人間は「無関係」という関係を学習できるか

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>北口 勝也 ⦃今田 寛</td>
</tr>
<tr>
<td>雑誌名</td>
<td>人文論究</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>号</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/10236/4980">http://hdl.handle.net/10236/4980</a></td>
</tr>
</tbody>
</table>
人間は「無関係」という関係を学習できるか

北口 勝也・今田 寛

1. 序

現代社会は「関係性」を求める社会である。テレビでは連日のようにレポーターが芸能人を追いかけ回し、「あなたと○○さんのご関係は？」とマイクを向ける。そのテレビを家族で見ているお父さん（47）は会社では中間管理職で、現在、上司や部下との人間関係に悩んでいる。更年期障害に悩むお母さん（45）は、ある霊媒師に「あなたの病気は、過去に水子をきちんと供養しなかったことに関係がある」という、犬に無断で高価な壺を買ってしまった。また、来春に大学受験を控えた長男（18）は、志望校の入試に関係のある科目しか勉強しようとしない。一方、中学生の長女（14）は、自分が太っていることと、友達が少ないことに関係があると思いこみ、ダイエットに取り組むが、度が過ぎて拒食症に陥り、挙げ句の果てに登校拒否になってしまっていた。

上にあげた家族のような例は決して極端なケースではない。人間の性向として物事の間に関係性を見出したがるというのはある意味当然のことである。人間は限らず、個体としての生存および種としての存続を目指す生活体は、意図的に、あるいは意図せずに、自らをとりまく環境内の事象間の関係をとらえて最適な行動をとる存在といえる。つまり事象間に「関係性」を見出すということは非常に適応的なことなのである。心理学の中でも、「関係性」に関する研究は、英米の連合論などからの流れから、長い間主流であり続けてきている。しかしながら、その大部分は「関係があること」に関する研究で、「関係がな
人間は「無関係」という関係を学習できるか

一事」とに関する研究はあまり顧みられていない。


一方、心理学全体で見れば、動物を被験体としているのは、学習心理学や生理心理学などごく一部に過ぎない。大部分はヒトという種を被験体として研究が進められている。そこで、人間を対象にした「無関係性」に関する実証的研究に目を転じた場合、伴伴性判断課題（概説として、Allan, 1993；Alloy & Tabachnik, 1984；Shanks, 1993；篠崎, 1994などを参照）や、学習性絶望感現象（概説として、Abramson, Gaber, & Seligman, 1980；Abramson, Metalsky, & Alloy, 1989；大芦・平井, 1992；Peterson & Seligman, 1984などを参照）など、動物を用いた研究に比べれば、「無関係性」に関して高い注目が寄せられてきたといえる。しかし、それらは従来、異なる文脈で語られることが多く、整然とした体系とは言い難い。本稿の目的は、上にあげたような知見を「無関係性事態における人間の行動」という視点から再統合することである。なお、無関係性の研究といった場合、環境側から見た客観的な無関係性と、生活体側から見た主観的な無関係性とが存在。実験に関する変数という観点からは、前者は独立変数であり、後者は従属変数であるといえる。そのいずれもが重要であることはいうまでもないが、本稿では特に前者に焦点を絞り、客観的な無関係性の定義を明確にした上で、その無関係性を被験者に提示した実験を、主に実験事態の構造という視点から整理分類する。
2. 「無関係性」の定義と整理の枠組み

(1) 随伴性の定義

心理学的に学習や行動を研究する領域においては、環境内での事象間の関係性や無関係性を記述する重要な概念として、隨伴性（contingency）という概念が用いられてきた。随伴性とは、一般的にはある変数の変化とそれに伴って変化する変数との関係を表現したものである（鳴崎，1994）。人間を対象とした随伴性判断の実験や動物を対象とした古典的条件づけの枠組みの中では、通常この変量のことを事象と呼び、それぞれの事象は生起・非生起などの弁別可能な状態（これらを値と呼ぶ）を持つと考える。環境内に存在するこのような事象の数は無限に考えられるし、それらの持つ値にも様々なバリエーションが考えられる。しかし、実験実施上の制約などから、通常は2事象2値（生起/非生起）の場合について考えることが多い。

