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Abstract 

 The overall aim of this study is to develop a new technology to study seaweeds for the 

improvement of aquaculture productivity. Indonesia is one of the top producers of seaweed in the 

world. The red macrophytic alga, Kappaphycus alvarezii is the main source seaweed for the 

industrial production of kappa type carrageenan. The quality of seaweed harvests has become 

paramount to obtaining good quality of carrageenan. A good quality of seaweed K. alvarezii 

containing about 40-50% of carrageenan. However, instability of environmental conditions may 

make it difficult to produce good quality carrageenan. Furthermore, harvests are often limited by 

seaweed diseases, one of the major problems in seaweed farming. Ice–ice is the most famous 

seaweed disease caused by bacterial pathogens. Ice–ice disease causes whitening of algae thallus 

and leads to fragmentation and eventually loss of biomass. Bacterial infection in the algal body 

often involves degradation of algal storage compounds by bacterial enzymes. To monitor and 

investigate the bacterial infection in seaweed body, low cost and effective analytical tools are 

needed. In this study, we demonstrated the ability of combining Raman spectroscopy with 

chemometric analysis to investigate infective enzymatic activities in seaweed body. A low cost 

Partial Least Square Regression (PLSR) model with reduced number of test samples was 

successfully achieved for quantifying the enzymatic reaction mixture with substrate and product 

in the alfa-amylases activity. In order to qualify of seaweed harvest, imaging Raman spectroscopy 

(iRs) was successfully used to observe carrageenan content in three different hierarchies of 

seaweed branches. Furthermore, low cost PLSR model and iRs were successfully used to 

investigate the carrageenan degradation activities of infected K. alvarezii by measuring the 

decrease in carrageenan content, as a substrate in bacterial enzymatic reaction. From this study, it 

can be concluded that iRs combined with chemometric analysis is a powerful tool to monitor 

conditions of seaweed quality. 
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Introduction 

Background  

 The general purpose of this study is to develop a new research technology to study reactions 

in marine algae and interactions between the algae and bacteria, which cause seaweed disease. The 

development of an accurate and effective technique was motivated in order to solve the problems 

in seaweed farming caused by the effect of the surrounding environment, such as bacterial 

infection.  

 Indonesia is one of the top seaweed producing countries in the world with the national 

seaweed production capacity up to 10 million tons in 2014 (FAO, 2016). Red algal seaweed K. 

alvarezii is an abundant and important commodity in Indonesia (Ask, 2001). Indonesia is a tropical 

archipelago that has many potential areas for seaweed farming. There are four largest seaweed 

farming areas in Indonesia: Karimujawa, Sulawesi, Bali, and Sumba (Soegiarto and Sulustijo, 

1990; Manuhara et al. 2016). Seaweed K. alvarezii is a major source of industrial use of kappa 

type carrageenan.  

Carrageenan  

Carrageenan is a sulfated linear polysaccharide accumulated in Rhodophyceae (Normah 

and Nazarifah, 2003). The kappa carrageenan consists of D-galactose-4-sulfate and 3,6 anhydrous 

D-galactose residues linked with the β (1,4) and α (1,3) carbon bonds. Sulfate accounts for about 

20%–35% of the molecular weight (fig. 1; Lechat et al. 1997; campo et al. 2009; Necas and 

Bartosikova, 2013; Rhein-Knudsen 2015; Cunha and Grenha, 2016). Kappa carrageenan possesses 

a strong gelling property, which is reversibly liquefied depending on the temperature, and is one 

of the valuable materials required for dairy and other products (Distantina et al. 2011).  The 



5 

 

molecular structure of carrageenan is at high temperature akin to a random coil, but at a low 

temperature adopts a helical structure while in the presence of potassium at the low temperature, 

it will form aggregation of helices (fig. 2) (Rhein-Knudsen et al., 2015).  

Advantages of carrageenan 

Carrageenan has many useful properties in several biological and industrial applications. 

Carrageenan plays important biological roles in immunomodulatory, anticoagulant, antithrombotic, 

antiviral, and antitumor responses (Necas and Bartosikova, 2013). Carrageenan has been used for 

anti-inflammatory in rat paw edema (Sugishita et al. 1981; Henriques et al. 1987; Jain et al. 2001; 

Paschapur et al. 2009; Petersson et al. 2001; Sini et al. 2010). Carrageenan is a sulfated 

polysaccharide with the ability to function as an anticoagulant due to the sulfate content 

(Shanmugam and Mody, 2000). Furthermore, Carrageenan was also reported to be a selective 

inhibitor of several enveloped viruses, including human pathogens, such as human 

immunodeficiency virus (HIV), herpes simplex virus (HSV), human cytomegalovirus, human 

rhinoviruses, and others (Girond et al. 1991; Marchetti et al. 1995; Carlucci et al. 1999; Caceres et 

al. 2000; Zacharopoulos and Phillips, 1997; Stiles et al. 2008).  In the industry, carrageenan has 

been widely used as a gelling, stabilizing, and thickening additive in food, cosmetics, and industrial 

pharmacy products. Especially in the food and pharmaceutical industries, carrageenan has been 

applied for cell immobilization in a fermentation batch reactor (Asanza-Teruel et al. 1997; Nigam, 

2000). Finally, carrageenan is used in air freshener gels, toothpaste, firefighting foam, shampoo, 

cosmetic creams, and shoe polish (Necas and Bartosikova, 2013). Due to all these properties and 

functions, carrageenan is of high demand in many industries with the annual global market of 

carrageenan was up to 762.35 million USD in 2013. 
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Problem in seaweed farming 

Since the cost of the production of carrageenan depends on the yield from the algal body, 

the quality of the seaweed simply refers to the yield of carrageenan, which is usually about 50% 

in dry weight of the seaweed. The production efficiency and carrageenan distribution in the algal 

body have not been studied in detail yet. Besides, instability of environmental conditions remains 

an uncontrollable factor for carrageenan production, i.e., temperature, pH, salinity, and, 

importantly, disease. The seaweed disease is one of the formidable problems in seaweed plantation. 

“Ice–ice” disease is the most famous seaweed disease caused by a bacterial pathogen. Ice-ice 

disease leads to a characteristic whitening and softening of the infected part of the algal body and 

causes fragmentation of the plant (Mendoza et al. 2002). Environmental conditions play important 

roles in the infection of bacterial pathogen in seaweed farming (Case et al. 2011).  

Global warming is the most critical environmental issue imposing significant negative 

effects on aquaculture (Harley et al. 2012). Increasing global concentrations of atmospheric CO2 

making glass house effects that affect increasing seawater temperature and marine acidification 

(Wootton et al. 2008, Harley 2011). Brown (1995) reported that increasing temperature and 

salinity suppress the growth of the algal body and carrageenan production in seaweed Solieria 

chordalis. This is due to the alteration in ocean conditions, which leads bacterial infection of the 

seaweed, especially during mass farming in a plantation. Decreasing seaweed production in the 

Philippines is due to ice-ice disease, as reported by Largo et al. (1995). The Ice-ice disease causes 

loss of the seaweed thallus stimulating cell wall degradation by enzymes produced by bacterial 

pathogens (Distel et al. 2002; Weiner et al. 2008). Bacteria belonging to the genera Vibrio, 

Alteromonas, Cytophaga, Flavobacterium, and Pseudoalteromonas produce enzymes capable of 

depolymerizing polysaccharides (Goecke et al. 2010). Bacterial interaction on seaweed body was 

facilitated by bacterial quorum sensing (QS) system such as biofilm formation, bioluminescence, 
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secondary metabolite production, motility, and virulence functions (Atkinson and Williams, 2009).   

On the other hand, many studies have reported that seaweed produces QS inhibitors to interrupt 

communication circuit in bacteria resulting inhibition of gene expression and colonization 

phenotype (Gonzalez and Keshavan, 2006). The ability to overcome bacterial pathogen 

interference, macroalgae produce QS inhibitor such as: hypobromus acid produced by brown 

macrolaga that able to interferes with QS regulated  gene expression by deactivating acylated 

homoserine-lactone (AHL) signal; halogenate furanones from red macroalga Delisea pulchra, 

which act as AHL  signal and inhibit gene expression; betocinine, floridoside and isethionic acid 

produced by Ahnfeltiopsis flabeliformis, which can modulate gene expression by competing AHL 

signal (Egan et al. 2014) 

Study of seaweed with vibrational spectroscopy 

 A rapid and effective analytical tool is necessary to study the process occurring during 

bacterial invasion into the algal body in order to control bacterial infection on seaweed. The 

problems and the current situation in this research field motivated me to apply vibrational 

spectroscopy to investigate enzymatic reaction in seaweed body. Vibrational spectroscopy has a 

several advantages, such as being non-destructive, environmental friendly, requiring minimal or 

no sample preparation, and short period of time measurement (Teixeira dos Santos et al. 2016). 

Vibrational spectroscopy observes interactions between the vibrational motions of a molecule and 

photons irradiated towards the molecule. The vibrational modes of the molecule is observed by 

infrared (IR), near-infrared (NIR) and Raman spectroscopies (Ferraro et al. 2003). IR spectroscopy 

is a form of absorption spectroscopy, which follows the Beer-Lambert law. In contrast, Raman 

spectroscopy measures scattered light energy, which does not follow the law (Ferraro et al. 2003). 

Seaweed and carrageenan has been extensively studied using vibrational spectroscopy. For 
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example, infrared spectroscopy was applied for characterizing carrageenan in 1968 by Anderson 

et al. while Raman spectroscopy was utilized for the same task 20 years later by Malfait et al. in 

1987. The studies were made on extracted and purified carrageenan molecules. IR and Raman 

spectroscopies were applied for the characterization of chemical contents in several types of dried 

and grounded seaweed by Pereira et al. (2009, 2011, and 2013) and Rodrigues et al. (2015). Of 

particular interest is that de Vega et al. (2017) studied the distribution of carrageenan in fresh algal 

body by fluorescent microscopy by labeling carrageenan with fluorochrome. However, this 

labeling method is difficult to apply to the quantitative analysis of bacterial degradation of 

carrageenan, because it is quite difficult to make perfectly homogeneous staining of the pigment 

of the inhomogeneous algal body.  

