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1 Introduction

The engine of economic growth is presumably one of the central concerns
in economics. Given this fact, there is a so-called endogenous growth lit-
erature that theoretically and empirically identifies the determinant of the
growth rate, providing a number of useful insights that are not addressed
in the classical growth theory.l)

However, most of the endogenous growth models have overlooked the
consequences of strategic interactions among self-interested agents by pre-

suming a representative consumer. To our knowledge, Tornell and Velasco
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1) See, for example, Barro and Sala-i-Martin (2004) and Acemoglu (2008) for up-to-
date textbooks of growth theory.
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(1992) are the first to relax this assumption by combining an AK model
with a differential game. One of their striking findings is that an increase
in the productivity parameter is detrimental to growth since it induces
each consumer to extract the resource stock faster and reduces aggregate
saving. This implies that the conventional wisdom resting on the represen-
tative consumer assumption may not be useful in a seemingly more realistic
case with strategic interactions.?

The results of Tornell and Velasco (1992) are extended in a variety of
directions, e.g., Long and Sorger (2006) and Mino (2006), but all of them
commonly adopt a deterministic model. In view of the reality, neverthe-
less, the stock of fish and forests is subject to uncertain volatilities, and
hence one needs a stochastic framework to model such uncertain situa-
tions. To this end, this paper constructs a stochastic dynamic game model
of growth. While we follow Tornell and Velasco’s (1992) modeling, the
state variable evolves according to a geometric Brownian motion in our
model. Although there are alternative ways to introduce uncertainty, our
model has a advantage since it allows us to find the feedback (Markov
perfect) Nash equilibrium in a closed form, i.e., the equilibrium strategy
is explicitly solvable.?) We demonstrate that Tornell and Velasco’s (1992)
finding above is still valid even in our extended model. That is, their result
holds regardless of the presence of uncertainty. After formally proving this,
we discuss its intuition and implication.

This paper is organized as follows. Section 2 presents a model, and

2) Note that assuming a representative consumer is equivalent to assuming cooper-
ation (collusion) among symmetric players. In this sense, the standard growth
theory is viewed as a special case of a game-theoretic model with inter-player
cooperation.

3) With the same motivation, Wang and Ewald (2010) construct a Fershtman-Nitzan
(1991) model of public good provision that includes a geometric Brownian motion

of the public good stock.
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computes the feedback Nash equilibrium. Section 3 considers the impact
of a technological progress and the degree of uncertainty on the growth

rate in the feedback Nash equilibrium. Section 4 concludes.

2 A Model
We consider a stochastic version of the Tornell-Velasco (1992) model.
There are n > 1 symmetric players that extract a renewable resource stock

4)

x(t) over an infinite horizon.” Thus, the dynamic utility maximization

problem of player ¢ is formulated by

oo 1-6
max E </ e S dt) , 0€(0,1)
e 0 1-0

s.t. do = (am — Zq) dt + oxdw, (1)

j=1

where F is an expectation operator, ¢; is consumption of player ¢, 7 > O is a
discount rate, and dw is an increment of a Wiener process with o denoting
a standard error that measures the degree of uncertainty.®
Following the solution technique of Dockner et al. (2000) and Long
(2010), let us construct a Hamilton-Jacobi-Bellman (HJB) equation of
player :
2,2
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where V;(z) is a value function, and c(z) is a feedback (Markovian) strat-

egy that is chosen by all the other players. The first-order condition

is ci_g = Vi(z), which is inverted to get the optimal consumption level

c(z) = [V’(m)]fl/e.ﬁ) Substituting this into (2), and guessing the value
function V(z) = Az' /(1 — ), we obtain

4) In what follows, the time argument t is suppressed unless any confusion arises.
5) Dixit and Pindyck (1994, Ch. 3) are a useful reference of the geometric Brownian
motion.

6) Subscript ¢ is dropped here since we focus on a symmetric equilibrium.
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To ensure the utility to be bounded, we make:”

x. (3)

Assumption. {2[r — (1 —0)a] +6(1 —0)o”} [L — n(1 —6)] > 0.

Eq. (3) gives the feedback strategy in the Nash equilibrium, which is
made use of to investigate the role of uncertainty (o in our context) in the

next section.