2事象2値の場合の随伴性は、図1の左側に示すように2つの事象のそれぞれの値の共生起の数を表にしたもので、すなわち随伴性テーブルを用いて要約的に表現することができる。また、心理学では事象生起の時間順序で事象間で影響を及ぼしている場合が多いことから、通常は片方向の随伴関係（先行事象Xの結果事象Yに対する随伴性）を問題にすることが多い。そのため、以下の2つの条件つき確率を以て随伴性を定義することが多い(1)。

事象Xが生起した条件下での事象Y生起の条件つき確率：P(Y|X)
事象Xが生起しない条件下での事象Y生起の条件つき確率：P(Y|noX)

これら2つの条件つき確率が等しい場合（P(Y|X) = P(Y|noX)）こそが、本稿で取り上げる「無関係事態」である。図1の右側には、縦軸にP(Y

(1) これら2つの条件つき確率の差（ΔP）を随伴性の指標とする場合もある。その他の随伴性の指標に関しては北口（1996：）を参照のこと。
人間は「無関係」という関係を学習できるか

図1 随伴性テーブルおよび随伴性空間

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>no Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

\[ P(Y|X) = \frac{a}{a+b}, P(Y|\text{no }X) = \frac{c}{c+d} \]

(2) 無関係性実験の分類軸

無関係性実験を分類するための第1の軸として、1つの課題から構成される事態か、接続された2つの課題から構成される事態か、ということを採用する。ここでは前者を1課題単独事態、後者を2課題接続事態と呼ぶことにする。1課題単独事態では、無関係事態に置かれた被験者の反応が、評定、行動指標、生理指標など様々な形で測定される。随伴性判断課題などがその代表である。一方、2課題接続事態では、先行課題における無関係性事態の経験が後続課題における関係事態に及ぼす影響を測定する。代表的なものに学習性絶望感現象がある。ただし、先行課題を関係事態、後続課題を無関係事態にする場合や、いずれの課題とも無関係事態にする場合も可能である（図3および北口、1994を参照(2)）。

第2の分類軸は無関係事態を構成する事象の性質である。本章の冒頭で随伴性の定義を事象間の共変関係と述べたが、この「事象」には大きく分けて2種類が考えられる。まず、ある随伴性条件に置かれている主体自身の反応、次

(2) 北口（1994）では、動物を被験体として用いた学習研究を対象にしていたため、「先行訓練、後続訓練、訓練の接続」という用語を用いている。
人間は「無関係」という関係を学習できるか

図2 無関係事態を用いた研究の分類

に、その主体を取り巻く様々な外的刺激である。自らの反応の間の随伴性ということは考えにくいので、「2つの事象が無関係」といった場合には、「反応と外的刺激とが非随伴であるような事態」と「外的刺激同士が非随伴であるような事態」という2種類が考えられることになる。このような区別は、人間を対象とした研究ではあまり注意されていないが、動物を被験体とした学習心理学研究では「オペラント条件づけ」と「古典的条件づけ」という用語で厳密になされている。動物実験における無関係事態を分類した北口（1994）に準じて、前者をR-S*無関係事態、後者をS-S*無関係事態と呼ぶことにする。

以上の2つの分類軸によって、無関係事態を図2に示される4種類に分類することができる。それぞれのセルには代表的な実験パラダイムが記されてい る。第3章から第6章にかけては、それぞれについて具体的な概説を行う。

3. 1課題単独事態／R-S*無関係事態

（1）随伴性判断課題における非随伴条件

1課題単独事態／R-S*無関係事態の代表は、随伴性判断課題における非随伴条件である（Abramson & Alloy, 1980; Allan & Jenkins, 1980, 1983; Alloy & Abramson, 1979, 1982; Baker, Berbrier, & Vallee-Tourangeou,