The limitation of vibrational spectroscopy for plant sample 

The application of IR and Raman spectroscopies has some limitations for fresh plant 

materials (Gierlinger and Schwanninger, 2007). IR and NIR spectra have a strong interference 

from water as water has strong absorption bands all over the spectral area due to its large dipole 

moment. In contrast, Raman spectroscopy has low interference of water in the sample, which gives 

a large advantage in its application of characterizing biological samples. The major disadvantage 

of Raman spectroscopy is the inherent fluorescence of photosynthetic pigments, such as 

chlorophyll and carotenoids, existing in the plant body. Chlorophyll and carotenoid are usually 

abundant in plant samples and are part of the light-harvesting proteins of photosynthetic organisms 

(Kish et al. 2016). Their fluorescence is often observed in the Raman spectra, when the energy of 

excitation light is greater than the transition energy between the lowest electronic levels. The 

scattering cross-section of Raman scattered light is less than 10-7, which is smaller by 5 to 6 orders 

of magnitude than that of fluorescence. 
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 A resonance enhancement effect is another issue created by the presence of the 

photosynthetic pigments. The resonance effect is often observed when the wavelength of excitation 

laser is within or close to the electronic absorption band. The order of the enhancement is up to 

103-105 (Ferraro et al, 2003). The strong resonant bands can overwhelm the bands of interest, in 

this case the plant body materials. The resonance Raman effect was widely used to study natural 

pigments (Sato et al. 1995a, 1995b; Ruban et al. 1995; Kish et al. 2016). The natural pigments of 

biological samples were studied using several different excitation lasers, for example 488 nm for 

carotenoid, 441.6 nm for chlorophyll a and b, and 413.1 nm for chlorophyll a and carotenoid 

(Ruban et al. 1995).  

The fluorescence effect is often observed when a visible laser is used, but a NIR light is 

able to reduce the fluorescence effect. An application of 1064 nm laser combined with a Fourier-

transform spectrometer allowed the avoidance of fluorescent interference. The technique was 

referred to as near infrared Fourier Transform (NIR-FT) Raman spectroscopy and applied to plant 

samples (Hirschfeld Chase, 1986; Sato et al. 1995a; 1995b). Use of NIR-FT Raman spectroscopy 

has several disadvantages, i.e., lowering in spatial resolution, low sensitivity, and thermal emission 

effect (Schrader et al. 1991). In the present study, Raman spectroscopy imaging combining with 

chemometrics analysis was used to investigate enzymatic polysaccharide degradation activity in 

the algal body in spite of the challenge of the fluorescence effect from such samples. 

Chemometric Analysis 

 Chemometrics is aimed at extracting relevant chemical information out of the 

measurements by employing various statistical algorithms to all types of analytical data. However, 

Raman spectroscopy is rarely applied for quantitative analysis because it is quite difficult to obtain 

the absolute intensity of a signal. Unlike IR and NIR spectroscopies, the spectral intensity of a 
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Raman spectrum depends on many factors, such as laser power, focal distance from the sampling 

point, and optical throughput of the Raman spectrometer. IR and NIR spectroscopies are forms of 

absorption spectroscopy in which the Beer-Lambert law is applied for the quantitative analysis. 

Chemometric analysis in Raman spectra is achieved by so-called spectral processing. Processing 

of spectra normally consists of minor manipulation, such as smoothing, averaging, mean centering, 

baseline removal, zeroing baseline, and normalization (Ferraro et al, 2003). However, in the case 

of imaging Raman spectroscopy that produces about 10.000 to 100.000 spectra within one sample, 

this seems difficult to analyze. In this study, I have employed and improved several spectral 

processing techniques to overcome this problem. New spectral processing software has been 

developed for interpolation, background subtraction, baseline correction, and internal standard 

normalization with MatLab R2007b (The Mathwork, Inc, US). The interpolation process increases 

number of sampling points by adding artificially calculated data using polynomial fitting. The 

background subtraction removes unnecessary spectral interferences due to water, glass dish, stray 

lights, and so on, from the raw data. As mentioned previously, auto-fluorescence often observed 

from natural pigment in biological samples. To remove interference due to the baseline undulations 

by the auto-fluorescence, dark current of the charge-coupled device (CCD) detector, and other 

instrumental noise, a sixth order polynomial curve fitting method is applied. In order to compare 

spectral intensity from one sample to another, internal standard normalization is applied. In 

absorption spectroscopy, many normalization techniques have been reported, including vector 

normalization, min-max normalization, and multiplicative scatter correction (Bag et al. 2011). 

Unfortunately, it is impossible to apply most of those techniques because the Beer-Lambert law is 

not applicable to emission spectroscopy methods, such as Raman spectroscopy. I have applied a 

normalization technique using a single major sharing band, which is due to a well-known material 
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in the sample as a standard. Therefore, the quantitative analysis in the present research is semi-

quantitative analysis in which the concentration of the target material is relative to the material 

that corresponds to the standard band. 

Partial Least Square Regression (PLSR) analysis is a qualitative technique often used in 

the present study, as it is more robust than other least square methods, such as classical least square 

(CLS) analysis. The PLSR analysis requires a number of test samples to create a calibration curve, 

but it is stable against perturbations and noise in Raman data and therefore especially suitable for 

data obtained from biological samples. The PLSR analysis is a technique used to obtain the most 

suitable calibration model to fit both the X- and Y-matrices simultaneously by selecting latent (or 

hidden) variables in X, which gives best prediction of the latent variables in Y (Wold et al. 2001). 

The model were made from the most significant component extracted from all data set of Raman 

spectra. Cross Validation were employed to test the predictive significance and determine the 

number of components (Wold et al. 2001).   Unlike the CLS method that requires full knowledge 

of all components in the test samples of the measured system, the PLSR method can work with 

only knowledge of the substance or material of interest (Nadler and Ronald, 2005). On the other 

hand, to make a robust quantitative analysis using PLSR method, a huge number of test samples 

are required to build PLSR model due to a complex multicomponent system in the sample (Nadler 

and Ronald, 2005).  

Synopsis of the work described in each chapter of the thesis 

 This study consists of three chapters. The aim of this research was to develop a new 

analytical technique to improve aquaculture production. In the chapter 1, I will demonstrate a 

robust and low cost quantitative analysis to monitor a starch degrading enzyme reaction. 

Decreasing the number of PLSR model is my strategy to lower the cost of the analytical technique. 
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Using PLSR is usually regarded as an irregular procedure, as it may reduce the reliability of the 

quantitative model. I have found that the selection of the band area in the Raman spectra is able to 

improve the prediction model, because of its increasing specificity even with a small number of 

the test samples.  

Amylase enzymes are used in this study because of their simple enzymatic functions. 

Amylase hydrolyzes the common amylose into small sugars, such as maltose and glucose. 

Enzymatic components in amylase system (starch, maltose and glucose) have simple Raman 

spectra. The selected enzymatic system is my strategy to study the activity in the algal body, 

because, Raman spectra of seaweed K. alvarezii also consists of relatively simple components. 

The ability of Raman spectroscopy to analyze the speed of enzymatic reactions in a cell-sized 

volume is discussed. 

 In chapter 2, the morphology and carrageenan distribution of K. alvarezii was studied with 

3 dimensional (3D) Raman image technique to obtain basic knowledge of carrageenan production 

in the algal body. Good quality K. alvarezii contains about 40-50% of carrageenan in dried weight. 

Imaging Raman spectroscopy combined with PLSR analysis was employed to predict the 

concentration of carrageenan in algal body. The PLSR model was built using only 11 test samples 

following my previous study (chapter 1). The hyperspectral images consist of a number of Raman 

spectra that was measured at several thousand sampling points in the sample. The sampling points 

were aligned with several 50 to 250 μm intervals in the X-, Y-, and Z-axis in the measured area. I 

demonstrate the potential of the 3D Raman image in the investigation of distribution and 

concentration of carrageenan in the algal body. The issue of fluorescence interference is overcome 

by reducing the naturally occurring pigments by photo-degradation during the sun-drying 
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procedure of the seaweed. The concentrations of rich and poor carrageenan branches of K. alvarezii 

were described in this chapter. 

 In chapter 3, the techniques developed in chapters 1 and 2 were evaluated with practical 

samples. The enzymatic activity was studied in seaweed body during the decomposition due to 

microorganisms. I searched a naturally decomposed K. alvarezii sample to collect bacteria having 

an enzyme to decompose carrageenan. The bacteria were selected by culturing in a low nutrient 

environment with carrageenan as the sole source of carbon to find bacteria producing a crude 

external enzyme. The degradation process of the algal body by the bacteria was then studied with 

the developed techniques, in which decomposition of carrageenan was quantitatively investigated 

in order to estimate the process of bacterial invasion and decomposition the algal body. 
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Fig 1. Chemical structure of monomer unit in kappa (κ)-carrageenan. 
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Fig 2. Phase transition of κ-carrageenan into three gel structures (Rhein-Knudsen et al. 2015). 
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Chapter 1 

Development of Quantitative Analysis Techniques for Saccharification Reactions Using 

Raman Spectroscopy 

Abstract 

A low cost and robust quantitative analysis to quantify each enzymatic component using 

Raman spectroscopy were describe in this study. It is a micro-volume, quantitative, and in situ 

technique, which can be used for studying saccharification processes in plant tissues. Prediction 

models for quantitative analysis of maltose, glucose, and starch were built with partial least square 

regression (PLSR) analysis to monitor the saccharification process caused by α-amylase. We 

examined the reliability of the prediction models built with a small number of test samples, only 7 

samples. The spectral regions used to build the models were optimized for each sugar and were 

selected in such a manner that they did not overlap with strong protein and lipid bands that 

generally exist in plant tissues. The models were validated by monitoring the composition of 

reducing sugars and starch in a reactor and comparing the results with those obtained by a 

conventional method. The results of Raman analysis and the conventional method showed good 

agreement for the reaction with α-amylase; however, it is not perfect for reactions with a different 

enzyme, especially β-amylase. The results suggest that the present Raman technique is reliable and 

useful for sugar analysis; however, the prediction model built for a specific enzyme is valid only 

for that enzyme. 

