity & is sufficiently large and the underlying

demand a is small enough. When two not quite completely complementary technological
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innovations occur, this positive effect of unilateral licensing on firms’ incentives for R&D

may surpass the negative effect of cross-licensing upon their incentives.

7. Welfare comparison at the equilibria with and without licensing
In this section, we compare economic welfare evaluated at the equilibria, s and

s with and without (cross-) licensing. Since we see that we cannot derive two equilibrium
solutions s and § analytically from the discussion in the preceding section, so comparison
of economic welfare at s and § is conducted for the numerical solutions s ’s and 5 ’s
presented in preceding section in three cases in the preceding section, where a = 15, k= 0.3,
where a = 9.5, k= 0.95 and where a = 15, k= 0.95.

Set s =e ™ =e ™ =e" =¢? (x,=x,=—Ins")in (6) and multiply it by 2, we
define the expected producers’ surplus at the symmetric equilibrium without licensing as

EPS™(s",k,a)=2(1—s" ) H,(s" ,k,a)+4s (1- s )VH,(s",k,a)+ 25 H,(s",k,a) + 4Ins",

(47)

where H,(s",a,k),i=1,2,4 implies H,,i=1,2,4given by (7a), (7b) and (7d) evaluated at

%

s =e M =e " = =¢  Thatis, we have

H,(s"  k,a)= (1-5) 7.(0,0)+ 25 (1-s") 7,(0,k) +s"7.(0,)), (48a)
H,(s  k,a)= (1-5") 7, (k,0)+ 25 (1=s") m (k, k) +s 7z (k]), (48b)
H,(s  k,a)= (1-5") 7,00+ 2s"(1=s") 7, (Lk) +s 7 (L1). (48c)

We know well that the consumers’ surplus in the Cournot equilibrium of our setting is
. 1
glVen by CS(Q(CX ’cy )) = EQ(Cx’cy)29 Where Q(Cx’cy) = Qx (cxﬁcy) + qy (cy + cx) ‘
Replacing 7 (c,,c,) by CS(Q(c,,c,)) in (48a), (48b) and (48c), we define the

expected consumers’ surplus as
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ECS*(S*,k,a) =2(1 —S*)ZJ1 (s*,k,a) + 4S*(1 —S*)J2 (s*,k,a) + 2S*2J4(s*,k,a), (49)

where
J, (s k,a)= (1-s")* CS(Q(0,0)+2s"(1-s") CS(0(0,k))+sCS(O0,1)),  (50a)
J, (s  k,a)= (1-5")> CS(Q(k,0)+2s (1-s") CS(O(k,k)) +s" CS(O(k,1)),  (50b)

J, (s  k,a)= (1-5")% CS(Q(1,0))+ 25" (1-5") CS(O(L, k) +s" CS(O(L,))).

(50¢)

Accordingly, the expected social surplus at the symmetric equilibrium without licensing
is defined as
ESS™(s",k,a)= EPS"(s" ,k,a)+ ECS (s ,k,a). (51)
From Table 1 and the description following Table 1, the expect profit of firm x at the
equilibrium with (cross-) licensing is given by
" =(1-e™)(1-e™)L, +(1—e)e ™ L, +e ™ (1-e ™)L, +e e ™ L, —x, —x,, (52)
where

L=(Q-e")l-e")r (0,0)+(1-e")e [z (0,0)+F J+e " (1—e)[x (0,0)+F ]
+e e[ (0,0)+F 1],

(53a)

Ly=(1-e")1-e")[r (0,00-F 1+(—-e")e " n _(k,k)+e " (1-e"*)r_(0,0) (53b)
+e e (k,k)+F ],

Li=(1-e’)1-e")7 (00)-F J+(1-e")e "7 (0,0)+e " (1—e ")z (k,k) (530)
+e e (k,k)+F ],

L, =(l-e’)1-e")[r (0,00-F J+(1—-e)e " [r (k,k)—F ] (53d)

+e " (l-e)x (k,k)—F 1+e e x (L)).
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Similarly, we can obtain the expect profit of firm y at the equilibrium. Setting
=e® (¥, =X, =—In¥)in these expected profits, and taking into

consideration that all license fee terms cancel out at the equilibrium. Then, we can obtain the

expected producers’ surplus at the symmetric equilibrium with licensing as
EPS" (5,k,a)=2(1-5)*(1+5)* - 7_(0,0)+ 45> (1-5)1+5) - 7, (k, k) + 25" - 7_(1,) + 4In§

0, es (@1’
9

=2(1-5)*(1+73)? §+4s (1—5)(1+§)~(“_— +4Ins

(54)

Similar to EPS"" (5, k,a), we also define the expected consumers’ surplus as
ECS" (5,k,a)=(1-5)*(1+5)*- CS(Q(0,0)) +252(1=-5)1+75)-CS(O(k,k))+5*-CS(O((1,]))
(=545 -2 25 1)1+ F)- (“9") go. 2
(55)
The expected social surplus at the symmetric equilibrium with licensing is defined as
ESS" (5,k,a)= EPS"" (5 ,k,a)+ ECS"" (3 ,k,a). (56)

To compare economic welfare evaluated at the equilibria s and § with and without
(cross-) licensing, solved numerically in three cases where a = 15, k= 0.3, where ¢ = 9.5, k=
0.95 and where a = 15, k= 0.95), we calculate

EPS™(s",k,a),ECS"(s",k,a),ESS"(s" ,k,a), EPS"" (5 ,k,a), ECS"" (5, k,a) and
ESS" (5,k,a)in these cases. Denote the variations of the expected producers’, consumers’
and social surplus by APS =EPS"™ —EPS’, ACS = ECS"™ —ECS™  and
ASS = ESS"" — ESS”.