（3）S*は学習心理学の領域において「生物学的に重要な刺激」を意味する記号であるが、ここでは結果事象の意味で用いている。

例えば、Shanks（1985）は、被験者に新しく開発された砲弾の有効性（砲弾の発射（X）と戦車の爆発（Y）との随伴性）を判断させるという課題を与えた。その際、被験者はボタンを押すことによって砲弾を発射させることができた。被験者内要因計画で、正の随伴性条件（P(Y | X) = 0.75, P(Y | noX) = 0.25）、負の随伴性条件（P(Y | X) = 0.25, P(Y | noX) = 0.75）、結果事象の生起頻度が異なる2種類の無関係条件（P(Y | X) = P(Y | noX) = 0.75, P(Y | X) = P(Y | noX) = 0.25）が設定された。その結果、正および負の随伴性条件では、実際に経験した随伴性にほぼ等しい判断が得られたが、2種類の無関係条件では実際の随伴性から逸脱した評定値が得られた。被験者は、結果事象の密
度が高い無関係条件では正の随伴性があるかのごとく判断し、逆に低い場合には負の随伴性があるかのごとく判断したのである。さらに彼の実験では、5試行毎の評定の推移を検討しており、その結果、結果事象の密度が低い場合の無関係事象において見られる正のバイアスは、試行の進行と共に消失し、最終的にはほぼ正確な無関係性の認知ができることが示された。

一方、無関係事象では判断のバイアスが見られず、正確な随伴性認知が行われるという結果をWasserman et al. (1993)が報告している。彼らの実験では、被験者は目前のキーを押すこと（X）とライトが点滅すること（Y）との随伴性を判断するよう求められた。被験者内要因計画で、P(Y|X)とP(Y|noX)がそれぞれ0.0, 0.25, 0.5, 0.75, 1.0であるようなすべての組合わせ、すなわち25通りの随伴性条件が設けられた。したがって本稿で問題にしている非随伴条件は、P(Y|X) - P(Y|noX)の組合わせが0-0, 0.25-0.25, 0.5-0.5, 0.75-0.75, 1.0-1.0という5通りである。実験の結果、これら5通りの非随伴条件ではバイアスは見られなかった。このような実験間の結果の違いについては、随伴事象の提示方法（Baker, Bertrand, & Vallee-Tourangeau, 1989）、判断時に用いるスケールの違い（Neunaber & Wasserman, 1986）、被験者による「評定」を従属変数とすること自体の問題点（Chatlosh et al., 1985）などが指摘されている。

(2) 統制の錯覚（illusion of control）

は全く逆の現象といえる。すなわち、無関係事態に置かれた場合、LH 現象では無関係性が正しく学習されてしまって様々な障害をもたらすのに対し、「統制の錯覚」では無関係性が正しく学習されず、自らの反応の有効性が依然として信じられているのである。Alloy & Abramson (1988) はこの対比に注目し、抑うつ者の無関係性認知の正確さを “depressive realism” と表現した。LH 現象は抑うつのモデルとされていたため、無関係性認知のマイナス面のみが強調されていたが、彼らの研究の意義はそのプラス面での重要性を指摘したことにある。

(3) 迷信的行動 (superstitious behavior)

Skinner によって創始された実験的行動分析と呼ばれる領域では、被験体（者）の反応は無関係に強化子を提示した場合にも反応率が上昇するという「迷信的行動」が研究されてきた (Bruner & Revusky, 1961; Catania & Cutts, 1963; Herrnstein, 1966; 小野, 1990; Skinner, 1948; Staddon & Simmelhag, 1971)。