 

 

Keywords 

Sugar, Raman spectroscopy, Quantitative analysis, Chemometrics, Plant analysis 
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Introduction 

Sugar production through enzymatic reactions comprises a large sector of the food and 

beverage industries worldwide (Sugar and Bour, 2016). Generally, source of sugar production by 

enzymatic reaction is polysaccharide of biomass (Binder and Raines, 2010). The process of 

hydrolytic degradation for polysaccharides into simple sugar is referred to as saccharification. The 

main sugar components can be categorized as sucrose, glucose, fructose, and maltose. Sugar 

composition is essential for many physical properties, such as hygroscopic affinity, granulation, 

viscosity, and energy value (Ouchemoukh et al. 2010). However, independent determination of 

glucose and maltose in sugar is difficult when conventional methods are used. Nearly 40%–90% 

of maltose found in maltose syrups is purified starch hydrolysate (Gaouar et al. 1998). Pure maltose 

has been employed in the manufacture of vaccines, food, maltitol, antibiotics, etc., for which 

crystallized maltose purified from syrups is often used (Okada and Nakakuki, 1992). Studies on 

corn and rice for starch production have already been conducted by several researchers. Maize 

(corn) kernels are a major raw material for sugar and chemical production, with starch providing 

up to 70%–74% of the kernel weight (Shobha et al. 2010). Rice, a staple food of Asian countries, 

contains up to almost 80% starch (Mohan et al. 2005). The main enzymes used in the industry are 

amylases that hydrolyze the 1,4-glycosidic bond. Amylases converts starch molecules into smaller 

oligosaccharides and glucose. The major sources of α-amylases are plants, animals, 

microorganisms, and algae (de Souza and Magalhaes, 2010). Hence, it is necessary to analyze the 

saccharification process quantitatively in biomasss, to investigate the effective saccharification 

process, especially localized enzymatic reaction in cellular level. 

Raman spectroscopy is one of the most promising noninvasive methods for observing the 

distribution of carrageenan in situ. It is a sensitive and reliable tool for determining biochemical 
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changes in biological samples, with no need for any labeling or chemical purification processes. 

In addition, the applications of Raman spectroscopy can be expanded with other techniques, such 

as Raman imaging and remote measurement with Raman probes (Katagiri et al. 2009; Komachi et 

al. 2005; Hattori et al. 2007). In this study, we aimed to develop a technique for quantitative 

analysis of localized saccharides produced by a specific enzyme, which requires small sample 

volumes based on Raman spectroscopy using multivariate analysis. The capability and accuracy 

of the technique were evaluated and discussed. Although the main target of the analysis was 

reaction with α-amylase, the feasibility of the analytical model to β-amylase was also examined. 

With conventional methods that analyze reducing sugars, it is difficult to measure glucose and 

maltose independently (Tihomirova et al. 2016). High-performance liquid chromatography 

(HPLC) is often used for the quantitative analysis of specific saccharides (Meyer et al. 2001; Xi et 

al. 2016; Ai et al. 2016). Özbalci et al. (2013) revealed that Raman spectroscopy can be used to 

quantify glucose, fructose, sucrose, and maltose contents independently in honey samples. Hence, 

Raman spectroscopy has high viability for the present purpose, i.e., for nondestructive, real-time, 

micro-volume, and quantitative analysis, which would be reliable for sugar analysis. PLSR 

analysis was employed for the purpose, because it is more robust than other least square methods, 

such as classical least square (CLS) analysis, to perturbations and noise. However, PLSR analysis 

requires building a robust prediction model for targeted material. For conducting saccharification 

of starch into glucose and maltose, independent prediction models are required for each targeted 

sugar. Moreover, collinearity of the materials must be avoided in the test samples to build the 

prediction model. To analyze glucose, maltose, and starch independently, an extremely large 

number of test samples is required. Hence, we have attempted to reduce the number of test sample 

in the present study, because we are considering a specific enzyme. The enzyme always has its 
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specific reaction pattern, the model could be much simpler. In the present study, we have examined 

the feasibility of a simple PLSR model built with a small number of test samples in the empirical 

condition with Raman spectra, which have strong noise and perturbation, such as baseline 

undulation due to fluorescence and white noise due to weak Raman scattered light.  

Materials and methods 

Enzyme assay 

 Alpha-amylase (EC 3.2.1.1) enzyme from Aspergillus oryzae and β-amylase (EC 3.2.1.2, 

Sigma–Aldrich) were purchased. Fresh soluble starch, D-glucose, and maltose (Wako Pure Chem. 

Ind. Ltd., Japan) were also purchased and used without further purification. The enzymatic reaction 

of α-amylase was conducted at room temperature, while β-amylase was reacted at 20°C. The α and 

β-amylase activity were estimated based on the amount of reducing sugar produced from starch 

by using the Miller method.17 Soluble starch (10,000 mg/L) in phosphate buffer (pH 7.0) was 

preheated at 60°C for 5 min before adding 150 unit/mg α-amylase or β-amylase. The reaction 

mixture was incubated for 2 h, and the samples were taken at 0, 1, 3, 5, 10, 15, 30, 45, 60, 90, and 

120 min from the reaction container. A small portion picked up during the reaction was 

immediately mixed with dinitrosalicylic acid (DNSA) and boiled at 100°C for 10 min following 

Miller’s (1959) procedure. The samples were then transferred to a UV spectrometer to measure 

absorption at 540 nm to quantify the sugar production. The other portion picked up for the Raman 

measurement was boiled for only 5 min to denature the enzyme. 

Preparation of model mixtures 

Model mixtures for estimating the enzymatic component (starch, D-glucose, and maltose) 

were obtained by mixing several concentrations of starch (0–10,000 mg/L) and sugars (D-glucose 
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or maltose; 0–8,000 mg/L) in phosphate buffer (pH 7.0). The concentrations of these materials in 

the model series are listed in Table 1. Aliquots (5 μL) from models and enzymatic reactions were 

dropped onto a quartz bottomed disk (27 mm in diameter) and dried by using a vacuum desiccator 

for 5 min. Samples were then analyzed by Raman spectroscopy. 

Raman measurement 

The Raman measurement of the samples was carried out by using a homemade confocal Raman 

system. The system was equipped with an inverted microscope (IX73, Olympus, Japan), a 

polychromator (Grating: 600 l/mm, 750 nm-blazed, f = 320 mm, Photon Design Co., Japan), a 

cooled CCD detector (DU401-BR-DD, Andor Technology), and a diode laser (785 nm, Toptica, 

Germany). A water-immersed objective lens (×60, NA 1.2; Olympus, Tokyo, Japan) was used for 

the measurements. The exposure time was 10 s × 3 times with excitation light, 60 mW at the 

sample point. Thirty spectra were collected from each sample over a range of 320–1950 cm-1.  

Chemometrics analysis  

Raw spectra were pretreated for background correction to remove the effect of the quartz 

window. To remove dark noise and fluorescence caused by impurities, a sixth-order polynomial 

baseline correction was employed. The spectra were smoothed by a second-order polynomial 

(Savitzky–Golay algorithm) with five points on both frequency sides. The spectra were then 

normalized with a band at 1263 cm-1, which was assigned to the CH2 bending mode. All spectral 

processing data was atomized by my own software build in MatLab R2007b (The Mathwork, Inc, 

US). Partial least square regression (PLSR) analysis was performed by using the Unscrambler 10.1 

software (CAMO Software AS., Oslo, Norway). 



29 

 

Result and Discussion 

Starch is hydrolyzed into smaller sugars by α-amylase. The enzymatic reaction takes place 

randomly on starch, a polysaccharide, and produces the oligosaccharides, maltose, and glucose. In 

this study, a method to monitor this reaction quantitatively was developed using Raman 

spectroscopy. The purpose in this chapter is to measure the glycation reaction caused by amylase 

in plant materials; therefore, it is necessary to analyze the reaction per cells size (1-5 µm). The 

confocal Raman microscope employed in this research was equipped with an object lens with NA 

1.2. The highest spatial resolution of this objective lens was estimated to be 0.80 µm. Meanwhile, 

the spatial resolution estimated from the confocal configuration is 0.98 μm, because the diameter 

of the confocal pinhole was 65 μm, with a 200-mm focusing lens, and a focusing distance (of the 

objective lens) of 3 mm. Hence, the diameter of the excitation volume is sufficiently small to 

observe the reaction in one cell.  

Raman spectra of aqueous solutions of phosphate buffer (a), starch (b), D-glucose (c), and 

maltose (d) are shown in Fig. 1. The spectra of saccharides have few bands in the frequency region 

higher than 1500 cm-1 because they do not have any carbonyl groups or double bonds. Although 

there is a band near 1640 cm-1 due to OH group of saccharides, it is not available for analysis 

because there is strong overlapping with OH group of water. Söderholm et al. (1999) suggested 

that the 500–600 cm-1 range describes sugar species well. The bands below 600 cm-1 can be used 

to identify these saccharide species, i.e., the bands at 519 cm-1 and 554 cm-1 in maltose, those at 

541 cm-1 and 558 cm-1 in D-glucose, and a band at 479 cm-1 in starch. The band frequencies for 

maltose and glucose are similar, while their relative intensities are quite different. In the spectrum 

of the phosphate buffer, a broad band at 1636 cm-1 is attributable to the presence of water. Another 

broad band at 535 cm-1 can be attributed to an interaction between phosphate and water, which 

overlaps the characteristic bands of the saccharides. Lipids and proteins have relatively weak bands 
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near these band area (Wua et al. 2011). Our final targets are plants with relatively low 

concentrations of these latter materials; therefore, the bands described are good marker bands for 

these sugars. Conventional methods that are normally used to analyze reducing sugars struggle to 

measure glucose and maltose independently. HPLC is often employed to analyze glucose and 

maltose. It is necessary to prepare a test solution for HPLC that does not include any solid or 

insoluble materials; therefore, HPLC is not applicable for nondestructive analysis of in situ 

localized sugars. Hence, Raman spectroscopy has good potential for maltose and glucose analysis 

as well. 

In order to determine the concentrations of maltose and glucose, as well as starch, in the 

reaction mixture with α-amylase, it is necessary to build reliable calibration curves for Raman 

analysis. First, a series of test mixtures of starch, D-glucose and maltose in phosphate buffer 

solution without α-amylase was prepared to build the calibration curve. The concentrations of these 

materials in the model series can be found in Table 1. The test model has a strong correlation 

among those sugar concentrations, which is usually an insufficient example for the estimation of 

each material. Moreover, it lacks oligosaccharides in the model. However, that would not be a 

problem because an enzyme usually keeps the reaction ratio of its products in a relatively small 

range. We assumed that the analytical model for maltose or glucose should have a margin in which 

the target sugar can be independently analyzed when the spectral area to build the model was 

correctly selected. The Raman spectra of the model solution were very similar to that of the real 

reaction mixture, i.e., with α-amylase (Fig. 1). There was no band attributable to the amide I mode 

of α-amylase observed in the spectrum.  