(1) Where a = 15, k= 0.3, the two equilibria are s~ =0.35384 and

=0.37943 (Figure 2). From (47),(49),(51),(54),(56) and (56) we have

EPS"(0.35384,0.3,15) = 44.219 < EPS" (0.37943,0.3,15) = 45.502, (57a)
ECS™(0.35384,0.3,15) =48.277 < ECS™ (0.37943,0.3,15) = 49.378, (57b)
ESS"(0.35384,0.3,15) =92.496 < ESS"*(0.37943 ,0.3,15) = 94.88. (57¢)
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APS = 1.283, ACS=1.101, ASS=2.384

APS _053817> 295 _ 046183 (58)
ASS

ASS
(i)  Where a = 9.5, k = 0.95, the two equilibria are s~ =0.44885and 5 = 0.41939 (Figure

3). From (47), (49), (51), (54), (56) and (56) we have

EPS”"(0.44885,0.95,9.5) = 14.335 < EPS"* (0.41939 ,0.95,9.5) =15.351 , (59a)
ECS’(0.44885,0.95,9.5) =17.342 < ECS"* (0.41939,0.95,9.5) =18.827, (59b)
ESS"(0.44885,0.95,9.5) =31.678 < ESS" (0.41939 ,0.95,9.5) = 34.178. (59¢)

APS = 1.016, ACS=1.485, ASS=2.5.

APS _ 0.4064 < ACS _ 0.594 (60)
ASS ASS

(iii)  Where a = 15, k = 0.95, the two equilibria are s~ =0.20408 and 5 = 0.23493 (Figure
3). From (47),(49),(51),(54),(56) and (56) we have
EPS™(0.20408,0.95,15) = 41.571 < EPS""(0.23493,0.95,15) = 43.547, (61a)
ECS’(0.20408,0.95,15) =47.716 < ECS""(0.23493,0.95,15) = 49.341,(61b)
ESS™(0.20408,0.95,15) = 89.287 < ESS""(0.23493 ,0.95,15) = 92.888 .(61c)

APS = 1.976, ACS=1.625, ASS=3.601

APS _ 054874 > 2S5 045126 (62)
ASS ASS

From the above, we see that (cross-) licensing increases the expected producers’,
consumers’ and social surplus at the symmetric equilibrium in all cases. However, the
contributions of the improvement of the expected producers’ or consumers’ surplus to the total
improvement of the expected social welfare measured by APS/ASS or ACS/ASS differ
between each case. Remember, here, that (cross-) licensing always occurs in all possible cases
in our model. Accordingly, note that (cross-) licensing unties each firm’s over-investment in
research and development since there is never a spill-over of technologies in our duopoly. If
underlying demand is sufficient, large and the two technologies are less or more partially

complementary (in cases (i) and (iii)), then licensing discourages technological development
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and improves producers’ welfare more than consumers’ (see (58), (62)). Since consumers’
surplus increases with (expected) output but output decreases in these cases, it seems to be
contradicting the consumers’ surplus increase. Note, however, that a cross-licensing system
has two opposite effects on outputs. The first is an output-reducing effect associated with a
reduction in the probability of success of R&D investment. The second is an
output-expanding effect associated with the fact that a cross-licensing contract allows each
firm to produce the good if it succeeds in inventing a single different technology. If, however,
the underlying demand is so small and the two technologies are nearly completely
complementary (in case (ii)), then licensing encourages technological development and
improves producers’ welfare less than that of consumers (see (60)). These results hold at least

within the neighborhood of the numerical solutions s and 5 in each of three cases.

8. Concluding remarks

In this paper, we explored the incentive for R&D investment of duopolistic firms facing
technological innovations in nearly completely complementary, partially complementary and
less partially complementary technologies by analyzing a simple static innovation model. The
first result we obtained was that the effect of cross-licensing of technologies on the incentive
for R&D differs from the effect of licensing as a unilateral imposition. The effects due to the
difference between cross-licensing and unilateral licensing systems on the incentive for R&D
change the relationships among technologies such as the extent of weakly complementarity.
Therefore, the above discussion suggests the importance of noticing the relationships among
technologies, to analyze how firms determine their R&D under complex technological
innovations. The second result is that (cross-) licensing increases the expected producers’,
consumers’ and social surplus at the symmetric equilibria in the three cases where the
equilibria are solved numerically. If underlying demand is sufficient, large and two partially

complementary technologies are more or less complementary, then licensing discourages the
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incentive for technological development and improves producers’ welfare more than
consumers’. If, however, the underlying demand is so small and two technologies are nearly
completely complementary, then licensing encourages technological development and
improves producers’ welfare less than consumers’.

There remain many problems for future research. In this paper, for example, we focus
on symmetric equilibrium for tractability. In practice, however, firms cannot be symmetric in
the industries where complementary technologies are indispensable for the production of
goods. In addition, the role of R&D ventures that do not produce products but concentrate on
R&D increases its importance in such industries. Second, we cannot derive equilibria
analytically in our model setting. Therefore, the analysis of properties of the equilibria
investments and welfare are not always sufficient. If we can amend our model and make it

more tractable, we can derive clearer results.
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Appendix 1

Lemmal

1

For Vk€[0,1/2), ¢ (s,k,a)>0,0<s<1, ¢Ss(s,k,a)>0,0SSS§.