3 Voracity and Growth

This section considers the effect of a technological progress (an increase
in a) on the equilibrium growth rate. Because the feedback Nash equilib-
rium (3) is linear in z, the evolution of z follows dz = gxdt 4+ oxdw, where

g is obtained as
2[r — (1 — 0)a] + 6(1 — §)o? _ 2(a —nr) —nf(1 — 0)o? (1)
2[1 —n(1—6)] 2[1 —n(1—6)]

Thus, the expected value of the solution to the above differential equation

g=a—n

becomes

Elw(t)] = z0e® = 20 exp { 2a = nr) —nb(1 = ‘9)”2t} .

5
2[1 — n(l — 0)] (5)
Eq. (5), which is a straightforward extension of Eq. (4b) in Tornell and

Velasco (1992, p. 1213), leads to:

Proposition. A technological progress (an increase in a) reduces the
growth rate, and an increase in uncertainty (02 ) raises the growth rate

if and only if 1 —n(1—0) < 0.

7) This assumption is just the same as Eq. (5) in Tornell and Velasco (1992, p. 1213).
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Proof. Differentiating g with respect to a and o2 yields

dg 1 dg nd(1 —0)

90 " T-n(i=0) % 302~ Fi-ni-0)] "
under 1 —n(1—6) < 0. ||

The intuition behind this result is as follows. When the production
technology improves, i.e., a rises, stock accumulation is accelerated as a
first effect. Each player optimally responds to such faster accumulation of
the stock by increasing consumption. As a consequence of this collectively
aggressive behavior, stock accumulation is impeded if the number of players
is large enough to satisfy 1—n(1—60) < 0 or equivalently n > 1/(1—0), and
hence growth becomes slower. If, on the contrary, the number of players
is small so that n < 1/(1 — 0), the first effect of increased a dominates the
secondary effect of increasing consumption, which leads to higher growth.s)
In other words, when the negative effect caused by the tragedy of the
commons is larger than the positive effect, saving and stock accumulation
decrease, and we have lower growth. What is worth mentioning is that the
uncertainty term o2 plays no role in this argument. In this sense, it is fair
to say that the finding of Tornell and Velasco’s (1992) deterministic model
has a firm validity.

The effect of an increase in uncertainty (0°) can be interpreted in a
similar way. In a representative consumer model (the case with n = 1),
increased uncertainty positively affects the consumption, and the resulting
over-consumption reduces the growth rate. In contrast, if the number
of consumers is sufficiently large, the more uncertain the change in the
resource is, the less each player consumes. Because this last effect increases

aggregate saving, growth is enhanced by an increase in uncertainty.

8) In the representative consumer model that is reproduced by setting n = 1, higher

a necessarily raises the growth rate.
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To sum, if the number of players is large, the effect of the tragedy of
the commons plays a dominant role in the comparative statics outcomes,
possibly reversing the results that are based on the representative consumer

model.

4 Conclusion

We have reconsidered Tornell and Velasco’s (1992) seminal work that
demonstrates a growth-reducing possibility of a technological progress. It
is revealed that their result is qualitatively valid even in a stochastic game
model. Concretely, in the feedback Nash equilibrium, a technological im-
provement has a negative growth effect if the number of players is large
enough.

Despite the above novelty, there admittedly remains much unexplored.
First, we have extended the simplest version of the Tornell-Velasco (1992)
model with one asset. The continuing validity of Tornell and Velasco’s
(1992) result may come from our adoption of the one-asset model. Tornell
(1999), Tornell and Lane (1999), and Long and Sorger (2006), on the other
hand, use a two-asset model to examine the role of insecure property rights
for growth. Second, it may be possible to allow for a leader-follower struc-
ture of the game as is the main focus of Fujiwara (2012). Third and more
importantly, there are other ways of introducing uncertainty. Dynamic
games with a geometric Brownian motion are so tractable that they are
widely used in the applications literature, e.g., Wirl (2007, 2008), but it
is important to employ another specification of uncertainty with the same
purpose as this paper.”) All of these extensions are beyond the scope of

this paper, but are worth trying as future research agenda.

9) See, for example, Dockner et al. (2000, Ch. 8).
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