Raman spectroscopy is a kind of emission spectroscopy, and hence, the intensity of the 

spectrum is affected by many instrumental and sample conditions. Therefore, quantitative Raman 
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analysis without a standard material will be semi quantitative, in which only relative 

concentrations can be obtained. In the present study, we have used the area of a band near 1263 

cm-1 attributable to a CH2 bending mode on the sugar ring, which is minimally affected by the 

enzymatic reaction. When the initial concentration of starch is known, it is possible to determine 

the absolute concentrations of glucose and maltose. PLSR calibration models were initially built 

with spectra of aqueous solutions; however, the Raman bands attributable saccharides were 

extremely weak to obtain reliable results. The model solutions were then dried up to increase the 

intensity of the saccharide bands. Hence, the current analysis is semi-quantitative. The model was 

built for the entire spectral region; however, the result was not perfect because each material 

exhibited an extremely strong correlation. The model was then recalculated with a reduced spectral 

region, which was optimized for prediction of maltose, glucose, and starch independently. The 

best spectral region for maltose and glucose analysis was 500–650 cm-1 while it was 460-490 cm-

1 for starch. The correlation coefficients (R2) for the model and validation to analyze maltose, 

glucose and starch were 0.964 and 0.962, 0.927 and 0.923, and 0.900 and 0.890, respectively. 

Detailed description of the PLSR calibration models is available in the supplementary 

information. 

The prediction models were applied to monitor the enzymatic reaction of α-amylase. Figure 

2(a) shows the concentration changes of maltose, glucose, and starch analyzed with Raman 

spectroscopy and that of the reducing sugars (maltose and glucose) analyzed with the Miller 

method. Soluble starch in phosphate buffer (pH 7.0; 10,000 mg/L) was incubated with α-amylase 

and its spectrum was acquired after 0, 1, 3, 5, 10, 15, 30, 45, 60, 90, and 120 min. At the same 

times as the Raman measurements, a portion of the mixture was analyzed by the Miller method 

(Fig. 2(b)). The concentrations of maltose, glucose, and starch estimated with the PLSR prediction 
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models are plotted in Fig. 2(a). The concentration of starch reduced quickly in the first minute and 

reduced slowly after that. In contrast, the concentration of D-glucose, which was the final product, 

increased quickly in the first minute and continued to increase with time. The concentration of 

maltose showed a quick increment in the first minute; however, it showed a variation above and 

below it. The experiments were repeated 20 times, and the results always showed similar 

tendencies. The concentrations of reducing sugars analyzed by the Miller method is shown in Fig. 

2(b). The result of the Miller method showed a similar curve to that of the Raman analysis in the 

reaction rate, suggesting that the prediction models work correctly in the real α-amylase reaction. 

The value of sugar concentration drops at 60 min in the graph of the Miller method (Fig. 2(b)), 

which is not reasonable because α-amylase never causes a reverse reaction. In contrast, the result 

obtained by Raman analysis (Fig. 2(a)) changes smoothly, which seems to agree with the theory 

of the enzymatic reaction.  

α-Amylase belongs to endoamylase family (Van der Maarel et al. 2002). Endoamylase is 

able to cut the α-1,4 glycosidic bond in the inner part (endo-) of the amylose or amylopectin chain 

as well as starch. The main products of this enzyme are maltose, glucose, and oligosaccharides 

(having more than three D-glucose residue) (Wirnt and Stegbauer, 1974). The ratio of the products 

is relatively stable, but not exactly the same anytime because the enzymes randomly cut the 

bonding between saccharides, especially when the reaction is about to achieve the equilibrium 

point. The present PLSR analytical model was then examined in saccharification processes with 

different conditions. We employed three conditions: reaction at a lower temperature (10℃), adding 

excess maltose in the initial state, and using different enzyme (β-amylase). The maltose production 

curves at 10℃ and 25℃ are compared in Fig. 3. The reaction speed seemed to slightly decrease 

for the reaction at 10℃ in the first 30 min compared to that at 25℃; however, the concentration 
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caught up after 120 min of incubation. The reaction speed of the enzyme decreases because of the 

insufficient temperature; however, the final production depends on the concentration of the initial 

material (Silva et al. 2010). The result seems to agree with the theoretical results. In the second 

examination, we evaluated the ability of the present model with a sample that includes one of the 

final products. The enzymatic reaction does not always start with zero concentration of reducing 

sugars, in the case where the enzymatic reaction is performed using microorganism (bacteria or 

fungi), because maltose or glucose is often added into the reaction container to keep their activity. 

To restage the condition, excess maltose (1,000 mg/L) was added into the starch (10,000 mg/L) to 

observe the enzymatic reaction of α-amylase. The concentration curves for maltose and glucose 

estimated by Raman analysis are depicted in Fig. 4(a). The curve of maltose is in excess of 1,000 

mg/L larger value relative to that for the sample without excess maltose. In contrast, the value of 

glucose did not show any difference. The results measured by Miller method is shown in Fig. 4(b). 

The curve obtained by Miller’s method showed unusual reduction in concentration in the curve at 

15 min for the sample with additional maltose, which was also observed in the Raman analysis. It 

suggests that the present Raman-PLSR analysis is robust to this kind of perturbation. The present 

Raman-PLSR model was examined to monitor the sugar concentration in the reaction with a 

different enzyme (i.e., β-amylase). β-Amylase belongs to exoamylase, which exclusively cleaves 

to α-1,4 glycosidic bonds, successively yielding successive of maltose and a few glucose (Pandey 

et al. 2000) The concentration changes of starch, maltose, and glucose monitored by Raman 

analysis is depicted in Fig. 5(a). The maltose production by β-amylase was almost twice higher 

than that of α-amylase, while D-glucose was much lower. The curves suggest that the activity of 

β-amylase was remarkably high in the first minute, and stabilized thereafter. Because the 

concentration of the starch was initially 10,000 mg/L, the sum of concentrations of the products 
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must always be 10,000 mg/L. According to the curves in Fig. 5(a), the sum of the concentration of 

only maltose and starch is approximately 10,000 mg/L; however, it becomes more than that when 

the concentration of glucose is added. The concentration change of reducing sugar monitored by 

Miller’s method is depicted in Fig. 5(b). It showed similar concentration to the curve of maltose 

except for data at 120 min. It is assumed that the prediction value of glucose is a kind of artifact 

because of incorrect application of the analytical model. The results suggest that the analytical 

model built for a specific enzyme is valid only for that enzyme. 

Conclusion 

A confocal Raman microscope with a high NA objective lens realizes high spatial 

resolution to analyze the reaction in a cell-sized small volume. The PLSR model built with 7 test 

samples for a specific enzyme is relatively robust to reaction with external perturbation; however, 

it is not applicable for a different enzyme. Maltose, glucose, and starch were analyzed 

independently by selecting the spectral area to build the PLSR models, although the test samples 

exhibit correlations among their concentration values. 
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Fig. 1 Raman spectra of phosphate buffer (a), maltose (b), D-glucose (c), and starch (d). 
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Fig. 2 Concentration estimation of starch (●), maltose (■), and glucose (▲) in the reaction with 

enzyme, α-amylase, by PLSR analysis (a). Concentration estimation of reduction sugar 

by Miller method (DNSA reagent and UV spectroscopy) (b). 
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Fig. 3 Concentration estimation of maltose in the reactions at 25℃ (■) and 10℃ (♦). 



41 

 

 

Fig. 4 Concentration estimations for maltose (■) and glucose (▲) in the α-amylase reaction with 

adding 1,000 mg/L (♦) maltose at the initial reaction measured by PLSR analysis (a) and 

that by Miller method (b). The line (■) shows maltose concentration analyzed without 

adding excess maltose (Same to the line of maltose in Fig. 3). 
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Fig. 5 Estimation of the concentration of starch (●), maltose (■), and glucose (▲) in the reaction 

with β-amylase by PLSR analysis (a) and that by Miller’s method (b). 
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Table 1. List of starch, maltose, and D-glucose concentrations for the test model. 
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Supplementary information: Detailed description of PLSR models 

Figure 1A shows a calibration curve for maltose built using two factors. The loading plots 

for factors 1 (1) and 2 (2) are depicted in Fig. 2A. A broad feature with two tops at 529 and 580 

cm-1 appears in the plot of factor 1. Although the band shape of factor 1 is not similar to that of 

pure maltose, the contribution of factor 1 to the prediction model was high at 57%. PLS model for 

maltose has high regression square (R2) up to 0.9644 and 0.926 for test and validation. The 

calibration model (Fig. 1B) for glucose was built with factors 1–3. The optimized spectral region 

was from 500–650 cm-1, in which the strong band at 519 cm-1 was excluded. The R2 values are 

0.927 and 0.923 for the test and validation data sets. The loading plot of factor 1 (Fig. 2B) shows 

a gentle slope down to higher frequency and a small shoulder is seen near 541 cm-1, which may be 

attributed to glucose. The contribution of factor 1 to the calibration model was 98%. This fact 

indicates that factor 1 reflects the alteration in the band of water having an interaction with glucose. 

A calibration model and loading plots of factors for starch are shown in Figs. 1C and 2C, 

respectively. The model was built with only factor 1 and its spectral range was from 465 to 490 

cm-1. The spectral range is extremely narrow because it includes only a band at 479 cm-1 that is 

characteristic to starch and, in this range, it does not become overwhelmed with water band and 

other components. The R2 values of this model are 0.900 and 0.890 for the test and validation data 

sets, respectively. The plot of factor 1 resembles of starch band in Fig. 2C.  
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Fig 1. Calibration curves (A, B and C) of the PLSR models to analyze maltose, glucose and 

starch, respectively. 
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Chapter 2 

Application of Imaging Raman Spectroscopy to study the Distribution of Kappa 

Carrageenan in the Seaweed Kappaphycus alvarezii 

Abstract 

 Raman imaging spectroscopy has been applied to analyze carrageenan accumulations in 

the red algae, Kappaphycus alvarezii. The Raman spectra of the sample suggested that the thallus 

of K. alvarezii mainly consists of cellulose and carrageenan. A partial least square regression 

prediction model for carrageenan semi-quantitative analysis has been built with a simple two-

material system and applied to visualize the three dimensional carrageenan distribution in the algal 

body. The images clearly depicted the differences in carrageenan distribution between 

carrageenan-rich and -poor samples. Images stained for carrageenan with methylene blue showed 

results similar to those from analysis with Raman imaging spectroscopy. Our results suggest that 

Raman imaging spectroscopy is an accurate and useful method for detecting carrageenan 

distribution in algae. 
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Introduction  

The seaweed Kappaphycus alvarezii is a macro alga belonging to the phylum Rhodophyta, 

and is abundant in tropical seawater, i.e. on the coasts of Indonesia, Philippines, China, and 

Vietnam (Ask et al. 2001).  The Food and Agriculture Organization (FAO) reported that Indonesia 

is a major producer of K. alvarezii, with a production capacity of up to 10 million tons in 2014. 