For Vk e (1/2,k], ¢S(s,k,a)>0,OSsS% and

for Vke /2,114, (s,k,a)<0,0<s<1.

[Proof]

From (21), we easily see that for k €[0,1/2), s< “(%lfl) <04, (s,k,a)<0 and
N ey (s ka)>0.

42k -1)

We also know form (20) that ¢.(0,k,a) = g(l -2k)a—-1-2k)>0
and ¢ (1,k,a)= —g(l -2k)(5(k—-1)—a)>0. Hence, we have ¢ (s,k,a)>0,0<s<1 .
Taking this into consideration with that ¢ (0,k,a) >0, ¢, (%,k, a)>0 from (17), (18) and (19),

we can conclude that a ¢, (s,k,a)>0for Vk e[0,1/2),Vs E[O,%]. For Vk e (1/2,1], however,

from (21) we see that

3k 3k

l<k<i<:>¢5 (s,k,a)<0 and

cs<—F 4 2<k<t o <l<—,
42k -1) 4 42k-1) 2 5
3k 4 ..
O<——)<s<lL—=<k=Zle 9 (s,k,a)>0. So ¢ (s,k,a) has a minimal
42k -1) 5
value ¢SS(L,k,a)=L(5k2—16ak+8(a—1))at SILfOI' 0<s<1. The two
42k -1) 18 42k -1)

real rtoots of the quadratic equation Sk’ —16ak+8a—1)=0 are given by

o 8a —2,/2(8a® —5a—5) nd = 8a ++/2(8a’ ~5a-5)

| 5 5 From the assumption (13),

we can show that O<l€l <% and 1<l;2. So we see that for Vke(l/2,1],
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3k

P (4(7_1) :

k,a)= %(Sk2 —16ak +8(a—1))<0. Furthermore, from (13) and (20) we see
that ¢ _(0,k,a)= g(l —2k)(a-1-2k)<0 and ¢ (Lk,a)= —g(l -2k)(5(k—-1)—a)<0 for
Vk € (1/2,1]. Hence we have that ¢_(s,k,a)<0, 0<s<I. Finally, from (18), (19), the
fact that Vk e (1/2,k] < (1/2,]] and @, (s,k,a)<0, 0<s<I, we can conclude that

@, (s,k,a) > 0for Vke(1/2,1],Vs [0, %]. (Q.E.D.)

[Proof of Proposition 1]

Suppose that & #1/2. Divide both sides of the first order condition (12) by N;, and

define
Nl Nl Nl Nl Nl (Al)
e, 3k S3_(2k—a+1)S2+k(a—sz_ 9 o
(1-2k) (1-2k) (1-2k)* " 4(1-2k)

Define by «,f,y and o(a < f <y <), the biquadrate equation G(s) of s, we see

that

(s—a)s—=P)s—y)s—0)=s5"—(a+B+y+5)s’ +(af+ay+ad + Py + S+ y5)s’

—(ayo + Byo + afly + affo)s + affyd
=0.

(A2)
Comparing the coefficients of each terms in (A1) with the correspondence coefficients

in (A2), we have

3k
+h+y+0=— A3
a+py o (A3)
and
aﬁ&——Lw k+1/2 (A4)
7 41-2k)* 7 '

From (A4), if (A2) has four real roots, then three roots have the same sign and the other
one has the opposite sign. Furthermore, if (A2) has two real roots and two imaginary roots,
then the two real ones have the opposite sign each other form (A4). Threfore, from (A3) and
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(A4) all the cases we should examine are

(1) the case where (A2) has four real roots, a,f,y and O such
thata <0< <y <9,
(i1) the case where (A2) has four real roots, «,f,y and 0 suchthata< f<y<0<o,

and

(iii))  the case where (A2) has one positive real root and one negative real root, and two

imaginary roots.

From (A3), the case (i) may occur for Vke(1/2,1]]. From the monotonicity of

@(s,k,a) presented in Lemma 1 and the assumption that a2379_§’ there exists a unique

solution s” €[0,1/2)of ¢(s,k,a)=0, for Vke (1/2,19]. For example, see Figure A-1, in
. ~ 2 ~ )
which we set a=11,k=0.55<k=4 —gm ~0.65336. For Vk e (k,], there exists at

least one solution s* €[0,1/2)of ¢(s,k,a)=0 and at most two solutions in s €[0,1] from

the concavity of ¢@(s,k,a) proved in Lemma 1 and the assumption that az?—g. For

example, see Figure A-2, in which we set a =11,k =0.8>k =4 —%ﬂ ~ 0.65336.

From (A3), the case (ii) and (iii) may occur for Vk [0,1/2). From the

monotonicity of @(s,k,a) in s presented in Lemma 1 and the assumption that «a 2%—%,

there exists a unique solution s° € (0,1/2) of ¢(s,k,a)=0, for Vk €[0,1/2). For example,

see Figure A-3, in which we set a =11,k =03<k =4 —%ﬂ ~ 0.65336.

Now, we prove the comparative statistics results on s € (0,1/2).