例えば、Wagner & Morris (1987) は、幼児を被験者として、人形の口から出てくるおはじき（後におもちゃと交換できる）を反応とし無関係に提示した。その結果、数人の被験児は、人形の顔の前でしかめ面をする、人形の顔や体に触れ、鼻にキスをする、口をすぼめる、笑う、鼻に触る、腰を振る、などの迷信的行動を示した。これらの行動は偶然的強化が原因の一つであると考えられるが、強化間の時間を過ごすための中間反応であると説明する立場もある (Staddon & Simmelhag, 1971)。

(4) 統制可能性とストレス

後述する学習性絶望感現象からの研究の流れを受け、R-S*無関係事態はストレスと関連させて論じられることが多い。その場合、「統制可能性 (controllability)」という用語がよく用いられるが、近年、主観的な統制可能性を表現するのに「コントロール」という用語が用いられることもある (Steptoe &
Apple, 1989)。統制可能性の欠如が生活体にストレスを与えることについては、生理的な覚醒水準 (Geer & Maisel, 1972), 内省や質問紙による感情評定 (Gatchel, Paulus, & Maples, 1975; Miller & Seligman, 1975), 認知的な課題 (Glass, Reim, & Singer, 1971; Reim, Glass, & Singer, 1971) など様々な指標を用いて明らかにされている。

4. 1 課題単独事態／S-S*無関係事態

(1) 随伴性判断課題における非随伴事態

随伴性判断について実験を行っている研究者の中でも, Dickinson や Shanks などは，動物実験を用いた古典的条件づけとのアナロジーで考察を進めている。しかしながら，古典的条件づけで問題となるのはいわゆる「刺激間の連合」であるにもかかわらず，ある随伴条件の下で提示される２種類の刺激を単に観察させ，随伴性を評定させるような実験は少ない。ただし，このような S-S*無関係事態の下でも前述した無関係事態におけるバイアスが観察されている（北口・堀崎・今田, 1997; Shaklee & Mims, 1982; Tomarken, Mineka, & Cook, 1989; Ward & Jenkins, 1965）。

古典的条件づけの場合，随伴性判断においても先行事象や結果事象の性質は重要な要因の一つである。北口・堀崎・今田 (1997) は，結果事象の感情価に注目し，低周波治療器からの嫌悪刺激を結果事象とした場合と，コンピュータのビープ音（中性刺激）を結果事象にした場合とを比較した。ディスプレイ上に現れる警告刺激とその後に到来する結果事象との間の随伴性を評定させた結果，嫌悪刺激を用いた場合にのみ，無関係事態における顕著なバイアスが観察された。また，Tomarken, Mineka, & Cook (1989) は先行事象の感情価に注目し，電気ショックに先行するクモやヘビなどの写真（恐怖関連刺激）と花やきのこ等の写真（恐怖無関連刺激）との間の随伴性を評定させた。その結果，恐怖関連刺激を用いた場合の方が無関係事態における正のバイアスが大きいことが明らかにされた。
(2) 古典的条件づけにおける TRC 手続き


(3) 予測可能性と不安

上記の古典的条件づけの実験のように、US として嫌悪刺激が用いられる場合、ベースラインにおける情動水準にも変化が生じることが指摘されている（今田、1975）。すなわち、CS が US と無関係に提示されるような事態では、被験者は嫌悪刺激の到来を予測することができず、絶えず不安におびえることになるというのである。この問題は「予測可能性（predictability）」と呼ばれる概念で記述されており、その欠如が様々な不適応を生むことが指摘されている（Alloy, Abramson, & Kossman, 1985；Mineka & Kelly, 1989）。

5. 2 課題接続事態／R-S*無関係事態

学習性絶望感現象

学習性絶望感現象（Learned Helplessness；LH 現象）は、Seligman らによって、当初、動物実験を中心に報告された現象である（Overmier & Seligman,
1967; Seligman & Maier, 1967)。典型的な実験では、嫌悪刺激からの逃避が不可能な事態、すなわち反応と嫌悪刺激とが無関係な事態にさらされた被験体は、後に逃避が可能な事態に置かれても逃避反応の獲得が困難なことが示された。この現象は当初イヌを用いた実験で明らかにされたが、その後、ネコ、ラット、マウス、トリ、サル、サカナ、ゴキブリなど、様々な種において確認され(Seligman, 1975), Hiroto (1974) の研究を契機に、人間行動への拡張が行われるようになった。