There are many places of seaweed farming in Indonesia, i.e., Karimunjawa, Bali, Sumba, and 

Sulawesi (Soegiarto and Sulustijo 1990; Manuhara et al. 2016). K. alvarezii contains a high weight 

ratio of carbohydrates (Bixler 1996; Lechat et al. 1997).  Carrageenan is sulfated polysaccharide 

extracted from red algae (Normah and Nazarifah, 2003). The most valuable carbohydrate extracted 

from K. alvarezii is kappa (κ)-carrageenan (Fig. 1), which has D-galactose 4-sulfate and 3,6 

anhydrous D-galactose residues linked at the β (1,4) and α (1,3) carbons, respectively (Lechat et 

al. 1997; Rhein-Knudsen, 2015; Cunha and Grenha, 2016). Carrageenan is in high demand in many 

industries, i.e., food, pharmacy, and cosmetics, owing to its stabilizing, gelling, and thickening 

properties (Pereira et al. 2013; Necas and Bartosikova, 2013; Azevedo et al. 2013). In the market, 

there are two types of carrageenan products that are differentiated by quality: semi-refined 

carrageenan (SRC) and refined carrageenan (RC). SRC and RC use different purification steps 

such as centrifugation, filtration, and alcohol precipitation (McHugh 2003).  

The purpose of the present study is to demonstrate that Raman imaging combined with 

chemometrics are powerful tools for studying carrageenan distribution in algae. Although the 

quality and yield of carrageenan production generally depends on the seaweed itself, there is no 

clear standard for quality control. It is difficult to determine the quality of the seaweed only from 

its appearance and shape. Currently, extraction is the only method to examine the quality of 

seaweed farming, but it is destructive and not applicable to study the localization of carrageenan 

in the algal body. Thus, many researchers in carrageenan industries have keen interest in a tool 
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that can investigate the quality and quantity of seaweed K. alvarezii in raw material.  

 Vega et al. (2017) reported that fluorescence microscopy can be used to determine the 

distribution and type of carrageenan in K. alvarezii. This method, based on fluorescent labeling, 

allows the monitoring of micro localization of the target molecule, even in a cell (Henriques et al. 

2011; Smith et al. 2016). In contrast, Raman spectroscopy is a label-free technique that can detect 

chemical changes even within a single cell. Carrageenan and K. alvarezii have been extensively 

studied by Raman and IR spectroscopies (Pereira et al. 2003, 2009, 2013; Pelegrın et al. 2006; 

Dewi et al. 2012; Webber 2012). Carrageenan is a sulfated polysaccharide, which gives specific 

bands in both Raman and IR spectra. Pereira (2009) have assigned three strong bands in the range 

of 1240–1260, 1075–1085, and 845–850 cm-1, due to the vibrational modes of the sulfate ester, 

galactose, and galactose 4-sulfate, respectively (Table 1).  

 In the present study, we aimed to analyze the distribution of carrageenan in three different 

branch sizes of K. alvarezii using Raman imaging technique. Raman spectroscopy has been applied 

for the semi-quantitative analysis of specific materials in intact biological samples (Meksiarun et 

al. 2015, 2016). Since Raman spectroscopy is a vibrational spectroscopy, all molecules present in 

the biological matrix display fingerprint bands of their chemical component in the Raman spectrum, 

unlike in absorption or fluorescence spectroscopy. However, it is necessary to apply multivariate 

analysis to extract information on a specific molecule in the Raman spectrum. The classical least 

square (CLS) method or least square curve fitting method is often used for quantitative analysis. 

Since it is based on a linear combination of spectra of major components included in the sample, 

the analysis does not require any prediction model and sample preparation, except for 

measurement of the component spectra. CLS, however, requires full knowledge of all components 

in the training samples of the measured system (Nadler and Ronald 2005). In contrast, partial least 
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square regression (PLSR) analysis is another powerful quantitative method, which builds a robust 

prediction model for targeted material. Unlike the CLS method, it works with only knowledge of 

the substance of interest. Therefore, PLSR analysis is useful for the analysis of noisy spectra. 

Raman imaging is useful for studying the distribution of a component in a sample (Ishigaki et al. 

2017). In this imaging technique, the Raman spectrum could be obtained from each measurement 

point, which covers the whole sampling area with spot-to-spot spatial intervals. Consequently, one 

Raman image consists of many Raman spectra, which composes a hyperspectral image. To reduce 

the total measuring time, it is necessary to reduce the acquisition time at each sampling spot, 

resulting in the relatively noisy feature of the spectra. This suggests that the PLSR analysis is 

suitable in the present study, owing to the noise and perturbation compared to other multivariate 

analyses, such as CLS. 

Material and method 

Sample Preparation 

Sun dried K. alvarezii sampled in two farming areas (Karimunjawa and Sumbawa, 

Indonesia) was used. Samples were washed with purified water for three times to remove dust, 

sand, and crystal salt, and soaked in 3.5% NaCl water overnight. Several 2-mm-thick samples were 

sliced with a knife to obtain Raman images. Three samples were obtained from different places on 

each plant ((a) first, (b) second, and (c) third branches) of the seaweed as shown in Fig. 2. Refined 

κ-carrageenan was purchased (Wako pure chemical, Japan) and used without further purification.  

Powdered methylene blue (MB; Waldeck, Germany) was dissolved in purified water with 3.5% 

(w/v?) NaCl to prepare the 0.05% (w/v) aqueous solution. The same sliced sample, often the 

Raman measurement, was soaked in the solution for 30 minutes, and then rinsed with purified 

water three times. Carrageenan distribution was observed using methylene blue, as previously 

described (Campo et al. 2009).  
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Raman Measurement 

 The InVia Raman System (Renishaw Inc., UK) with a 785 nm excitation laser was 

employed to obtain 2D and 3D images. A homemade aluminum stage with water reservoirs was 

used for image measurement to keep the samples from drying. The cross-sectioned sample was 

fixed on the aluminum stage and soaked in 3.5% NaCl. The spectra of test samples for PLSR 

analysis were obtained with the streamline mode of the instrument, which employs a line-focused 

laser light for excitation with a 20 × magnification objective lens. The laser power was 190 mW 

at the sampling point. For the 2D and 3D imaging measurement, we used the confocal mode of the 

instrument. Data were collected at sampling points, with intervals of 250 µm for the X- and Y-

axes and 50 µm for the Z-axis. The exposure time was 3 s at every sampling point. It took 

approximately 3–5 h for each sample to obtain 2D or 3D images.  

Chemometrics analysis 

To analyze the concentration of carrageenan, a PLSR model was built with 11 test samples 

that were prepared with carrageenan and cellulose powder (Mahardika et al. 2018). Carrageenan 

and cellulose powders were mixed and ground with a hand homogenizer. The mixed 

carrageenan–cellulose test sample was placed on a metal substrate and pressed to make a small 

tablet. One hundred Raman spectra points were obtained at each tablet. All Raman spectra from 

samples were processed by interpolation, background subtracted, sixth polynomial baseline 

corrected, normalized by CH band at 1470 cm-1, and smoothed using a Savitzky-Golay second 

order polynomial with 25 points on both sides of the frequency. The PLSR model was built using 

Unscrambler 10.1 software (CAMO Software AS., Oslo, Norway).  



52 

 

Results  

 The Raman spectra of the inner (a) and outer (b) layers of the algae branch were compared 

to those of cellulose (c) and refined carrageenan (d) in Fig. 3A. A bright-field image of the sample 

is shown in Fig. 3B, where the sampling point of the inner (a) and outer (b) layers are marked with 

arrows. The PLSR analysis was employed to quantify the concentration of carrageenan in the algal 

body. A calibration curve of the PLSR prediction model built with only factor 1 is shown in Fig. 

4A. The loading plot of factor 1 shows bands from carrageenan in a positive direction and those 

from cellulose in a negative direction (Fig. 4B). The regression square (R2) of the one-leave-out 

cross validation was 0.9935 and its root mean square error (RMSE) was 0.0275.  

A hyperspectral Raman image was obtained to estimate the distribution and concentration 

of carrageenan in the seaweed branches. The measurement mode was changed to the confocal 

setup that has a high spatial resolution: 250 µm in the lateral direction and 50 µm depth. The PLSR 

prediction model was applied to the hyperspectral image to obtain a topological map of 

carrageenan distribution. Figure 5 depicts the carrageenan distribution (A) in the three branches at 

-100 µm depth. A bright field image of the cross-sections of branches (B) shows no specific signal 

for carrageenan, indicating that it is impossible to estimate the concentration of carrageenan from 

its visual appearance. Fig. 5C shows the carrageenan concentration in the cross-section near 4,000 

µm on the Y-axis in the image (shown as a bright red line in Fig. 5A).  

Figure 6 shows the carrageenan distribution (A) in a carrageenan-poor branch. A bright 

field image (B) shows a similar feature to that of the carrageenan-rich branch (Fig. 5B), suggesting 

that it is very difficult to estimate the concentration of carrageenan with the shape of the branch. 

The carrageenan concentration in the cross-section was near 3,000 µm on the Y-axis in the image. 

The carrageenan concentration predicted by PLSR analysis in this cross-section was a maximum 

of 10% in both the first and second branches. The average carrageenan concentration in the first 
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branch of the carrageenan-poor branch was only 4.5%.  

Three-dimensional (3D) mapping images of the carrageenan concentration for the 

carrageenan-rich (A) and -poor (B) samples are depicted in Fig. 7. It should be noted that the 

carrageenan distribution was analyzed at 250 µm below the surface in a nondestructive manner. 

For the comparison of carrageenan distribution study, MB staining methods were employed. MB 

staining is a useful method for determining carrageenan and other anionic hydrocolloids (Soedjak 

1994; Campo et al. 2009). MB has the characteristics of a cation; it easily binds to anions. The 

sulfate group in carrageenan has the characteristics of an anion because of its negative charge, 

which enables binding with MB. The MB staining of K. alvarezii of the first (a), second (b), and 

third (c) branches are shown in Fig. 8.  

Discussion  

 There were either no or very few features observed in the Raman spectroscopy at a 

frequency region higher than 1600 cm-1, except for a broad band due to OH groups near 1640 cm-

1 (Fig. 3A). This suggests that the algae contain very little lipids and proteins. Although K. alvarezii 

is a red alga that generally has carotenoid species, such as zeaxanthin and β-carotene, there were 

no carotenoid bands observed in the Raman spectra (Indriatmoko et al. 2015). Since the sample 

was dried under the sun, pigments in the sample would be reduced. Additionally, the excitation 

light at 785 nm has either no or a very weak resonance enhancement effect for carotenoids (Sato 

et al. 2001). Strong bands at 1122 and 850 cm-1 are good marker of cellulose and carrageenan (Fig. 