From Lemma 1 and s €(0,1/2), @,(s",k,a)>0. Here, the first order condition (12)

can be rewritten
P(s,k,a)=Ns* + N,s’ + Nys> + N's -1
25(1—2k) s +§k(1—2k)s +§(2k—l)(2k—a+1)s +§k(a—k)s—1
=h(s,k)+i(s,k)a=0,
where
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h(s, k) :g(l—2k)2s4 +§k(l—2k)s3 +g(4k2 —1)s? —gkzs -1 and

i(s, k)= g(l —2k)s? +gks

So, if Ah(s",k) <0, then we have P, (s",k, a)>0. However, we now that

s €(0,1/2) and 0<k<lk=1/2. So we can show that

1 1 4 4,1
==, —4k2 1 <=.3e—
569 )Y 9" 4

—(1 2k)* (s )—5 E=£ g(l 2k)(s7)’ <

4 1 i
3

W | =

and

_A <0, So h(s*,k)si+l+l+0—1=—1—7<o, and ¢, (s ,k,a)>0. Hence, by
9 36 6 36

3
implicite function theorem, we have s __ 9.6 .ka) (s, k, a)
da  ¢.(s",k, a)

Next, we show that ¢, (s,k,a) >0, Vse (O,E], 0<k<1,k#1/2. From (12), we have

16 A ks Sk —ays + F e
¢, (s,k,a)=s- {?(Zk -1)s 3 4k -1)s” + 5 (4k —a)s + 5 (a—2k)}
=s-v(s,k,a).

For 0<k< %, we show v(s,k,a)>0,Vs e [0,%]. One hand, we have

v (s,k,a)= %{6(2]{ —1)s* =34k -s+4k—a} < %{—3(41( —1)s + 4k —aj}, for
1 1
0<k<—. Wehave Vse[0,—]
2 2
§{—3(4k—1)s+4k—a}<§{—3(4k—1)l+4k—a} :—2k+§—a<0a>£—k for
9 9 2 2 4 2
0<k<l and —{ 3(4k-N)s+4k—a} <— {4k a} <0 for l<k<l a>£—£
4 4 2 4 2

Hence v (s,k,a)< %{—3(41{ —s+4k—a}<0,for 0<k< % ,Vs e [O,%]. So, we can

conclude that v (s,k,a)<0, VselO0, %] , for 0<k<1/2. However, we know that
4 1 39 k

v(0,k,a)=—(a-2k)>0, v(—,k,a)=— >———, Hence,
(0,k,a) 5 (a—2k) ( a) 9> az PR

v(s,k,a)>0,¢,(s,k,a)=s-v(s,k,a)>0 Vs E[O,%], 0<k <%.
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On the other hand, for %< k<1 , we see that ¢, (s,k,a) is non-increasing in k, since
8¢k 8 ) 1
@ (s, k,a)= = 5s(2s -1)(2s° —=2s+1)<0,Vs e [O,E]. We have

@, (S,E,a) = gs{—3s2 +2(2—-a)s+(a-1)}. The two solutions of the quadratic

equation of s, -3s+22-a)s+(a-1)=0 are
0 2—a—~a’—-a+1 2—a++a’—a+1
s (a)= 3 ,8 (a)= 3 , and we see
that (—)——ﬂ—ﬂ——S 6802 < 0,s (—)——ﬂ—ﬂ:051348>0
12 12 12 12
lims'(a) = % The  derivatives of the two  solutions wrt. a  are

dso(a):_Z az—a+1—1+2a<0 dsl(a)__Z a’—a+1+1-2a

<0. Hence, we see

da 6Va® —a+1 da 6Va’ —a+1
that —3s> +2(2—a)s+(a—1)>0,Vs [0, ;]%—%% <k<1 and

¢k(s,%,a)=gs{—3s2+2(2—a)s+(a—1)}ZO,VSE[O,%] for 0<k<1/2. Next, we

examine the sign of ¢, (s,1,a) = S{%f — 457 +§(4 —a)s+ ia — §)}. From this formula

62

we have ¢, (s,],a)= ¢;k = ﬁS2 — 245+ 64 _ Ea The two solutions of the quadratic

‘ os 3 9 9
equation of of s ¢, =0 are §°(a)= _6_& 192a-39,5'(a) =———+/192a -39, and
we see that AO(—) _ 0 I8 ~—-0.32945 < 0,§1(£) = i—ﬂ ~1.4544>0. The

4 16 48 4 16 48
derivatives of the two solutions W.I.t. a are
ds’(a) 2 ds'(a) 2
=— <0, = > 0. Hence, we see that
da \192a -39 da V192a -39

0’ D
¢, (s,,a)= ¢k = %SZ —24s + %—%a <0,Vs e [O,%] c [0,1], which implies ¢, (s,l,a)
is concave in s. We also see that ¢,(0,,a)=0, ¢, (%,l,a) = % > 0. Thus, we show that

for @, (s,l,a)>0,Vs e [0,%] 1/2<k<l1..
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However, we know that v(0,k,a)= g(a -2k)>0, v(l,k,a)= g(a +2k) —g >0, for
39
az> 7,0 <k<1/2. Consequently, v(s,k,a)>0, Vse[0,1],0<k<1/2. Hence, we can

conclude that ¢, (s,k,a)=s-v(s,k,a)>0, se(0, %] and 0<k<l,k+#1/2. By implicit

function theorem, we have as_ = —M <0, and the result follows.

dk @, (s, k,a)
(Q.E.D)

Appendix 2

In this Appendix, we derive the licensing fees and the conditions for that each licensing
occurs in the four types of cases presented in section 4. For in the type cases , we also
show that the unilateral licensing strategy of both of the two technologies dominates that of

only one technology for the licenser firm.