Hiroto (1974) の実験では、大学生を被験者にして、先行課題では目前にあるボタンを示しながら、「イヤホンを通して時々大きな音が聞えてくるが、それを止める手だてはある」とだけ伝えた。逃避可能群ではボタンを押すと音は停止したが、逃避不可能群ではボタン操作の如何に関わらず、音が停止したり、逆に鳴り放しの状態が続いた。これらは 30 試行にわたって繰り返されたが、統制群の被験者はいずれの試行も経験しなかった。後続課題ではレバーが示され、「不定期に大きな音がするが、それを止めさせることはできる」とだけ伝えた。いずれの群の被験者にとっても、レバーを一方の端からもう一方の端まで移動させれば音を止めることができたが、逃避不可能群は他の 2 群に比べてその逃避反応の獲得が遅れた。


6. 2 課題接続事態／S-S*無関係事態

動物実験を中心にした学習心理学の中での 2 課題接続事態／S-S*無関係事態は、「学習された無関係性」現象 (learned irrelevance; Mackintosh,
人間は「無関係」という関係を学習できるか

<table>
<thead>
<tr>
<th>前行訓練</th>
<th>S - S*</th>
<th>R - S*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S - S*</td>
<td><img src="image" alt="图示" /></td>
<td><img src="image" alt="图示" /></td>
</tr>
<tr>
<td>S+ → S+</td>
<td>R0 → S+</td>
<td>R+ → S+</td>
</tr>
<tr>
<td>S- → S-</td>
<td>R0 → S-</td>
<td>R- → S-</td>
</tr>
<tr>
<td>S0 → S0</td>
<td>R0 → S0</td>
<td>R0 → S0</td>
</tr>
</tbody>
</table>

図3 北口（1994）による無関係事態に関連した2課題接続事態の分類

1973年（北口・今田、1996）に相当すると、人間を対象にした研究にはこのような事態を用いた研究が見られない。北口（1994）は、事象の性質と隨伴性という2つの基準によって動物実験における2課題接続事態を、図3に示されたような20通りに分類したが、人間を対象にした研究でこれまで実験が行われているのは、前章のLH現象（R0→R+に當たる）などほんの一部に過ぎない。今後、「無関係性」を中心に活発な研究が待たれる実験事態であろう。

7. 今後の展望

無関係事態を用いた心理学的知見を概観した結果、人間は「無関係」という関係を学習できるか？という問いには、「できる」と答えてよいであろう。ただし、それは「動物は「無関係」という関係を学習できる」（北口、1994、1996 a；北口・今田、1996）という言明とはやや意味が異なる。例えば、動物の古典的条件づけにおける「無関係性」学習は、CS-US無関係事態を経験した被験体が示す後続学習の遅れ（Mackintosh, 1973）によって特定
人間は「無関係」という関係を学習できるか

される。対照的に、本稿で取り上げた前研究に共通して見られるのは、被験者自らの「無関係性」に関する「信念（belief）」あるいは「気づき（awareness）」の存在である。これらの存在は、被験者による評定そのものを従属変数とする遮断性判断課題ではいうまでもないことであるが、2課題接続事態を用いたLH現象でも、説明概念として「反応－結果間の無関係性に関する予期」が導入されている（Maier & Seligman, 1976; Abramson, Seligman, & Teasdale, 1978）。つまり、人間は「無関係」という関係を言語化できる（意識上上の）レベルにおいて学習することができると結論することができるだろう。もちろん、条件によってはその学習が困難であったり不正確になったりする場合もあることも事実である。