3). Cellulose is a major component of the cell walls of the algae; therefore, the spectrum of the 

outer layer has a relatively strong contribution of cellulose, which is observed as a shoulder band. 

In contrast, a strong band at 850 cm-1 of carrageenan was observed in both the inner and outer 

layers of the branch. The spectra of the cross-sectioned branch have strong contributions from 
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carrageenan, suggesting that K. alvarezii produces high concentrations of carrageenan.  According 

to literature the band at 850 cm-1 have been assigned to a vibrational mode of galactose 4-sulfate 

(G4S) (Pereira et al. 2009).  

 More than 50% of the dry weight of K. alvarezii comes from carbohydrates, including 

cellulose and carrageenan (Lechat et al. 2000; Vreeland and Kloareg 2000; Masarin et al. 2016). 

A PLSR prediction model was built with a series of 11 mixed κ-carrageenans and cellulose at 

different ratios (Fig. 4A) (Mahardika et al. 2018). Carrageenan is insoluble in both room 

temperature (25 0C) water and most organic solvents; it was not possible to make a homogenous 

mixture solution of the artificial test samples to build a calibration model, though they are 

microstructures in the algal body. Therefore, fine powders of materials were used to obtain the 

concentration-controlled mixed samples. Since the particle size was relatively large (~1 µm) 

compared to the spatial resolution of the objective lens, a line excitation mode was employed 

instead of the confocal mode for the measurement of test samples. There were 11 test samples 

prepared, and 100 spectra obtained from each sample were used to build the PLSR model 

(Mahardika et al. 2018) 

  Raman spectroscopy is a kind of light scattering spectroscopy where the spectral intensity 

is affected by interference and sample conditions, such as scattering and absorption of the sample, 

and by instrumental instability, such as the distance between the sample and objective lens, laser 

power, and stray light. Therefore, an independent internal standard is necessary for Raman 

spectroscopy to obtain the absolute concentration of a sample. Instead, we employed a semi-

quantitative analysis in this study that gave the relative concentrations of the targeted material. 

Intensity correction was performed on all Raman spectra in the hyperspectral image with a standard 

band at 1470 cm-1, that was assigned to a CH bending mode of which represents all bio-organic 
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materials, because they generally have CH groups. In the present test sample system, the 

concentration of carrageenan had a high collinearity with that of cellulose, which is usually 

avoided when building a robust theoretical prediction curve. However, it is acceptable in the case 

of semi-quantitative analysis when the system is composed of only two materials (Mahardika et 

al. 2018). In this case, the increment of the first material is negatively correlated with a decrease 

in the second material. Therefore, only one factor explains all variables, and the component of the 

factor that has contributions from the spectrum of the first material is in a positive direction, and 

from that of the second material is in a negative direction (Fig 4B). 

 The Raman image in Fig. 5A shows that carrageenan, located in the algal cell wall is mostly 

distributed in the medullary (inner) portion in all branches corroborating the literature data 

(Vreeland et al. 1992). In contrast, the carrageenan distribution in Fig. 5A seems to have 

correlation with the size of the branch (Fig. 5B). The carrageenan concentration in the medullary 

portion has been found to be the highest in the largest branch and has gradually been reduces 

towards the peripheral area. These results indicate that the PLSR model can predict carrageenan 

concentration and distinguish between sample and interval space. The highest carrageenan 

concentration shown in this cross-section was up to 40%, while the average carrageenan 

concentration in the first branch (enclosed by the white dashed line) in Fig. 5A was 16%. 

According to the carrageenan distribution images (Fig. 5 and 6), the average carrageenan 

concentration was 5–20% in the samples. Masarin et al. (2016) reported that extraction of 

carrageenan as a sulfated galactan from K. alvarezii was in the range of 30–40%. The present 

sample seems to have relatively lower concentrations compared to these samples. 

 The advantage of Raman 3D imaging has been demonstrated in the study of carrageenan 

distribution in the Z-direction. The images in Fig. 7 illustrate that the carrageenan distribution is 



56 

 

significantly altered as the depth increases along the branch. The carrageenan concentration 

increases at 150 µm in the Z-direction, even in the carrageenan–poor branch (Fig 7B). The 3D 

images suggest that carrageenan distribution is concentrated in the medullary space, as suggested 

in the 2D image, but the distribution throughout the depth of the branch shows diversity. This 

suggests that there are complicated structures for production and accumulation of carrageenan in 

the longitudinal direction of the branches, and transportation of carrageenan is not active in the 

algae stem. It may be due to lack of phloem in the organ. 

 The images of MB staining (Fig. 8) show similar distributions of carrageenan to those 

estimated by Raman observation. The first branch shows a deep blue color near the medulla portion 

and less at the cortex portion. Carrageenan seems to be distributed evenly across the second and 

third branch. The blue color at the outer cortex is the indication of sulfate anion from iota 

carrageenan (Vreeland et al. 2000). Unfortunately, it is difficult to analyze the concentration and 

3D distribution of carrageenan with the MB staining method. 

Conclusion 

 Raman imaging spectroscopy is a nondestructive and label-free analytical tool that can be 

applied to investigate carrageenan production in K. alvarezii. No fluorescence and strong 

resonance Raman bands interference was observed due to pigments in the sun dried seaweed when 

the Raman measurement has been performed. The PLSR prediction model, made of simple test 

samples of only carrageenan and cellulose, successfully illustrates carrageenan concentrations in 

the 3D images of seaweed. The present results demonstrate that Raman imaging spectroscopy has 

the potential to investigate saccharide present in the algal body and to evaluation the quality of 

carrageenan-producing seaweed plantations. 
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Fig 1. Chemical structure of monomer unit in kappa (κ)-carrageenan 
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Fig 2. A photo of the sample, K. alvarezii. The arrows indicate the first (a), second (b), and third (c) 

branches. 
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Fig 3. Raman spectra (A) and bright-field image (B) of the cross-section of the first branch. The 

spectra are the medullary portion (a), outer surrounding portion (b), pure cellulose (c), and 

refined carrageenan (d). The arrows in (B) indicate selected points for Raman measurements 

of the medullary (a) and outer surrounding portion (b). 
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Fig 4. Calibration curve (A) of the PLSR prediction model for cellulose-carrageenan mixed test 

samples and the loading plot of factor 1 (B). 
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Fig 5. Topographic image of carrageenan distribution (A) and bright-field image of the carrageenan-

rich branches (B). The first, second, and third branches are shown with red, green, and yellow 

dotted lines, respectively. A graph (C) shows the carrageenan concentration along with the 

horizontal line at 3000 µm on the Y-axis. 
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Fig 6. Topographic map of carrageenan distribution (A) and bright-field image of the carrageenan-

poor branches (C). The first, second, and third branches are shown with red, green, and yellow 

dotted lines, respectively. A graph (C) represents the carrageenan concentration for the 

horizontal line at 3750 µm on the lateral Y-axis. 
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Fig 7. 3D Raman images of carrageenan-rich (A) and -poor (B) branches. 
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Fig 8. Methylene blue-stained images of carrageenan on the first (a), second (b) and third (c) 

branches. 
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Table 1. Characterization of κ-type carrageenan by Raman spectroscopy. 
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Chapter 3 

Bacterial decomposition of Seaweed Kappaphycus Alvarezii studied by 3D Raman Imaging 

Spectroscopy 

Abstract 

 Seaweed diseases are detrimental to the carrageenan industry. One of the major 

carrageenan sources is Kappaphycus alvarezii, which contributes about 97.83% of the total 

product in the world. Ice-ice disease is caused by bacterial pathogens infecting algae weakened by 

environmental stresses, such as temperature, salinity, sunlight, and nutrients of the sea water. The 

decreasing carrageenan production is caused by the extracellular enzymatic reaction of the bacteria. 

To study enzymatic reaction on the algal body, Raman imaging spectroscopy combined with PLSR 

analysis was employed as a quantitative tool. Candidate bacteria expressing enzymes able to 

decompose seaweed were collected from putrid algae. Then, the bacteria were isolated and purified 

and finally applied to the algal body and investigated using Raman image analysis. The reduction 

in carrageenan concentration was observed in the algae treated with one of the bacteria. The results 

suggest that the bacteria infect into the algal body and then enzymatically degrades the carrageenan. 

Observation made by methylene blue staining were in agreement with this hypothesis. 

 

 

 

 

Keywords 

Enzyme, carrageenan, Raman spectroscopy, PLSR analysis 
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Introduction 

 Seaweed Kappaphycus alvarezii, of the Rhodophyta, is one of the most important 

commodities in Indonesia due to the high industrial demand for its product, kappa type 

carrageenan (Lechat et al. 1997; Rhein-Knudsen 2015; Cunha and Grenha 2016). Carrageenan is 

a valuable carbohydrate owing to its stabilizing, gelling, and thickening properties (Pereira et al. 

2013; Necas and Bartosikova, 2013; Azevedo et al. 2013). It is widely used in industries such as 

cosmetic, food, pharmaceutical, and so on. K. alvarezii is widely spread in the oceans of tropical 

areas and is especially abundant in Southeast Asia, i.e., the Philippines, Vietnam, Thailand, China, 

and Indonesia (Ask et al. 2001). The minister of maritime and fisheries of Indonesia reported that 

seaweed K. alvarezii contributes about 97.83% of the seaweed production in the world. In the 

carrageenan industry, quality control of seaweed farming becomes more important day by day.  