. In the cases included in this category, the Nash bargaining function B is given by,
B =[7.(00)+F -7 (k,k)][7,0,0)-F — 7z (k,k)]. (A2.1)

Since the licensing fee /' is determined so as to maximize (A2.1), we have

%:ﬂy (00)~F —,(k, k)~ {7,(0.0) + F —7,(k.k)}

=-2F=0. (A2.2)
Then we obtain

F =O0. (A2.3)

Each firm must have a positive gain from this licensing:

2 _ 2 _
7[)((()’())_,_}7 —ﬂx(k,k)z %_(Cl 9k) :k(2619 k)ZO

9

which is the condition for this cross-licensing.
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. In the cases included in this category, the Nash bargaining function B is given by,
B =[x (k,k)+F -z (k)7 (k,k)-F -7z, (Lk)] (A2.4)
Since the licensing fee F  is determined so as to maximize (A4), we have
dB
—=6{r_(k,k)+F —rn (k|1
i {7, (k,k) (k1) }

(a—2k+1)? _(a—2+k)2 _

=2F 5 0. (A2.5)
Then we obtain
P :% [ (a 2; +1) B (a 29+ k) - (1-k)Ra-k-1) 0. (A2.6)

Each firm must have a positive gain from this licensing:

(a=k) _(a=2k+D)’ (-k)Qa—k-1)_
9 9 6

_Qa-k=Dk-D _,
- 18 7

w (k,k)+F -7, (k)=

which is the condition for this licensing.

. In the cases included in this category, the Nash bargaining function B is given by,
B =[x, 00)+F -7z.(0,k)][7,0,0)-F -7z, (k0)] (A2.7)

Since the licensing fee F  is determined so as to maximize (A2.7), we have

dB
dT:{—zF +7Z'x(0,k)+F _ﬂy(k,())}
=0. (A2.8)
Then we obtain
2 _ 2 _
i :l [ (a+k) B (a—2k) = k(2a—k) 0. (A2.9)
2 9 9 6

Each firm must have a positive gain from this licensing:
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@’ _(@+k)’ kQa-k)_ _kQ2a-5k)

7. (0,0)+F —7xz (0,k)=
(0.9 »(0.0) 9 9 6 18

>0,

which is the condition for this licensing.

. In the cases included in this category, there are two type of cases in which the unilateral
licensing occurs. In one type of the cases, the unilateral licensing of only one technology
occurs. In the other type of the cases, the unilateral licensing of both of the two
technologies occurs. In the first, we derive the licensing fee in which the unilateral
licensing of only one technology occurs.

-1. In the cases included in this category, the Nash bargaining function B' is given
by,
B' =[x (0,k)+F' —z_(0)] 7, (k,0)— F' - 7, (1,0)]. (A2.10)

Since the licensing fee F'  is determined so as to maximize (A10), we have

dB'
dF!

—{(2F" — 7z, (0,k)+ F' +7,(01) + 7, (k,0)— 7 (0,)) - 7, (1,0)}

=0. (A2.11)

Then we obtain

g _k=Dk-Qa-1) o

A2.12
6 ( )
Each firm must have a positive gain from this licensing:
2 2 _ _ _
7 (0,k)+F' —7z (0,))= (atk)” (a+l) (k-D(k-Q2a-1)_
y 9 9 p
- 1)(5];8_ 0, (A2.13)

which is the condition for this licensing. Next, we derive the licensing fee in which the
unilateral licensing of both of the two technologies occurs.
-2 In the cases included in this category, the Nash bargaining function B* is given

by,
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B =[7,(00)+F*> —z,(0)][x,(00)~F> -z (10)]

Since the licensing fee F*  is determined so as to maximize (A10), we have

dB*
dF*

=—2F% + 7 (0,) - 7, (1,0)=0

Then we obtain

F =(2a—6_1) >0.

Each firm must have a positive gain from this licensing:

a’ (a+1)° +2a—1: 2a -5

7.(0,0)+ F* -7 (0,))=—— >0,
.(0,0) ,(0.1) 5 5 5 T

which is the condition for this licensing.
However, from (A2.13) and (A2.17), we have
7 (0,0)+F* - 7, (0,1) —[7 (0,k)+ F' - 7, (0,1)]

_2a=5 _(k=DBk=2a+5) 1 g0 oys0an2 K ocr<r
18 18 18 4 2

(A2.14)

(A2.15)

(A2.16)

(A2.17)

Consequently, we show in the above that the unilateral licensing strategy of both of the two

technologies dominates that of only one technology for the licenser firm.

Appendix 3

In this Appendix, we derive the first order condition for firm i w.r.t. its own R&D

level in the case with a (cross) licensing contract at first. Then, we also present two

lemmas and the proofs of four lemmas, also present the proof of the proposition in section

5.

Derivation of Q(s,k,a)

Now from (11) and (12) in section 3, we know that the first term of r.h.s. in (39) is
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=¢(s,k,a). From (38), we also see that the second term of r.h.s.

8)6,4 sme YA =g B _p~VA _p\VB
in (39) yields
CL
M(s,k,a) =1 :éSZ(zs—l)(l—s)h. (A3.1)
xA s=e ¥ =g ¥B =™V 4 —o"VB

Forany s<1/2, we see that M (s,k,a)<0.