ここで、無関係性学習を顕在的過程と潜在的過程に分離して考えてみる。人間を研究対象とする場合、「言語化できる過程」あるいは「意識上上の過程」が顕在的過程であり、その逆の「言語化できない過程」あるいは「意識上上のない過程」が潜在的過程であると考えのが妥当であろう（下条, 1996)。一方、動物を対象とする場合は、「行動化できる過程」が顕在的過程で、「行動化できない過程」が潜在的過程であろう。このような分離を行うことで、人間を対象とした無関係性研究と動物を対象とした無関係性研究にどのような違いがあるのかが理解しやすくなる。2課題（訓練）接続事態において、動物を対象とした研究では、先行訓練で行動化されなかった過程が後続訓練に影響を及ぼすことをもって無関係性学習の証拠としているのに対して、人間を対象とした研究では、先行課題ですでに言語化されている過程が後続課題に及ぼす影響を測定しているのである。言い換えれば、動物を対象とした研究では、2課題（訓練）接続事態が無関係性学習の潜在的過程を検証するパラダイムとして機能しているのに対し、人間を対象とした研究ではそのような機能は果たされていないということである。

もちろん、本稿で取り上げたLH現象に関連する研究に意味がないわけではない。無関係性学習の顕在的過程が人間にどのような影響を及ぼすのか、ということを明らかにしてきたことは大きな意義がある。その重要性とは別
に，本稿の終わりに無関係性学習の潜在的過程も研究する価値があることを強
調しておきたい。現時点では仮説に過ぎないが，無関係性学習の顕在的過程で
はトップダウン的あるいは概念処理型処理が優勢になり，潜在的過程ではポト
ムアップ的あるいはデータ処理型処理が優勢になることも考えられる。このよ
うに考えれば，例えば随伴性判断課題における随伴情報の提示方法による結果
の違いなども，随伴性テーブルによる要約提示の場合は顕在的過程で処理さ
れ，分離型試行による継時提示の場合は潜在的過程で処理される，という説明
も可能であろう。

しかしながら，現段階では人間においては無関係性学習の潜在的過程がほと
んど研究されていないという問題点を指摘したに過ぎない。その潜在的過程で
はどのような処理が行われているのか，顕在的過程との違いはどのようなもの
なのか，動物における潜在的過程とどの程度の共通性を持つのかなど，検討す
べき問題は山積している。今後は，別の領域ですでに確立されている潜在的過
程研究の手法や知見を取り入れながら研究を進めるべきであろう。例えば，ブ
ライミングやネガティブ・プライミング，注意研究における失効利得法などが
参考になるかも知れない。また，潜在的ゆえに神経科学的なアプローチも有効
であることだろう。いずれにしても道はまだ始まったばかりである。

References
their implications. In A. Baum, & J. E. Singer (Eds.), Advances in environ-
mental psychology. Hillsdale, NJ: LEA.

Abramson, L. Y., Gaber, J., & Seligman, M. E. P. (1980). Learned helplessness
in humans: An attributional analysis. In J. Gaber, & M. E. P. Seligman
(Eds.), Human helplessness: Theory and applications. New York: Aca-
demic Press. Pp. 3-34.

Abramson, L. Y., Metalsky, G. I., & Alloy, L. B. (1989). Hopelessness depres-
sion: A theory-based subtype of depression. Psychological Review, 96, 358-
372.

Abramson, L. Y., Seligman, M. E. P., & Teasdale, J. D. (1978). Learned help-
lessness: Critique and reformulation. Journal of Abnormal Psychology,


Benson, J. S., & Kennelly, K. J. (1976). Learned helplessness: The result of


Glass, D. C., Reim, B., & Singer, J. R. (1971). Behavioral consequences of adaptation to controllable and uncontrollable noise. *Journal of Experimental So-
cial Psychology, 7, 244-257.


Psychological Record, 37, 471-488.


——北口 勝也 大学院文学研究科研究員——

——今田 寛 文学部教授——