Disease of algae is one of the largest problems in carrageenan production. The most famous 

seaweed disease in tropical seawater is the ice-ice disease (Largo et al.1995). It is an inclusive term 

of a disease caused by a several bacteria, which results in thallus bleaching and even falling off 

(Mendoza et al. 2002). The ice-ice disease was first discovered in a commercial seaweed plantation 

in Philippine in 1974 (Largo et al. 1995.). Mendoza et al. (2002) also reported that ice-ice disease 

causes remarkable reduction, up to 40%, of carrageenan production. Decreasing seaweed 

production is due to the loss of seaweed thallus as the cell walls are degraded by enzymes produced 

by bacterial pathogens (Distel et al. 2002; Weiner et al. 2008). Bacteria belonging to the genera 

Vibrio, Alteromonas, Cytophaga, Flavobacterium, and Pseudoalteromonas produce enzymes 

capable of depolymerizing polysaccharides (Goecke et al. 2010). Rhein-Knudsen (2015) reported 

that k-carrageenan is hydrolyzed by several enzymes, such as k-carrageenanse, sufatase, 

carratetraose-4-O monosulfate-β-hydrolase, and sulfurylase I and II. Pseudoalteromonas 

carrageenovora is the most studied microorganism that is able to produce k-carrageenase. The k-
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carrageenase enzyme belongs to the 16th family of glycoside hydrolases (GH).  Potin et al. (1995) 

purified and analyzed a k-carrageenase (EC 3.2.1.83) collected from P. carragenovora with the 

ability to cleave the β-1,4 linkages in carrageenan and produces di- and tetra-saccharides. The size 

of the oligo-galactans produced by hydrolysis reaction depends on the type of carrageenase (Rhein-

Knudsen 2015). The cleavage at α-1,3 or β-1,4 linkage in carrageenan results in the production of 

two different types of saccharides having opposite orientations (Barbeyron et al., 2000; Lemoine 

et al. 2009). However, different kind of enzymes are also used in carrageenan industries. For 

example, Blanco-Pascual et al. (2014) used alcalase to extract carrageenan from Mastocarpus 

stellatus, which has better in gelling properties. An enzyme, cellulose, collected from Aspergillus 

niger was used to destroy the cell walls of the seaweed to release carrageenan in Eucheuma cottonii 

(Varadarajan et al. 2009).  

Environmental conditions play an important role in the infection of cultivated seaweed by 

bacterial pathogens (Case et al. 2011). It is suggested that inadequate environmental conditions at 

the plantation site, i.e., temperature, salinity, pH, nutrients, and sunshine leads to a weakening of 

the seaweed facilitating the infection by ice-ice bacteria. Furthermore, drastic changes in 

environmental conditions that exceed the limit of adaptation and tolerance of the seaweed can 

potentially cause susceptibility to microbial pathogens (Karsten et al. 2001; Toohey and Kendrick, 

2007). As previous methods for assessment of bacterial pathogens of seaweed disease (Largo et al. 

1995a; 1995b; 1999; Mendoza et al. 2002) always employed destructive techniques, little 

information has been provided about the mechanisms of bacterial infection and decomposition of 

the carrageenan products in the algal body. 

In the present study, 3D Raman imaging technique with PLSR analysis was applied to 

monitor the bacterial enzymatic activity in the algal body and dynamics of the bacterial invasion. 
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Raman spectroscopy is a promising, label-free, non-destructive, and environmentally friendly 

analytical tool to study living cells and tissues (Teixeira dos Santos et al. 2016). Raman 

spectroscopy has been extensively applied in the study of seaweed and carrageenan (Malfait et al. 

1987; Pereira et al. 2009; 2011; 2013; Rodrigues et al 201), as carrageenan has several 

characteristic bands in the fingerprint region. Pereira et al. (2009) has assigned three strong bands, 

at 1240–1260, 1075–1085, and 845–850 cm-1, to the vibrational modes of the sulfate ester, 

galactose, and galactose 4-sulfate, respectively (Table 1). In my previous study (chapter 2), Raman 

spectroscopy was successfully applied to observe the 3D distribution of carrageenan in seaweed 

K. alvarezii (Mahardika, 2018). This chapter aims to evaluate the developed technique for seaweed 

disease monitoring with regard to the faster, label-free, and environmentally friendly 

characteristics.  

Material and method 

Bacterial screening  

Sun-dried seaweed Kappaphycus alvarezii was soaked in water containing 3.5% NaCl and 

subsequently left under open air for a several days, allowing for infection by natural 

microorganisms. A small amount of the decomposed sample at the surface of seaweed was 

collected and dispersed into water containing 3.5% NaCl. The samples with bacteria were spread 

on a culture dish of marine broth agar (MBA) medium and incubated at 25 ℃ for 24 h. Two 

independent colonies were collected and inoculated into new dishes with MBA medium. In the 

present study, the two bacteria were referred to as “red” and “orange” due to their natural colors.  
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Enzymatic assays 

The two bacteria samples were cultured in 10% w/v liquid marine broth medium containing 

0.25% w/v carrageenan as the sole source carbon at 25℃. A small portion was collected every 24 

h to measure the growth rate. Bacterial density was estimated by measuring the optical density at 

600 nm. The samples were centrifuged at 10,000 rpm for 10 minutes to collect crude enzyme in 

the supernatant. The solution was diluted 2 x with Tris buffer pH 7.2 to a final concentration of 50 

mM. Carrageenan was added to a final concentration of 0.25% to act as a substrate for the 

enzymatic reaction. Enzymatic reactions were conducted at 30℃ for 1 h and subsequently stopped 

by adding dinitrosalicylic acid (DNSA) and boiling at 100℃ for 10 minutes according to Miller’s 

procedure. The concentration of reducing sugars was estimated according to the absorption at 540 

nm.  

Infection of K. alvarezii by selected bacterial strains 

The large thallus of seaweed K. alvarezii was sliced to a thickness of 5 mm with a scalpel 

in order to observe the cross section. The sample was soaked in a liquid containing the cultured 

bacteria. The sample was rinsed with 3.5% NaCl water three times and exposed to UV light for 30 

minutes to eliminate bacterial activity. Then, the thallus sample was observed with a Raman 

imaging instrument. The Raman image measurements were carried out twice at the 3rd and 5th day. 

After Raman observation, the sample was treated with a 0.05% w/v methylene blue (Waldeck, 

Germany) aqueous solution with 3.5% NaCl for 30 minutes and rinsed with purified water three 

times. The methylene blue stained sample was observed with a normal optical microscope to 

observe the distribution of carrageenan (Campo et al. 2009). 
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Bacterial Identification 

 16-s Genomic DNA were extracted from selected seaweed-decomposition bacteria. 

Centrifuged cell were suspended by adding 100 µl suspension buffer (10 mM Tris-HCL (pH 8), 1 

mM EDTA, 350 mM Sucrose) and vortexed for 1 min. 100 µl lysis buffer (100mM Tris-HCL (pH 

8), 20 mM EDTA, 300 mM NaCl, 2% SDS)  were added to break the cell wall and 1 µl proteinase 

to hydrolyze cell protein content. Sample were then incubate at 550C for 30 min. and flipped slowly 

every 10 min. In order to remove all protein content, same amount of last mixture sample phenol/ 

chloroform/ isoamyl alcohol (PCI) were added. Top layer of sample-PCI solution were moved into 

new microcentrifuge tube. DNA were precipitated by adding 0.6 time of total sample of 

Isopropanol and put on ice for 5 min. Sample were then centrifuged for 5 min at 15000 rpm and 

discard the supernatant. 100 µl distillated water and 1 µl RNAse A were added to remove RNA 

contamination. Sample were incubated at 370C for 30 min. DNA were precipitated by adding 3M 

sodium acetate and 99% ethanol then seated on ice for 15 min. sample were centrifuged for 25 

min. at 14000 rpm then discard the supernatant. 1 ml of 70% ethanol were added and seated on ice 

for another 15 min. sample were centrifuge for 10 min. at 14000 rpm and discard the supernatant. 

50 µl distillated water were added and measure the DNA concentration by NanoDrop 1000. 

 DNA were amplified by PCR with KOD plus polymerase and a pair of universal primers.  

Primers 518 F (CCAGCAGCCGCGGTAATACG) and 800 R (TACCAGGGTATCTAATCC) 

with targeted sequence length was 282 base pair were added in the PCR reaction mix.  The PCR 

temperature cycle condition was as follow: initial denature 980C for 3 min; successive denaturation 

980C for 10 sec; annealing 400C for 30 sec; and extension 680C for 1 min. 40 sec. Series of 

denaturation, annealing and extension were repeated until 30 cycles. The PCR products were 

analyzed by 1 % agarose gel electrophoresis and the result was observed using UV lamp. PCR 

product were then purified by Fast Gene PCR extraction kit. The purified sample were sequenced 
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using 3500 genetic analyzers sequencer. The nearly complete 16S rDNA gene sequences were 

used to search the genetic profile similarity in the NCBI database. 

Raman spectroscopy 

A PLSR calibration model was built with 11 test samples composed of carrageenan and 

cellulose. Since these molecules are not water-soluble, fine powders were mixed to prepare the 

test samples with different concentrations of carrageenan. The Raman measurements were made 

with the InVia Raman System (Renishaw Inc., UK), which is equipped with a 785 nm laser for 

excitation. The spectra of the test samples were obtained using the streamline mode of the system, 

in which the sample was irradiated by a line-focused laser with a ×20 magnification objective lens 

(0.40 NA, Leica, Germany). The power of the laser was 190 mW at the sampling point. 

The 3D Raman images of the algae samples were obtained with the same instrument; 

however, the confocal mode was used for the observation in order to achieve high spatial resolution. 

A homemade aluminum substrate with water reservoirs was used to keep the sample size and wet 

during the measurement. The sliced thallus was placed on the substrate and soaked in water 

containing 3.5% NaCl. The final 3D images consisted of 3200 sampling points with intervals of 

250 µm for lateral direction (X- and Y-axes) and of 50 µm for the depth direction (Z-axis) were 

obtained. The exposure time was three seconds at every sample point, which amounted to a run-

time of about 3 h. 

Chemometrics analysis 

A PLSR model was built using 11 test sample mixtures of carrageenan and cellulose in 

order to analyze the carrageenan concentration in the algal body of biological samples (Mahardika, 

2018). Carrageenan and cellulose were preliminary grounded by hand with a homogenizer to 

obtain a small particle size before the sample preparation. The carrageenan and cellulose were 
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mixed together to make a series of concentrations from 0 to 100 % w/w of carrageenan. (See table 

2) The mixed carrageenan-cellulose was placed in a small hole on an aluminum plate and pressed 

to a small tablet. Spectra measured at hundred sample points of each tablet were averaged to obtain 

test data. The Raman spectra were processed with interpolation, background, and sixth polynomial 

baseline corrections before the spectra were normalized to a band at 1470 cm-1. The hyperspectral 

image data was smoothed using a Savitzky-Golay second order polynomial with 25 points on both 

sides of the frequency. The PLSR analysis was carried out by Unscrambler 10.1 software (CAMO 

Software AS., Oslo, Norway).  