We set the last three terms in the Lh.s. of (39) by N(s,k,a),

N(s,k,a)=s(1=s)[A(n, +F )+ Bng +F )]|+s2s-1)[B(ng+F )+C(n, —F )]
—SZ[C(n1+n4—F )+ A(ng —F )],

(A3.2),

where n, =7,(0,0) -7, (k,0) = gk(a -k), n,=7r,0,k)—x (kk)= gka ,
n, =x,(01)-7x, (k)1)= gk(a —-k+1), n,=n(k0)-7(1,0)= g(l k) a-k-1),
m:wth—m@nga—mw—m,n6:mw»—mam=§a—mm—m

n, =7,(0,0)—,(0,k) =

SHCED =200 -7 0 - 2207

(k- 1)(2a -3k +1)
5 .

From (23), (25), (27) and the above n, s(i=12,---,9), we see that

ny =7, (k,k) =7 (k,1) =

1 1 1
F =E(”5_n9): F =E(nl_n7)’ F :§(n1+n4_n8)' (A3.3)

From the symmetry of the equilibrium and (37), we see that

A= 2s(1-s) B=s> C= (I-5). (A3.4)

Substituting (A3.3) and (A3.4) into (A3.2) and rearranging yields:

N(s) = %s[z(—mkz +16k +2a—5)s® +6k(9% —2(a +2))s” + (=30k> +12ak — 2a + 5)s a3

+k(5k - 2a)]
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5)
From (39), (A3.1) and (A3.5), we obtain final form of the profit-maximization condition (40),

re. Q(s,k,a)=0.

Lemma 2

2
Suppose that a>max{£—£ w} . Then we have Q ,(s,k,a)<0, for

4 2 dk+14

Vs e[0,1],Vke(0,1]. If Osks%, then Q_(s,k,a)>0, for se[o, %]. If %<k31,

then Q_ (s,k,a) <0, for se (0, —] We have Q (s,k,a)>0 Vs e (0, %],Vk e (0,1].

AN

[Proof]

At first, we show that

39 k 2k’ +151

Q. (s,k,a)<0,0<5<1,0<k <1 for a>max{—-—,——}.
4 2 4k+14

39 &k 2k* +151

At first, define f (k)———E and g(k)= TV Then we can show

39 151 153 _17
that f(0)=—<g0)=—, f(D= g(l)= — =385,
18 2
2k* +14k —151
2k +7)

2
39 _k_2 4L o k, we obtain k= 4——\/_ 2,4+ 3\/_ From this,

4 2 dk+14

<0 for Vk>[0,1]. Solving

f'(k)= —% <0 and g'(k)=

we see that
+14 4 2 4
2
From (40) and the above discussion, for a > max{ﬁ—k M} > 37
4 2 4k+14 4
we have,

2
(ska)—aak aa?):§(6s2+1)(k—a)<0,0£s£1,0£k£1. (A3.6)

ssk

From (40), we also have
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Q_(s.k,a) =§(2k2 —4ak +2a - 1)s’ +é(4k2 —8ak+6a-3).  (A3.7)

Substituting k=1/2 into (A.3.7), we can show that for

_1/2+151 303
1/2+14 29

4 >max{£—l 1/2+151}

, ~10.448
4 4°12+14

st(S,%,Cl)=§(a—3S2 +1)>0, Vse[0,l]. (A3.8)

Setting k =01n the assumption (41), we have a >max{¥,% :%.

Then, we can show that
Q. (s,0,a)= %(2a ~D(4s>+1)>0, Vse[0,1].

Considering together (A3.6), (A3.8) and Q (s,0,a)>0,Vs €[0,1], we can

conclude that st(s,k,a)>0,Vse[O,%],‘v’ke[O,%]. Next we show that if

%<k£1, then for s¢€]0, %) , Q. (s,k,a)>0 . Next let us show that

AN

Q (s,k,a)<0,‘v’ke(%,1],Vse(0,1]. Differentiating (A3.7) partially by s, we
obtain

Q. (s,k,a)= %(218 —4ak +2a-1)s. (A3.9)

A

Since we can express the part within the parentheses coefficient of s in

(A3.9) as

2k —4ak +2a—1) = (k — (a—1/24/22a*> = 2a +1))(k — (a +1/24/2(2a> - 2a +1)),

we can see that

Q (s.k,a) <0, a—1/2422a> —2a+1), a+1/2:2(2a* —2a+1).

A

Remember that

2
224151 39 K o ysksL>4-24222048219) and
sk+14 4 2 2Ty
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2
g(k)= 2k7+151 is decreasing in k£ . So we evaluate
4k +14
a-1/242Q2a* —2a+1), a+1/2,/2Q2a> —2a+1) at a= 24+ 11541 17 ields
+
”_T V57 0.48439,17+T V257 . 16516, respectively and

V2(1-2a) +2v2a% =24 +1
242a* —2a+1

lim(a —1/24/2(2a> —2a +1)) = %and

V2Qa-1)+2v2a% —2a +1 S0
242a* —2a+1

9 a-12202a" —2a+1)= >0,
da

4 +1/24/2(2a> —2a +1)) =
da

Since we see that

0.48439 < a —1/2:/2(2a* —2a +1) <%< k<l<a+1/2,2(2a> =2a+1),
we can conclude that

2k* —4ak+2a-1<0and Q_ (s,k,a)<0,Vk e (%,1],VS € (0,1]. (A3.10)
Finally, we show that Q (s,k,a)>0,Vs e [0,%],Vk € (0,1]. From (40), we
have

Q (s,k,a) :g(Zk2 —4ak +2a—4)s’ +é(4k2 —8ak +6a—3)s ++%k(2a—k)

(A3.11)

From (A3.11), we have

Q. (0,k,a)= %k(Za —-k)>0,Vk € (0, %]. From this and the fact that
1 1 1 1
Q (s,k,a)>0,Vs e [0,5],‘71{ € [0,5], Q (s,k,a)>0,Vs e [O’E]’Vk € (0,5].