Results 

Growth rate curves are depicted in Fig. 1a for the two independent bacterial colonies (red 

(a) and orange (b)) isolated from the decomposed seaweed K. alvarezii grown in 10% liquid marine 

broth medium. The growth curves showed a log phase during the first day and seemed to reach to 

a stationary phase later on. After reaching the maximum at 1 day, the orange bacterium gradually 

increased, while the red bacterium reduced in population. This result suggests that the orange 

bacterium is tolerant to the deprivation of nutrients. The two bacteria exhibited slightly different 

activities in the enzymatic reaction in Fig. 2b. The curves represent concentrations of reducing 

sugar, the product of carrageenan hydrolysis by bacterial enzymes. During the first two days, the 

bacteria quickly consumed the reducing sugar indicated by sharp decrease in the sugar 

concentration. The concentration of reducing sugar remarkably increased at the third day, possibly 

due to the bacterial production of enzymes to hydrolyze carrageenan into the small sugars needed 

as a carbon source for their proliferation. The orange bacteria showed higher concentration of 

reducing sugars at day 3. This suggests that the orange bacteria possess the carrageenan hydrolysis 

enzymes with a higher activity or that the orange one has greater ability to produce the enzyme. 
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This may also be the reason why the orange bacteria have higher survival ability under nutrient-

poor conditions (Fig. 1a).  

Figure 3 compares Raman spectra of seaweed K. alvarezii (a), cellulose (b), and 

carrageenan (c). The strong band at 850 cm-1 in carrageenan (c) and K. alvarezii (a) has been 

assigned to a vibrational mode of galactose 4-sulfate (G4S) (Pereira et al. 2009) and used for 

carrageenan detection. The band at 1122 cm-1 in cellulose spectra (b), which appear as small 

“shoulder” in K. alvarezii (a), was deemed to be a good marker for cellulose. The CH band at 1470 

cm-1 seems to be a shared band that was therefore used for spectral normalization. 

PLSR analysis was applied to the hyperspectral images of the algal body infected with 

bacteria to visualize the localization of bacterial invasion. As it was suggested in the study of 

bacterial proliferation and sugar decomposition (Fig. 2), the speed of enzymatic decomposition of 

carrageenan was highly correlated with the bacterial proliferation. The PLSR calibration model 

was built with 11 test samples and the latent variable was one. The correlation coefficient (R2) of 

the one-leave-out cross validation was 0.994 and the root mean square error (RMSE) was 0.0275 

(fig 4a). The loading plot of factor 1 is depicted in fig 4b. The spectral feature of the loading plot 

seems to consist of carrageenan-bands in positive and cellulose-bands in negative. 

3D Raman images were repeatedly obtained from the largest sliced branch of K. alvarezii 

at 3rd and 5th days after the infections. The bacterial activity was stopped by washing with 3.5% 

NaCl and exposed under UV light for 30 minutes before measurement. Topographies of 

carrageenan concentration for the branches with no (control; a), orange (b), and red (c) bacteria at 

3rd day are shown in fig 5. The maps suggest that the carrageenan concentration is lowest in the 

map of the sample infected with the orange bacteria. The topographies of the branch samples 
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measured at 5th day are exhibited in Fig. 6. The maps show a clear reduction of carrageenan content 

in the branch infected with the orange bacteria.  

Red and orange bacteria are successfully identified by partial 16S rDNA sequencing. Fig. 

7 show the PCR amplification of targeted 16S rDNA gene with a pair universal primers. Band 

appear on gel electrophoresis is about 282 base pair in red and orange bacteria although red bacteria 

show brighter then orange bacteria. The nearly complete targeted 16S rDNA gene is also success 

sequenced as follow: red bacteria (NNNNNNNNNNNTNTTGGGCGTAAGCGCGCGCAGG 

TGGTTCCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAA

CTGGGGAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCAAGTGTAGCGGTGAAATG

CGTAGATATTTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACA

CTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAANAN) with 

total sequenced 255 bp and orange bacteria (NNNNNNNGGANTATTGGGCGTAAGCGCGCG 

CAGGCGGTCTTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGNGGAGGGTCATTGGAAA

CTGGAGGACTTGAGTGCAGAANANGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAG

ATATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGC

GAAAG) with total sequenced 218 bp. 

The photo images of the branches stained with methylene blue are compared in Fig. 8. 

Methylene blue staining is based on the cation-anion binding between the sample and the pigment, 

which makes it especially fitting for carrageenan and other anionic hydrocolloids (Soedjak 1994; 

Campo et al. 2009). It is rather difficult to recognize, but seems that the carrageenan concentration 

is lowest in the branch with the orange bacteria (b) compared to the other two samples.  
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Discussion 

 The increment of reducing sugar (Fig. 2b) was observed in the sample with carrageenan as 

the only carbon source in the culturing media. This reveals that the red and orange bacteria are 

able to produce enzymes to hydrolyze carrageenan into reducing sugars such as di- or penta- 

galactose. k-Carrageenase endohydrolases that cleave the internal b-(1-4) linkages of carrageenan 

yielding oligogalactans which cleaving possible bonds at Degree polymerization (DP) 4s and DP2s 

(Chauhan and Saxena, 2016)  The two bacteria showed different growth rate curves, may be due 

to the difference in the ability to digest carrageenan between the red and orange bacteria. At the 

beginning of the experiment, the curves indicate that there was no or little enzyme produced by 

the bacteria as a decrease of inherent reducing sugar during the first 2 days incubation. It is worth 

to note that the enzymatic reaction was not observed without the presence of bacterial cells. Since 

the bacteria were removed by centrifugation, it is assumed that the bacterial body has not been 

destroyed. This suggests that the bacteria digest carrageenan outside of their cells by secretion of 

the enzyme but not incorporating carrageenan into the cell. It should be noted that the bacterial 

population did not increase even after the 3rd day even though the enzyme had produced reducing 

sugars. Intriguingly, this result suggests that the infectious capability of the bacteria used in this 

study is very low towards seaweeds that accumulate carrageenan as their energy reservoir.  

 Red and orange bacteria are successfully identified by 16S rDNA gene sequencing. Red 

bacteria was identified with high possibility as Bacillus vietnamensis with the percent of similarity 

is up to 99%. On the other hand, the orange bacteria was identified as Bacillus hwajinpoensis with 

percent of similarity is up to 98%. The Global Catalog of Microorganism reported that B. 

vietnamensis is isolated from mangrove sediment while B. hwajinpoensis is isolated from seaweed. 

Chauhan and Saxena (2016) was reported that several bacterial from genus Bacillus was able to 

produce carrageenase. 
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 To study the bacterial enzymatic carrageenan degradation activity in the algal body, the 

Raman image technique was employed. The present sample of algal body had a low fluorescent 

background as shown in Fig. 3(a). The K. alvarezii is a red alga rich in phycoerythrin, carotenoids, 

and chlorophylls for photosynthesis (Indriatmoko et al. 2015). In contrast, the sun-dried seaweed 

samples possessed less color. This suggests that the photosynthetic pigments have been destroyed 

by the exposure of ultraviolet light in sunlight. The spectrum of the algal body in Fig. 3(a) does 

not have bands at 1735 and 1660 cm-1, bands that usually represent lipid and protein, suggesting 

that these materials also have decomposed during the sun-drying procedure. The algae samples 

have a high content of carrageenan and small main-body structure of cellulose. The spectra in the 

hyperspectral images were normalized to a band at 1470 cm-1. The band is assigned to CH bending 

mode that is present for almost all organic materials. Especially in bioorganic materials, the 

intensity of this band represents the amount of carbon, as there are few double and triple bonds in 

bio-molecules. The PLSR calibration model to predict carrageenan concentration was built with 

the 11 test samples of mixed powders of carrageenan and cellulose. Therefore, water was not taken 

into account in the present analysis.  

The PLSR calibration curve had high correlation coefficient (R2), although it was built with 

only first component. The model was applicable to the present samples. Concentration maps of 

carrageenan were successfully composed from the dataset of 3D Raman images of the slice. The 

maps indicate that carrageenan is localized heterogeneously in the algal body. A similar 

distribution of carrageenan seems to be observed in the picture of methylene blue stained branch, 

but this is not quite clear. Since the Raman image system possess confocal optical configuration, 

it has a high spatial resolution that seems to increase the contrast in the carrageenan concentration 

map. The sample with orange bacteria showed the largest decrease of carrageenan concentration 
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after 5 days of incubation. The 3D images indicate that the decrease of the carrageenan 

concentration was to equal throughout the algal body. However, outside to inside invasion was not 

shown. This result indicates that the bacteria actively penetrate into the algal body at first, and then 

start consuming carrageenan. A decrease of carrageenan content was previously observed in algae 

with ice-ice disease (Mendoza et al. 2002). By using the methods and techniques developed in this 

study, Raman image techniques combined with PLSR analysis of reduced test samples, it seems 

possible to investigate the way of infection and proliferation of ice-ice pathogens in K. alvarezii. 

Conclusion 

 The Raman image technique was successfully applied to study the bacterial activity in the 

algal body. It was possible to measure the Raman spectrum of the sun-dried algae sample without 

any fluorescent interference. The PLSR prediction model built with only 11 test samples was 

effective in the quantitative analysis of carrageenan concentration in the algal body. The 

accumulation of carrageenan is not homogeneous, but rather localized in the algal body. The 

isolated orange bacterium was able to penetrate into the algal body quickly and degrades 

carrageenan by secreting hydrolyzing enzymes. The presented results demonstrate that the Raman 

image technique combined with PLSR analysis has enormous potential in the study of seaweed 

disease and carrageenan production in algae. 
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Fig. 1. Isolated red (a) and orange (b) bacteria from decomposed seaweed. 
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Fig. 2. Growth rate curves (A) of red (red square) and orange (orange circle) bacteria 

estimated with absorbance at 600 nm and their enzymatic activity curves (B) measured 

by Miller’s method (absorbance at 540 nm). 
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Fig. 3. Raman spectra of thallus of K. alvarezii (a), pure cellulose (b), and pure k-carrageenan 

(c). 
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Fig. 4. Calibration curve of the PLSR prediction model for cellulose-carrageenan mixed test 

samples (a) and the loading plot of factor 1 (b). 
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Fig. 5. Raman images of carrageenan distribution in K. alvarezii thalli after 3 days incubation 

with no bacteria (control; a), orange (b) and red (c) bacteria. 
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Fig. 6. Raman images of carrageenan distribution in K. alvarezii thalli after 5 days incubation 

with no bacteria (control; a), orange (b) and red (c) bacteria. 
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Fig. 7. Gel electrophoresis of 16S rDNA gene amplification 
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Fig. 8. Photo images of K. alvarezii thalli stained with methylene blue after 5 days incubation 

with no bacteria (control; a), orange (b) and red (c) bacteria.  
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 Table 1. Characterization of κ-type carrageenan by Raman spectroscopy. 
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Table 2. PLSR model, mixture carrageenan and cellulose 
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