RAN

At one hand, for Vk e (%,1] , Q  (s,k,a)<0,Vk e (%,1],VS €(0,1] from

(A3.10). Hence Q (s,k,a)is concave in s(e(0,1].) ‘v’ke(%,l], On the other

hand, we have
43



1 1
Q, (=, k,a)=—(3k* —6ak +8a —4
(o ka)=72( ak +8a —4)

The two solutions of the quadratic equation of s, 3k> —6ak +8a—4=0 are

given by

a—1/3,33a> -8a+4), a+1/3,3(3a> —8a+4),

where 3a® —8a+4=Q@a—2)(a—-2)>0,a>2+151)/(4+14)=17/2.

Evaluating at a =17/2

a—1/3,3(3a> —8a+4), a+1/3,/3(3a* —8a+4)

yields

51-+/1833
6

=15.636.

51++/1833
6

=1.3644,

33a® —8a+4 —/3(3a—4)
3v3a® —8a+4

lim(a —3,/3(3a> —8a +4)) = % and

3v3a® —8a+4 ++/33a—4) o

3W3a* -8a+4

We see that di(a—l/3\/3(3a2 —~8a+4))= <0,
a

4 ax 1/3433a> —8a+4)) =
da

Hence,

3k* —6ak +8a—4>0,Vk €[0,1],a > 8.5,

Q. (%,k,a) = %(31{2 —6ak +8a—4)>0,Vk €[0,1],a > 8.5. From this

Q. (0,k,a)= %k(Za —k)>0,Vk €[0,1], and concavity of Q_(s,k,a)w.r.t. s,
Q (s,k,a)>0,Vs e [0,%],Vk € (%,1]. In consequent, we can conclude that
Q (s,k,a)>0,Vs e (0,%],Vk €[0,1]. Q, (s,k,a). (A3.12)

(Q.E.D)

Lemma 3
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0Q(s,k,a) -0, 0Q(s,k,a) 50, se [0,1)'
ok Oa

2
[Proof]

Since 0<s5< % must satisfy the first order condition (40),

Q5 k,a) :%[{2(218 —dak +2a -5 + (4k* —8ak + 6a —3)5* +3k(2a—k)s5]-1
= l(2k2 -5 +i(4k2 —-3)5? ELUET S {3(1—2k)§4 +1(3—4k)§2 +lk§}a
9 18 6 9 9 3
=a(5,k)+ (5, k)a =0,

where a(s,k) =é(2k2 -5t +%(4k2 -3)57 —%kZE—l and

P, k)= %(1 —2k)s* + é(S —4k)s* + %k? . Then we can show that

a(5,k) =é(2k2 ~1)5* +%(4k2 —3)5? —%kZE—l

1 1 1
<2 1P-D5*+—4-1"-3)5> ——-1’5 -1
9( ) 18( ) 5
B NS Y
9 18 6
4 2
Gy lyp 2 LU Y
9 92 18 2 48

Since a(s,k)+ f(s,k)a=0 and a> 1?7 >0 however, it follows that

Q,(s,k,a)=p(s,k)>0 . Next we show that Q, (s,k,a) >0 for 0<s<%.

From Young theorem and partial differentiability and the continuity of Q ,
Q,. . (5,ka)y=Q_,(s,k,a). Inthe proof of lemma 2, we have already shown that

2
Q. (s,k,a)<0,0<s<L0<k<l, a>maxfo—k 2k +151, 37 (A3.6).
‘ 4 2 4k+14 ' 4

Hence we also see that

2
Qy(s,k,0)<0,0<5<1,0<k <], a>max{£—ﬁ,u}.
4 2 4k+14

So we see that Q, (5,k,a) is concaveins . From (40) we have

Q, (s,k,a)= %s(k - a)(gs(s2 +1)-1). Therefore, we have for
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2
Vk e[01],a > max o0 — & 2K +151,
4 27 4k+14

Q. (0,k,a)=0,Q (l k a)—l-l(k—a)(i-l(12 +1)—1)—L(a—k)>0
L B R T 322 36 '
Thus we have shown that
Q, (s,k,a) > 0 for 0<s<%. Thus, the lemma holds.
(Q.E.D)

[Proof of Proposition 2]

For the first existence result of the proposition, combining the fact that
Q(0,k,a) =—1<0, the assumption that Q(%,k,a)>0 and that for %<k£1, s €[0, %),
Q (0,k,a)>0and Q_(s,k,a)>0, therefore Q (s,k,a)>0 from Lemma 2, the result

follows.  For the last part of the proposition, we know that for any se]O, %) ,
Q,(s,k,a) >0 from the above. Also we know that Q_(s5,k,a)>0 and Q, (s,k,a) > 0 for

1 T .
0<s<— fromLemma 3. By the implicit function theorem and the fact thatQ (s,k,a) >0

for any se[O,l), a—Sz—Q"(i—’k’a)>O and a—S:—Qk(i—’k’a)>O,O<§<l.
2" Oa Q (s,k,a) ok Q (s,k,a) 2
(Q.E.D)
Appendix 4

In this Appendix, we present the two lemmas and their proofs, also present the proof of

the proposition in section 6.

Lemma4

If ke(k",1)(ke[0, k]), then

Q(%,k,a) > (sw(%,k,a),
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where &’ —4——J_2 0.482188.

[Proof]

We assume that ¢(%,k,a)>0 and Q(%,k,a)>0. The former implies that

39 &k T 2k* +151 .
>— —— and the latter implies that a > —— , respectively.
4 2 4k +14
2
Solving 9 _k = 2k7+151 for k, we obtain k= 415«/ 22 . Obviously we see
4 2 4k+14 4

that k:4+%\/§>1. Let k° _4——J_ 0.482188. We can easily show that for

kel0, k7 (ke ,1]

39 k  2k*+151(39 k 2k*+151
), ———<—|———>—— . So for
4 2 4k+14 4 2 4k+14

kel0, k7 (ke 1]),

Q(%,k,a)>0:>¢(%,k,a)>0 (¢(%,k,a)>0:>§2(%,k,a)>0).
1 1 1 1 .
Q( k.a) > 0= (k) >0 (P k) > 0= Q( k) > 0) imply that

0< Q(%,k, a) < ¢(%,k, a) (¢(%,k, a)> Q(%,k, a)>0), and the result

follows. (Q.E.D)
Lemma 5
2
If max{ﬁ—lk, M} <a, Vke[0,],then
4 27 4k+14

¢s(07k9a) > QS(O,k,a) > 0.
[Proof]

From (A3.6) in the proof of Lemma 2, note that

2
Q (Oka)——k(Za k) >0, 0<k<1a>max{£_§ 2% +151,
27 4k +14

On the other hand, from (12), we have
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& (s.k,a) =%(4k2 — 4k +1)s® + 4k(1 - 2k)s> +§(4k2 —2ak+a —l)s+gk(a—k).

¢S(O,k,a):gk(a—k)>0,%<k£1, a>%7. (A4.2)

Subtracting (A4.1) from (A4.2) yields

1 39 k 2k*+151

(0.k,a)—Q,(0,k,a) = — k(2a - 5k) > 0,Vk € (0,1],a > max {2 — =, 2 F 0,
7.0, k,0) =0, (0, ) = 70 K20 =3k) €Ol azmaxts = )
(QE.D)

[Proof of Proposition 3]

At first, we know that ¢(e,k,a) is convex (concave) in s ][0, %) ,
0<k< %, (% <k< lj from Lemma 1 and Q(e,k,a) is convex in
s € [0,%) , 0<k<1. From (12) and (46), #(0,k,a)=Q(0,k,a)=—-1 holds,

and by the assumptions we have that ¢(%,k, a)>0, Q(%,k,a) >0. We also

see that ¢ (0,k,a)>Q (0,k,a)>0 from Lemma 5. Therefore, if

0<k<k™ < %, then there never exist any intersect points s’of @(s,k,a) and
Q(s,k,a) in se [0,%) such that @(s",k,a)=Q(s°,k,a) since
¢(%,k, a)> Q(%,k,a) >0 from Lemma 4. Thus, we can conclude that
0<s <5< % , if 0<k<k™ <%. (See Figure 2, in which ¢(s,0.3,15)and
€3(s5,0.3,15) are depicted.)

While, if %< k™ <k <1, then there exist a unique intersect point s°of
#(s,k,a) and Q(s,k,a) in se [0,%) such that ¢(s°,k,a) =Q(s’,k,a)
since 0< ¢(%,k, a)< Q(%,k,a) from Lemma 4. At one hand, if

(s’ k,a)=Q(s’, k,a)<0 at the soe(O,%), then we see that
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0<5<s < %under the above conditions stated above. (See Figure 3, in which
#(5,0.95,9.5) and €(s,0.95,9.5) are depicted.) On the other hand, if

(s’ k,a)=Q(s’, k,a)>0 at the SOE(O,%), then we see that

0<s <5< %under the above conditions stated above. (See Figure 4, in which
#(5,0.95,15)and €(s5,0.95,15) are depicted.)

(Q.E.D.)

Figures

¢ (,0.55,11)=0, Solutions : {s=-6. 8435},{s=0.469621, {s=3. 6399},{s=19. 234}

Figure A-1  p(s,0.55,11)
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# (5,0.8,11)=0, Solutions: {s=-2. 9091}, {s=0.43294}, {s=0.88802},{s=5. 5882}

Figure A-2  (s,0.8,11)

@(s,0.3,11)=0, solutions: {s=-1. 4180}, {s=-0.65838-4. 4749i}, {s=-0.65838+4. 4749i},
(5=0.48475)

Figure A-3  (s,0.3,11)
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#(5,0.3,15) : a dotted thin line

€)(s5,0.3,15) : a solid thick line
#(s,0.3,15) = 0, Numerical Solution: s = 0.35384

€(s5,0.3,15) = 0 ,Numerical Solution: 5 = 0.37943

Figure 2 ¢(s,0.3,15), Q(s,0.3,15)
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#(5,0.95,15) : a dotted thin line
€2(5,0.95,15) : a solid thick line
#(s,0.95,15) = 0, Numerical Solution: s = 0.20408

0(5,0.95,15) = 0 ,Numerical Solution: 5 = 0.23493

Figure 3 ¢(s,0.95,15), Q(s,0.95,15)

52



05T

025 T

025 T
05T

075 T

#(5,0.95,9.5) : a dotted thin line
€2(5,0.95,9.5) : a solid thick line
#(5,0.95,9.5) = 0, Numerical Solution: s~ =0.44885

Q(5,0.95,9.5) = 0 ,Numerical Solution: 5 = 0.41939

Figure 4 4(s5,0.95,9.5), Q(s,0.95,9.5)
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